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CHARACTERIZATIONS FOR THE FRACTIONAL INTEGRAL
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VAGIF S. GULIYEV ∗ AND ISMAIL EKINCIOGLU

(Communicated by Y. Sawano)

Abstract. In this paper, we shall give a characterization for the strong and weak type Spanne
type boundedness of the fractional integral operator Iα , 0 < α < Q on Carnot group G on
generalized weighted Morrey spaces Mp,ϕ (G,w) , respectively, where Q is the homogeneous
dimension of G . Also we give a characterization for the Spanne type boundedness of the com-
mutator operator [b,Iα ] on generalized weighted Morrey spaces.

As applications of the properties of the fundamental solution of sub-Laplacian L on G ,
we prove two Sobolev-Stein embedding theorems on generalized weighted Morrey spaces in the
Carnot group setting.

1. Introduction

The classical Morrey spaces were introduced by Morrey [32] to study the local
behavior of solutions to second-order elliptic partial differential equations. Moreover,
various Morrey spaces are defined in the process of study. Guliyev, Mizuhara and
Nakai [12, 31, 33] introduced generalized Morrey spaces Mp,ϕ(Rn) (see, also [13, 14,
40]). Komori and Shirai [28] defined weighted Morrey spaces Lp,κ(w) . Guliyev [18]
gave a concept of the generalized weighted Morrey spaces Mp,ϕ(Rn,w) which could
be viewed as extension of both Mp,ϕ(Rn) and Lp,κ(w) . In [18], the boundedness of the
classical operators and their commutators in spaces Mp,ϕ(Rn,w) was also studied, see
also [7, 19, 20, 21, 22, 24, 34].

The spaces Mp,ϕ(Rn,w) defined by the norm

‖ f‖Mp,ϕ (Rn,w) ≡ sup
x∈Rn,r>0

ϕ(x,r)−1 w(B(x,r))−1/p ‖ f‖Lp(B(x,r),w),

where the function ϕ is a positive measurable function on Rn × (0,∞) and w is a
non-negative measurable function on R

n .
Carnot groups appear in quantum physics and many parts of mathematics, includ-

ing Fourier analysis, several complex variables, geometry and topology. Analysis on
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the groups is also motivated by their role as the simplest and the most important model
in the general theory of vector fields satisfying Hörmander’s condition. The simplest
examples of the Carnot groups are Euclidean space Rn , Heisenberg group Hn and
(Heisenberg)-type groups introduced by Kaplan [27].

For x ∈ G and r > 0, let D(x,r) denote the G - ball centered at x of radius r and
�
D(x,r) denote its complement.

Let f ∈ Lloc
1 (G) . The fractional integral operator Iα is defined by

Iα f (x) =
∫

G

f (y)dy
ρ(x−1y)Q−α , 0 < α < Q,

where |D(x, t)| is the Haar measure of the G -ball D(x, t) .
The operator Iα play an important role in real and harmonic analysis and applica-

tions (see, for example [1, 26, 37, 42]).
In the present work, we shall give a characterization for the Spanne type bound-

edness of the operator Iα on generalized weighted Morrey spaces, including weak ver-
sions. Also we give a characterization for the Spanne type boundedness of the commu-
tator operator [b, Iα ] on generalized weighted Morrey spaces.

By A � B we mean that A � CB with some positive constant C independent of
appropriate quantities. If A � B and B � A , we write A ≈ B and say that A and B are
equivalent.

2. Notation and preliminary results

We first recall some preliminaries concerning stratified Lie groups (or so-called
Carnot groups). We refer the reader to the books [1, 5, 42] for analysis on stratified
groups.

Let G be a finite-dimensional, stratified, nilpotent Lie algebra. Assume that there
is a direct sum vector space decomposition

G = V1⊕·· ·⊕Vm (2.1)

so that each element of Vj , 2 � j � m , is a linear combination of ( j − 1)th order
commutator of elements of V1 . Equivalently, (2.1) is a stratification provided [Vi,Vj] =
Vi+ j whenever i+ j � m and [Vi,Vj] = 0 otherwise. Let X = X1, . . . ,Xn be a basis for
V1 and Xi j, 1 � i � k j, for Vj consisting of commutators of length j . We set Xi1 = Xi,
i = 1, . . . ,n and k1 = n , and we call Xi1 a commutator of length 1.

If G is the simply connected Lie group associated with G , then the exponential
mapping is a global diffeomorphism from G to G . Thus, for each g ∈ G , there is

x = (xi j) ∈ R
N , 1 � i � k j, 1 � j � m , N =

m
∑
j=1

k j , such that g = exp(∑xi jXi j) . A

homogeneous norm function | · | on G is defined by |g| =
(
∑ |xi j|2m!/ j

)1/(2m!)
, and

Q =
m
∑
j=1

jk j is said to be the homogeneous dimension of G , since d(δrx) = rQdx for
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r > 0. The dilation δr on G is defined by

δr(g) = exp
(
∑r jxi jXi j

)
if g = exp

(
∑xi jXi j

)
.

The convolution operation on G is defined by

f ∗ h(x) =
∫

G

f (xy−1)h(y)dy =
∫

G

f (y)h(y−1x)dy,

where y−1 is the inverse of y and xy−1 denotes the group multiplication of x by y−1 .
It is known that for any left invariant vector field X on G , X( f ∗ h) = f ∗ (Xh) .

Since G is nilpotent, the exponential map is diffeomorphism from G onto G

which takes Lebesgue measure on G to a biinvariant Haar measure dx on G . The
group identity of G will be referred to as the origin and denoted by e .

A homogenous norm on G is a continuous function x → ρ(x) from G to [0,∞),
which is C∞ on G \ {0} and satisfies ρ(x−1) = ρ(x), ρ(δtx) = tρ(x) for all x ∈ G ,
t > 0; ρ(e) = 0 (the group identity). Moreover, there exists a constant c0 � 1 such that
ρ(xy) � c0 (ρ(x)+ ρ(y)) for all x, y ∈ G .

We call a curve γ : [a,b] → G a horizontal curve connecting two points x,y ∈ G

if γ(a) = x , γ(b) = y and γ ′(t) ∈V1 for all t . Then the Carnot-Caratheodory distance
between x , y is defined as

dcc(x,y) = inf
γ

∫ b

a
〈γ ′(t),γ ′(t)〉 1

2 dt,

where the infimum is taken over all horizontal curves γ connecting x and y . It is known
that any two points x , y on G can be joined by a horizontal curve of finite length and
then dcc is a left invariant metric on G . We can define the metric ball centered at x and
with radius r associated with this metric by

Bcc(x,r) = {y ∈ G : dcc(x,y) < r}.

We must notice that this metric dcc is equivalent to the pseudo-metric ρ(x,y) =
ρ(x−1y) defined by the homogeneous norm | · | in the following sense (see [1]):

C−1ρ(x,y) � dcc(x,y) � Cρ(x,y).

We denote the metric ball associated with ρ as D(x,r) = {y ∈ G : ρ(x,y) < r} . An
important feature of both of these distance functions is that these distances and thus the
associated metric balls are left invariant, namely,

dcc(zx,zy) = dcc(x,y), Bcc(x,r) = xBcc(e,r)

and
ρ(zx,zy) = ρ(x,y), D(x,r) = xD(e,r).

From now on, we will always use the metric dcc and drop the subscript from dcc .
Similarly, we will use B(x,r) to denote Bcc(x,r) .
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With this norm, we define the G - ball centered at x with radius r by D(x,r) =
{y∈ G : ρ(y−1x) < r} , and we denote by Dr = D(e,r) = {y∈ G : ρ(y) < r} the open

ball centered at e , the identity element of G , with radius r . By
�
D(x,r) = G\D(x,r)

we denote the complement of D(x,r) .
One easily recognizes that there exist c1 = c1(G) , and c2 = c2(G) such that

|B(x,r)| = c1 rQ, |D(x,r)| = c2 rQ, x ∈ G, r > 0.

The most basic partial differential operator in a Carnot group is the sub- Laplacian
associated with X is the second-order partial differential operator on G given by L =
∑n

i=1 X2
i .

3. Generalized weighted Morrey spaces

By a weight function, briefly weight, we mean a locally integrable function on G

which takes values in (0,∞) almost everywhere. For a weight w and a measurable set
E , we define w(E) =

∫
E w(x)dx , and denote the Lebesgue measure of E by |E| and

the characteristic function of E by χE .
If w is a weight function, we denote by Lp,w(G) the weighted Lebesgue space

defined by finiteness of the norm

‖ f‖Lp,w(G) =
(∫

G

| f (x)|pw(x)dx
) 1

p
< ∞, i f 1 � p < ∞

and
‖ f‖L∞,w(G) = ess sup

x∈G

| f (x)|w(x), i f p = ∞.

We define the generalized weighed Morrey spaces as follows.

DEFINITION 1. Let 1 � p < ∞ , ϕ be a positive measurable function on G×
(0,∞) and w be non-negative measurable function on G . We denote by Mp,ϕ(G,w) ≡
Mp,ϕ(w) the generalized weighted Morrey space, the space of all functions f ∈Lloc

p,w(G)
with finite norm

‖ f‖Mp,ϕ (w) = sup
x∈G,r>0

ϕ(x,r)−1w(D(x,r))−
1
p ‖ f‖Lp,w(D(x,r)),

where Lp,w(D(x,r)) denotes the weighted Lp -space of measurable functions f for
which

‖ f‖Lp,w(D(x,r)) ≡ ‖ f χD(x,r)‖Lp,w(G) =
(∫

D(x,r)
| f (y)|pw(y)dy

) 1
p
.

Furthermore, by WMp,ϕ(w) we denote the weak generalized weighted Morrey
space of all functions f ∈WLloc

p,w(G) for which

‖ f‖WMp,ϕ (w) = sup
x∈G,r>0

ϕ(x,r)−1w(D(x,r))−
1
p ‖ f‖WLp,w(D(x,r)) < ∞,
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where WLp,w(D(x,r)) denotes the weak Lp,w -space of measurable functions f for
which

‖ f‖WLp,w(D(x,r)) ≡ ‖ f χD(x,r)‖WLp,w(G) = sup
t>0

t
(∫

{v∈D(x,r):| f (y)|>t}
w(y)dy

) 1
p
.

We recall a weight function w is in the Muckenhoupt’s class Ap(G) , 1 < p < ∞
[29], if

[w]Ap := sup
D

[w]Ap(D) = sup
D

( 1
|D|

∫
D

w(x)dx
)( 1

|D|
∫

D
w(x)1−p′dx

)p−1
< ∞, (3.1)

where the supremum is taken with respect to all the balls D and 1
p + 1

p′ = 1. Note that,
for all balls D Hölder’s inequality is

[w]
1
p

Ap(D) = |D|−1‖w‖
1
p

L1(D)‖w− 1
p ‖Lp′ (D) � 1. (3.2)

For p = 1, w ∈ A1(G) is defined by the condition Mw(x) � Cw(x) with [w]A1 =
supx∈G

Mw(x)
w(x) , and for p = ∞ A∞(G) = ∪1�p<∞Ap(G) and [w]∞ = inf1�p<∞[w]Ap .

A weight function w is in the Muckenhoupt-Wheeden class Ap,q(G) , 1 < p < ∞
[30], if

[w]Ap,q := sup
D

[w]Ap,q(D)

= sup
D

( 1
|D|

∫
B
w(x)qdx

)1/q( 1
|D|

∫
D

w(x)−p′dx
)1/p′

< ∞,

where the supremum is taken with respect to all the balls D and 1
p + 1

p′ = 1. Note that,
for all balls D Hölder’s inequality is

[w]Ap,q(D) = |D| 1
p− 1

q−1‖w‖Lq(D)‖w−1‖Lp′ (D) � 1 (3.3)

While p = 1, w ∈ A1,q(G) with 1 < q < ∞ if

[w]A1,q := sup
D

[w]A1,q(D)

= sup
D

( 1
|D|

∫
D

w(x)qdx
) 1

q
(

ess sup
x∈D

1
w(x)

)
< ∞. (3.4)

We will use the following statement on the boundedness of the weighted Hardy
operator

Hwg(t) :=
∫ ∞

t
g(s)w(s)ds, H∗

wg(t) :=
∫ ∞

t

(
1+

s
t

)
g(s)w(s)ds, 0 < t < ∞.

where w is a weight. The following theorem was proved in [15].
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THEOREM 3.1. [15] Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)Hwg(t) � C sup
t>0

v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
t>0

v2(t)
∫ ∞

t

w(s)ds
sups<τ<∞ v1(τ)

< ∞

THEOREM 3.2. [18] Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)H∗
wg(t) � C sup

t>0
v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
t>0

v2(t)
∫ ∞

t

(
1+

s
t

) w(s)ds
sups<τ<∞ v1(τ)

< ∞.

Let D = {D(x,r) : x ∈ G,r > 0} . For a non-negative measurable function w , we
denote by G p

w the set of all almost decreasing functions ϕ : G× (0,∞) → (0,∞) such
that

inf
D∈D :rD�rD0

ϕ(D) � ϕ(D0) f or all D0 ∈ D

and

inf
D∈D :rD�rD0

ϕ(D)wp(D)
1
p � ϕ(D0)wp(D0)

1
p ,

where rD and rD0 denote the radius of the G -balls D and D0 , respectively.
For proving our main results, we need the following estimate.

LEMMA 3.1. Let D0 := D(x0,r0) . If ϕ ∈ G p
w , then there exist C > 0 such that

1
ϕ(D0)

� ‖χD0‖Mp,ϕ (wp) � C
ϕ(D0)

.

Proof.

‖χD0‖Mp,ϕ (wp) = sup
D

ϕ(D)−1wp(D)−
1
p (w(D∩D0))

1
p

� ϕ(D0)−1wp(D0)
− 1

p wp(D0)
1
p = ϕ(D0)−1.
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Now if r � r0 , then ϕ(D0) = ϕ(x0,r0) � Cϕ(x,r) = Cϕ(D) and

ϕ(D)−1wp(D)−
1
p ‖χD0‖Lp,wp (D) = ϕ(D)−1wp(D)−

1
p (w(D∩D0))

1
p

� ϕ(D)−1 � Cϕ(D0)−1.

Therefore, ‖χD0‖Mp,ϕ (wp) � Cϕ(D0)−1 .

On the other hand if r � r0 , then ϕ(D)wp(D)
1
p � Cϕ(D0)wp(D0)

1
p and

ϕ(D0)−1 � Cϕ(D)−1wp(D)−
1
p wp(D0)

1
p � Cϕ(D)−1 wp(D)−

1
p wp(D∩D0)

1
p .

Then

‖χD0‖Mp,ϕ (wp) = sup
D∈D

ϕ(D)−1 wp(D)−
1
p wp(D∩D0)

1
p � Cϕ(D0)−1.

Because of this, ‖χD0‖Mp,ϕ(wp) � Cϕ(D0)−1 . �

REMARK 3.1. Lemma 3.1 was proved in [8] for the case of G = R
n .

4. Fractional integral operator in the spaces Mp,ϕ(G,w)

In this section, we shall give a characterization for the Spanne type boundedness of
the operator Iα on generalized weighted Morrey spaces Mp,ϕ(G,w) , including weak
versions. In the case of G = Rn Spanne type result for the operator Iα in the space
Mp,ϕ(Rn,w) was proved in [18], see also [19, 20, 22].

The following weighted local estimates are valid (see [18]).

THEOREM 4.3. Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , and ω ∈ Ap,q(G) .

Then, for 1 � p < q < Q
α , the inequality

‖Iα f‖Lq,wq (D(x,r)) � wq(D(x,r))
1
q

∫ ∞

2c0r
‖ f‖Lp,wp (D(x,t))w

q(D(x,t))−
1
q
dt
t

holds for any boll D(x,r) and for all f ∈ Lloc
p,w(G) .

Moreover, for p = 1 the inequality

‖Iα f‖WLq,wq (D(x,r)) � wq(D(x,r))
1
q

∫ ∞

2c0r
‖ f‖L1,w(D(x,t))w

q(D(x,t))−
1
q
dt
t

(4.5)

holds for any boll D(x,r) and for all f ∈ Lloc
1,w(G) .

Proof. Let 1 < p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , and w ∈ Ap,q(G) . For
arbitrary x ∈ G , set D = D(x,r) , 2c0D = D(x,2c0r) .
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We present f as

f = f1 + f2, f1(y) = f (y)χ2c0D(y), f2(y) = f (y)χ(2c0D)�(y), r > 0, (4.6)

and have
‖Iα f‖Lq,wq (D) � ‖Iα f1‖Lq,wq (D) +‖Iα f2‖Lq,wq (D).

Since f1 ∈Lp,wp(G) , Iα f1 ∈Lq,wq(G) and from the boundedness of Iα from Lp,wp(G)
to Lq,wq(G) (see [2, 35]) it follows that:

‖Iα f1‖Lq,wq(D) � ‖Iα f1‖Lq,wq � C‖ f1‖Lp,wp = C‖ f‖Lp,wp(2c0D),

where the constant C > 0 does not depend on f .
It is clear that z ∈ D , y ∈ (2c0D)� implies 1

2c0
ρ(x−1y) � ρ(z−1y) � 3c0

2 ρ(x−1y) .
We get

|Iα f2(z)| � (2c0)Q−α
∫

(2c0D)�

| f (y)|
ρ(x−1y)Q−α dy.

By the Fubini’s theorem we have

∫
(2c0D)�

| f (y)|
ρ(x−1y)Q−α dy ≈

∫
(2c0D)�

| f (y)|
(∫ ∞

ρ(x−1y)

dt
tQ+1−α

)
dy

=
∫ ∞

2c0r

(∫
2c0r�ρ(x−1y)<t

| f (y)|dy
) dt

tQ+1−α

�
∫ ∞

2c0r

(∫
D(x,t)

| f (y)|dy
) dt

tQ+1−α .

By applying Hölder’s inequality, we get

∫
(2c0D)�

| f (y)|
ρ(x−1y)Q−α dy �

∫ ∞

2c0r
‖ f‖Lp,ω p (D(x,t))‖w−1‖Lp′ (D(x,t))

dt
tQ+1−α

�
∫ ∞

2c0r
‖ f‖Lp,ω p (D(x,t))w

q(D(x,t))−
1
q
dt
t

.

Moreover, for all p ∈ [1,∞) ,

‖Iα f2‖Lq,wq(D) � wq(D)
1
q

∫ ∞

2c0r
‖ f‖Lp,ω p (D(x,t))w

q(D(x,t))−
1
q
dt
t

. (4.7)

Thus,

‖Iα f‖Lq,wq (D) � ‖ f‖p,wp(2c0D)+wq(D(x,t))
1
q

∫ ∞

2c0r
‖ f‖Lp,ω p (D(x,t))w

q(D(x,t))−
1
q
dt
t

On the other hand, since, w ∈ Ap,q(G) , by the Hölder’s inequality

[w]Ap,q � |D| 1
p− 1

q−1wq(D)
1
q ‖w−1‖Lp′ (D) = |D| α

Q−1wq(D)
1
q ‖w−1‖Lp′ (D) � 1.
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Then,

‖ f‖Lp,wp(2c0D) � |D|1− α
Q

∫ ∞

2c0r
‖ f‖Lp,wp(D(x,t))

dt
tQ+1−α

� wq(D)
1
q ‖w−1‖Lp′ (D)

∫ ∞

2c0r
‖ f‖Lp,wp(D(x,t))

dt
tQ+1−α

� wq(D)
1
q

∫ ∞

2c0r
‖ f‖Lp,wp(D(x,t))‖w−1‖Lp′ (D(x,t))

dt
tQ+1−α

� wq(D)
1
q

∫ ∞

2c0r
‖ f‖Lp,wp(D(x,t))w

q(D(x,t))−
1
q
dt
t

. (4.8)

Thus,

‖Iα f‖Lq,wq (D) � wq(D)
1
q

∫ ∞

2c0r
‖ f‖Lp,wp (D(x,t))w

q(D(x,t))−
1
q
dt
t

.

Let p = 1. Since, w ∈ A1,q , by the Hölder’s inequality

[w]Ap,q � |D| 1
p− 1

q−1wq(D)
1
q ‖w−1‖L∞(D) = |D| α

Q−1wq(D)
1
q ‖w−1‖L∞(D) � 1.

Then from the boundedness of Iα from L1,wp(G) to WLq,wq(G) (see [2, 35]) it follows
that:

‖Iα f1‖WLq,wq (D) � ‖Iα f1‖WLq,wq � ‖ f1‖L1,w = ‖ f‖L1,w(2c0D)

� |D|1− α
Q

∫ ∞

2c0r
‖ f‖L1,w(D(x,t))

dt
tQ+1−α (4.9)

� wq(D)
1
q ‖w−1‖L∞(D)

∫ ∞

2c0r
‖ f‖L1,w(D(x,t))

dt
tQ+1−α

� wq(D)
1
q

∫ ∞

2c0r
‖ f‖L1,w(D(x,t))‖w−1‖L∞(D(x,t))

dt
tQ+1−α

� wq(D)
1
q

∫ ∞

2c0r
‖ f‖L1,w(D(x,t))w

q(D(x, t))−
1
q
dt
t

.

Since
‖Iα f2‖WLq,wq (D) � ‖Iα f2‖Lq,wq(D),

then

‖Iα f2‖WLq,wq (B) � wq(D)
1
q

∫ ∞

2c0r
‖ f‖L1,ω (D(x,t))w

q(D(x,t))−
1
q
dt
t

. (4.10)

Thus, from (4.9) and (4.10) it follows that

‖Iα f‖WLq,wq (D) � wq(D)
1
q

∫ ∞

2c0r
‖ f‖Lp,wp(D(x,t))w

q(D(x,t))−
1
q
dt
t

. �

The following Spanne type result on the space Mp,ϕ(w) is valid.
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THEOREM 4.4. Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , w ∈ Ap,q(G) , and
(ϕ1,ϕ2) satisfy the condition

∫ ∞

r

ess inf
t<s<∞

ϕ1(x,s)wpD((x,s))1/p

wq(D(x,t))1/q

dt
t

� Cϕ2(x,r) (4.11)

where C does not depend on x and r . Then the operator Iα is bounded from Mp,ϕ1(w
p)

to Mq,ϕ2(w
q) for p > 1 and from M1,ϕ1(w) to WMq,ϕ2(w

q) for p = 1 . Moreover, for
p > 1

‖Iα f‖Mq,ϕ2 (wq) � ‖ f‖Mp,ϕ1 (wp),

and for p = 1
‖Iα f‖WMq,ϕ2 (wq) � ‖ f‖M1,ϕ1

(w).

Proof. Using the Theorem 3.1 and the Theorem 4.3 for p > 1 we get

‖Iα f‖Mq,ϕ2 (wq) = sup
x∈G,r>0

ϕ2(x,r)−1wq(D(x,r))−
1
q ‖Iα f‖Lq,wq (D(x,r))

� sup
x∈G,r>0

ϕ2(x,r)−1
∫ ∞

r
‖ f‖Lp,wp(D(x,t))w

q(D(x,t))−
1
q
dt
t

� sup
x∈G,r>0

ϕ1(x,r)−1wp(D(x,r))−
1
p ‖ f‖Lp,wp(D(x,r)) = ‖ f‖Mp,ϕ1 (wp).

and for p = 1

‖Iα f‖WMq,ϕ2 (wq) = sup
x∈G,r>0

ϕ2(x,r)−1wq(D(x,r))−
1
q ‖Iα f‖L1,w(D(x,r))

� sup
x∈G,r>0

ϕ2(x,r)−1
∫ ∞

r
‖ f‖L1,w(D(x,t))w

q(D(x,t))−
1
q
dt
t

� sup
x∈G,r>0

ϕ1(x,r)−1w(D(x,r))−1‖ f‖L1,w(D(x,r)) = ‖ f‖M1,ϕ1
(w). �

REMARK 4.2. Note that, in the case w≡ 1, Theorems 4.3 and 4.4 were proved in
[16], see also [10, 17, 36].

For proving our main results, we need the following estimate.

LEMMA 4.2. If D0 := D(x0,r0) , then

rα
0 � Iα χD0(x) for every x ∈ D0.

Proof. If x,y ∈ D0 , then ρ(x−1y) � c0ρ(x−1x0)+ c0ρ(x−1
0 y) � 2c0r0 .

Since 0 < α < Q ,

Iα χD0(x) =
∫

D0

ρ(x−1y)α−Qdy � rα−Q
0 |D0| ≈ rα

0 . �

The following theorem is one of our main results.
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THEOREM 4.5. Let 1 � p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , w ∈ Ap,q(G) , and
ϕ1 ,ϕ2 positive measurable functions on G× (0,∞).

1. Then the condition (4.11) is sufficient for the boundedness of Iα from Mp,ϕ1(w
p)

to WMq,ϕ2(w
q) and for p > 1 from Mp,ϕ1(w

p) to Mq,ϕ2(w
q) .

2. If the function ϕ1 ∈ G p
w , then the condition

tαϕ1(t) � Cϕ2(t) f or all t > 0, (4.12)

where C > 0 does not depend on t , is necessary for the boundedness of Iα from
Mp,ϕ1(w

p) to Mq,ϕ2(w
q) and Mp,ϕ1(w

p) to WMq,ϕ2(w
q) .

3. If the function ϕ1 ∈ G p
w satisfies the regularity condition

∫ ∞

t

ϕ1(x,r)wp(D(x,r))
1
p

wq(D(x,r))
1
q

dr
r

� Ctαϕ1(t)

for all t > 0 , where C > 0 does not depend on t , then condition (4.12) is nec-
essary and sufficient for the boundedness of Iα from Mp,ϕ1(w

p) to WMq,ϕ2(w
q)

and for p > 1 from Mp,ϕ1(w
p) to Mq,ϕ2(w

q) .

Proof. The first part of the theorem proved in Theorem 4.4
We shall now prove the second part.
Let D0 = D(x0,r0) and x ∈ D0 . By Lemma 4.2 we have rα

0 � Iα χD0(x) . Then,
rα
0 w(x) � Iα χD0(x)w(x) . Hence,

rα
0 wq(D0)

1
q � ‖Iα χD0‖Lq,wq(D0).

Therefore,

rα
0 � ϕ2(D0)ϕ−1

2 (D0)wq(D0)
− 1

q ‖Iα χD0‖Lq,wq(D0)

� ϕ2(D0) sup
x∈G,r>0

ϕ−1
2 (D)wq(D)−

1
q ‖Iα χD0‖Lq,wq (D)

= ϕ2(D0)‖Iα χD0‖Mq,ϕ2 (wq) � ϕ2(D0)‖χD0‖Mp,ϕ1 (wp).

According to Lemma 3.1

rα
0 � ϕ2(D0)

ϕ1(D0)

is true for all D0 .
Since this is true for every D0 , we are done.
The third statement of the theorem follows from first and second parts of the the-

orem. �

REMARK 4.3. Note that, in the case w ≡ 1, Theorem 4.5 was proved in [9], see
also [10, 23].
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5. Commutators of fractional integral operators in the spaces Mp,ϕ(G,w)

In this section, we shall give a characterization for the Spanne type boundedness of
the commutators of fractional integral operator [b, Iα ] on generalized weighted Morrey
spaces Mp,ϕ(G,w) . In the case of G = Rn Spanne type result for the operator [b, Iα ]
in the space Mp,ϕ(Rn,w) was proved in [18], see also [20, 22].

Given a function b locally integrable on Rn and the operator Iα , we consider the
linear commutator [b, Iα ] defined by setting, for smooth, compactly supported functions
f ,

[b, Iα ]( f ) = bIα( f )− Iα(b f ).

We recall the definition of the space of BMO(G) .

DEFINITION 2. Suppose that b ∈ Lloc
1 (G) , and let

‖b‖∗ = sup
u∈G,r>0

1
|D(x,r)|

∫
D(x,r)

|b(y)−bD(x,r)|dy < ∞,

where

bD(x,r) =
1

|D(x,r)|
∫

D(x,r)
b(y)dy.

Define

BMO(G) = {b ∈ Lloc
1 (G) : ‖b‖∗ < ∞}.

Modulo constants, the space BMO(G) is a Banach space with respect to the norm
‖ · ‖∗ .

LEMMA 5.3. [30] Let w ∈ A∞ . Then the norm ‖ · ‖∗ is equivalent to the norm

‖b‖∗,w = sup
x∈G,r>0

1
w(D(x,r))

∫
D(x,r)

|b(y)−bD(x,r),w|w(y)dy,

where

bD(x,r),w =
1

w(D(x,r))

∫
D(x,r)

b(y)w(y)dy.

The following lemma was proved in [18].

LEMMA 5.4. [18]

1. Let w ∈ A∞ and b ∈ BMO(G) . Let also 1 � p < ∞ , x ∈ G and r1,r2 > 0 . Then
( 1

w(D(x,r1))

∫
D(x,r1)

|b(y)−bD(x,r2),w|pw(y)dy
) 1

p � C
(
1+

∣∣∣ ln r1

r2

∣∣∣)‖b‖∗,

where C > 0 is independent of f , w, x , r1 and r2 .
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2. Let w ∈ Ap and b ∈ BMO(G) . Let also 1 < p < ∞ , x ∈ G and r1,r2 > 0 . Then
( 1

w1−p′(D(x,r1))

∫
D(x,r1)

|b(y)−bD(x,r2),w|p
′
w(y)1−p′dy

) 1
p′

� C
(
1+

∣∣∣ ln r1

r2

∣∣∣)‖b‖∗,
where C > 0 is independent of b , w, x , r1 and r2 .

REMARK 5.4. [5, 42] (1) Let b ∈ BMO(G) . Then

‖b‖∗ ≈ sup
x∈G,r>0

(
1

|D(x,r)|
∫

D(x,r)
|b(y)−bD(x,r)|pdy

) 1
p

(5.13)

for 1 < p < ∞ .
(2) Define BMOp(G,w) by following:

BMOp(G,w) =: {b ∈ Lloc
1 (G) : ‖b‖BMOp(G,w) < ∞},

where

‖b‖BMOp(w) = sup
D

(
1

w(D)

∫
D
|b(x)−bD|pw(x)dx

) 1
p

.

Let 1 � p < ∞ and w ∈ Ap(G) . Then

BMO(G) = BMOp(G,w)

and the norms are mutually equivalent, see [25, Theorem 3.1].
(3) Let b ∈ BMO(G) . Then there is a constant C > 0 such that∣∣bD(x,r) −bD(x,τ)

∣∣ � C‖b‖∗ log
τ
r

for 0 < 2r < τ, (5.14)

where C is independent of f , x , r and τ .

For the commutator of the fractional integral operator [b, Iα ] the following weighted
local estimates are valid (see [18]).

THEOREM 5.6. Let 1 < p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , b ∈ BMO(G) , and
w ∈ Ap,q(G) . Then the inequality

‖[b, Iα ] f‖Lq,wq (D(x,r))

� ‖b‖∗wq(D(x,r))
1
q

∫ ∞

2c0r
ln

(
e+

t
r

)
‖ f‖Lp,wp (D(x,t))w

q(D(x,t))−
1
q
dt
t

holds for any ball D(x,r) and for all f ∈ Lloc
p,wp(G) .

Proof. Let 1 < p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , b ∈ BMO(G) and w ∈
Ap,q(G) . For arbitrary x ∈ G , set D = D(x,r) for the ball centered at x and of radius
r . We present f as f = f1 + f2 with f = f χ2c0D and f2 = f χ(2c0D)� . Hence,

‖[b, Iα ] f‖Lq,wq (D) � ‖[b, Iα ] f1‖Lq,wq (D) +‖[b, Iα] f2‖Lq,wq (D).
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From the boundedness of [b, Iα ] from Lp,wp(G) to Lq,wq(G) (see [2, 35]) it follows
that:

|[b, Iα ] f1‖Lq,wq(D) � |[b, Iα ] f1‖Lq,wq (G) � ‖b‖∗‖ f1‖Lp,wp (G) = ‖b‖∗‖ f‖Lp,wp (2c0D).

For z ∈ D we have

|[b, Iα ] f2(z)| �
∫

G

|b(y)−b(z)|
ρ(z−1y)Q−α | f2(y)|dy ≈

∫
(2c0D)�

|b(y)−b(z)|
ρ(x−1y)Q−α | f (y)|dy.

Then,

‖[b, Iα ] f2‖Lq,wq (D) �
(∫

D

(∫
(2c0D)�

|b(y)−b(z)|
ρ(x−1y)Q−α | f (y)|dy

)q
wq(z)dz

) 1
q

�
(∫

D

(∫
(2c0D)�

|b(y)−bD,w|
ρ(x−1y)Q−α | f (y)|dy

)q
wq(z)dz

) 1
q

+
(∫

D

(∫
(2c0D)�

|b(z)−bD,w|
ρ(x−1y)Q−α | f (y)|dy

)q
wq(z)dz

) 1
q

= I1 + I2.

Using Fubini’s theorem let us estimate I1 as follows

I1 =
(∫

D

(∫
(2c0D)�

|b(y)−bD,w|
ρ(x−1y)Q−α | f (y)|dy

)q
wq(z)dz

) 1
q

= wq(D)
1
q

∫
(2c0D)�

|b(y)−bD,w|
ρ(x−1y)Q−α | f (y)|dy

≈ wq(D)
1
q

∫
(2c0D)�

|b(y)−bD,w|| f (y)|
∫ ∞

ρ(x−1y)

dt
tQ−α+1 dy

≈ wq(D)
1
q

∫ ∞

2c0r

∫
2c0r�ρ(x−1y)�t

|b(y)−bD,w|| f (y)|dy
dt

tQ−α+1

� wq(D)
1
q

∫ ∞

2c0r

∫
D(x,t)

|b(y)−bD,w|| f (y)|dy
dt

tQ−α+1 .

Applying Fubini’s theorem, Hölder’s inequality and the first part of Lemma 5.4
we get

I1 � wq(D)
1
q

∫ ∞

2c0r

∫
D(x,t)

|b(y)−bD(x,r),w|w(y)−1w(y)| f (y)|dy
dt

tQ−α+1

� wq(D)
1
q

∫ ∞

2c0r

(∫
D(x,t)

|b(y)−bD(x,r),w|p
′
w(y)−p′dy

)− 1
p′ ‖ f‖Lp,wp (D(x,t))

dt
tQ−α+1

� ‖b‖∗wq(D)
1
q

∫ ∞

2c0r

(
1+ ln

t
r

)
‖w−1‖Lp′ (D(x,t))‖ f‖Lp,wp (D(x,t))

dt
tQ−α+1

� [w]Ap,q‖b‖∗wq(D)
1
q

∫ ∞

2c0r
ln

(
e+

t
r

)
‖ f‖Lp,wp (D(x,t))w

q(D(x,t))−
1
q
dt
t

.
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In order to estimate I2 we get

I2 =
(∫

D
|b(z)−bD,w|qwq(z)dz

)1/q ∫
(2c0D)�

| f (y)|
ρ(x−1y)Q−α dy.

According to the first part of Lemma 5.4, we get

I2 � ‖b‖∗wq(D)
1
q

∫
(2c0D)�

| f (y)|
ρ(x−1y)Q−α dy.

Applying Fubini’s theorem and Hölder’s inequality gives∫
(2c0D)�

| f (y)|
ρ(x−1y)Q−α dy �

∫ ∞

2c0r
‖ f‖Lp,wp(D(x,t)) ‖w−1‖Lp′ (D(x,t))

dt
tQ−α+1

�
∫ ∞

2c0r
‖ f‖Lp,wp(D(x,t)) w

q(D(x,t))−
1
q

dt
t

. (5.15)

So, by (5.15)

I2 � ‖b‖∗wq(D)
1
q

∫ ∞

2c0r
‖ f‖Lp,wp(D(x,t))w

q(D(x,t))−
1
q

dt
t

.

Summing I1 and I2 , for all p ∈ (1,∞) we get

‖[b, Iα ] f2‖Lp,w(D) � ‖b‖∗wq(D)
1
q

×
∫ ∞

2c0r
ln

(
e+

t
r

)
‖ f‖Lp,wp(D(x,t))w

q(D(x,t))−
1
q
dt
t

. (5.16)

Finally,

‖[b, Iα ] f‖Lp,w(D) = ‖b‖∗‖ f‖Lp,wp (2c0D)

+‖b‖∗wq(D)
1
q

∫ ∞

2c0r
ln

(
e+

t
r

)
‖ f‖Lp,wp(D(x,t))w

q(D(x,t))−
1
q
dt
t

and the statement of Theorem 5.6 follows by (4.8). �

The following Spanne type result on the space Mp,ϕ(w) is valid.

THEOREM 5.7. Let 1 < p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , w ∈ Ap,q(G) , b ∈
BMO(G) and (ϕ1,ϕ2) satisfy the condition

∫ ∞

r
ln

(
e+

t
r

)ess inf
t<s<∞

ϕ1(x,s)wp(D(x,s))1/p

wq(D(x,t))1/q

dt
t

� Cϕ2(x,r) (5.17)

where C does not depend on x and r . Then the operator [b, Iα ] is bounded from
Mp,ϕ1(w

p) to Mq,ϕ2(w
q) . Moreover,

‖[b, Iα ] f‖Mq,ϕ2 (wq) � ‖b‖∗‖ f‖Mp,ϕ1 (wp).
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Proof. Using the Theorem 3.2 and the Theorem 5.6 we have

‖[b, Iα ] f‖Mq,ϕ2 (wq) � ‖b‖∗ sup
x∈G,r>0

ϕ2(x,r)−1

×
∫ ∞

r
ln

(
e+

t
r

)
‖ f‖Lp,wp (D(x,t))w

q(D(x,t))−
1
q
dt
t

� ‖b‖∗ sup
x∈G,r>0

ϕ1(x,r)−1wp(D(x,r))−
1
p ‖ f‖Lp,wp(D(x,r))

= ‖b‖∗‖ f‖Mp,ϕ1 (wp). �

REMARK 5.5. Note that, in the case w≡ 1, Theorems 5.6 and 5.7 were proved in
[17]. Note that in [17] a more general case of higher order commutators was studied.

For proving our main results, we need the following estimate.

LEMMA 5.5. If b ∈ L1
loc(G) and D0 := D(x0,r0) , then

rα
0 |b(x)−bD0 | � C|b, Iα |χD0(x)

for every x ∈ D0 .

Proof. If x,y ∈ D0 , then ρ(x−1y) � c0ρ(x−1x0) + c0ρ(y−1x0) � 2c0r0 . Since
0 < α < Q , we get rα−Q

0 � Cρ(x−1y)α−Q . Therefore

|b, Iα |χD0(x) =
∫

D0

|b(x)−b(y)|ρ(x−1y)α−Qdy � Crα−Q
0

∫
D0

|b(x)−b(y)|dy

� Crα−Q
0

∣∣∣∣
∫

D0

(b(x)−b(y))dy

∣∣∣∣ = Crα
0 |b(x)−bD0 |. �

THEOREM 5.8. Let 1 < p < q < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , w ∈ Ap,q(G) , b ∈
BMO(G)\ {const} and ϕ1 , ϕ2 positive measurable functions on G× (0,∞) .

1. Then the condition (5.17) is sufficient for the boundedness of the operator [b, Iα ]
from Mp,ϕ1(w

p) to Mq,ϕ2(w
q) .

2. If the function ϕ1 ∈ G p
w , then the condition

tα ϕ1(t) � Cϕ2(t) for all t > 0, (5.18)

where C > 0 does not depend on t , is necessary for the boundedness of [b, Iα ]
from Mp,ϕ1(w

p) to Mq,ϕ2(w
q) .

3. If the function ϕ1 ∈ G p
w satisfies the regularity condition

∫ ∞

t
ln

(
e+

t
r

)ϕ1(r)wp(D(x,r))
1
p

wq(D(x,r))
1
q

dr
r

� Ctα ϕ1(t)

for all t > 0 , where C > 0 does not depend on t , then condition (5.18) is neces-
sary and sufficient for the boundedness of [b, Iα ] from Mp,ϕ1(w

p) to Mq,ϕ2(w
q) .
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Proof. The first part of the theorem proved in Theorem 5.7. We shall now prove
the second part.

Note that ‖b‖∗ is only a seminorm, ‖b‖∗ = 0 if and only if b is constant (a.e.).
Therefore, if b ∈ BMO(G)\{const}, then ‖b‖∗ > 0. For all r > 0, there exists x0 ∈D
such that ‖b(·)−bD(x0,r0)‖L1(D(x0,r0) > 0, otherwise b equals to the constant.

By the Lemma 5.5 w(x)rα
0 |b(x)−bD0 | � w(x) |b, Iα |χD0(x) .

Then

rα
0

(∫
D0

wq(x) |b(x)−bD0 |qdx
) 1

q �
(∫

D0

wq(x)
(
|b, Iα |χD0(x)

)q
dx

) 1
q
.

Therefore,

rα
0

wq(D0)
1
q

(∫
D0

wq(x) |b(x)−bD0 |qdx
) 1

q � 1

wq(D0)
1
q

‖|b, Iα |χD0‖Lq,wq(D0)

� ϕ2(D0)‖|b, Iα |χD0‖Mq,ϕ2 (wq)

� ϕ2(D0)‖b‖∗‖χD0‖Mp,ϕ1(wp).

Then

rα
0

wq(D0)
1
q

(∫
D0

wq(x) |b(x)−bD0 |qdx
) 1

q � ϕ2(D0)‖b‖∗‖χD0‖Mp,ϕ1 (wp).

Using the Lemmas 3.1 and 5.4 gives

rα
0 � ϕ2(D0)‖χD0‖Mp,ϕ1 (wp) � ϕ2(D0)

ϕ1(D0)

is true for all D0 .
Since this is true for every D0 , we are done.
The third statement of the theorem follows from first and second parts of the the-

orem. �

REMARK 5.6. Note that, in the case w ≡ 1, Theorem 5.8 was proved in [9], see
also [23].

6. Some applications

It is known that (see [1]) if ρ(·) is a homogeneous norm on G , then there exists a
positive constant C0 such that Γ(x) = C0ρ(x)2−Q is the fundamental solution of L .

From Theorem4.5, one easily obtains an inequality extending the classical Sobolev
embedding theorem to the Carnot groups.

THEOREM 6.9. (Sobolev-Stein embedding on generalized weighted Morrey space)
Let 1 < p < ∞ , 1

q = 1
p − 1

Q , w ∈ Ap,q(G) , and (ϕ1,ϕ2) satisfy the condition (4.11).
Then

‖u‖Mq,ϕ2(wq) � ‖∇L u‖Mp,ϕ1(wp), for every u ∈C∞
0 (G).
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Proof. Let u ∈C∞
0 (G) . By using the integral representation formula for the fun-

damental solution (see [1]), we have

u(g) =
∫

G

Γ(g−1y)L u(y)dy (6.19)

Keeping in mind that L = ∑2n
i=1 X2

i and X∗
i = −Xi , by integrating by parts at the right-

hand side (6.19), we obtain

u(g) =
∫

G

(∇L Γ)(g−1y)∇L u(y)dy. (6.20)

On the other hand, out of the origin, we have

∇L Γ(x) = C0 ∇L

(
ρ(x)2−Q)

= (2−Q)C0 ρ(x)1−Q ∇L ρ(x),

so that, since ∇L ρ(·) is smooth in G\ {0} and δλ -homogeneous of degree zero,

∇L Γ(x) � Cρ(x)1−Q,

for a suitable constant C > 0 depending only on L . Using this inequality in (6.20),
we get

|u(x)| � C
∫

G

|∇L u(y)|ρ(x−1y)1−Qdy = CI1(|∇L u|)(x). (6.21)

Then, by Theorem 4.5,

‖u‖Mq,ϕ2(wq) � C‖I1(|∇L u|)‖Mq,ϕ2 (wq) � C‖∇L u‖Mp,ϕ1(wp). �

In the following theorem we prove the boundedness of Iα in the generalized
weighted Besov-Morrey spaces on G

BMs
pθ ,ϕ(G,w) =

{
f : ‖ f‖BMs

pθ ,ϕ(G,w) = ‖ f‖Mp,ϕ (G,w)

+
(∫

G

‖ f (x·)− f (·)‖θ
Mp,ϕ (w)

ρ(x)Q+sθ dx
) 1

θ
< ∞

}
(6.22)

where 1 � p,θ � ∞ and 0 < s < 1.
Besov spaces Bs

pθ (G) in the setting Lie groups G were studied by many authors
(see, for example [4, 6, 11, 38, 41]).

THEOREM 6.10. Let 1 < p < ∞ , 0 < α < Q
p , 1

q = 1
p − α

Q , w ∈ Ap,q(G) , and
(ϕ1,ϕ2) satisfy the condition (4.11). If 1 � θ � ∞ and 0 < s < 1 , then the operator
Iα is bounded from the spaces BMs

pθ ,ϕ1
(G,wp) to BMs

qθ ,ϕ2
(G,wq) . More precisely,

there is a constant C > 0 such that

‖Iα f‖BMs
qθ ,ϕ2

(G,wq) � C‖ f‖BMs
pθ ,ϕ1

(G,wp)

holds for all f ∈ BMs
pθ ,ϕ1

(G,wp) .

Proof. By the definition of the generalized weighted Besov-Morrey spaces on G

it suffices to show that

‖τhIα f −Iα f‖Mq,ϕ (G,wq) � C‖τh f − f‖Mp,ϕ (G,wp),
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where τh f (x) = f (hx) .
It is easy to see that τh f commutes with Iα , i.e., τhIα f = Iα(τh f ) . Hence we

obtain
|τhIα f −Iα f | = |Iα(τh f )−Iα f | � Iα(|τh f − f |).

Taking Mp,ϕ -norm on both sides of the last inequality, we obtain the desired result by
using the boundedness of Iα from Mp,ϕ(G,wp) to Mq,ϕ(G,wq) .

Thus the proof of the Theorem 6.10 is completed. �
From Theorem 6.10 we obtain the following Sobolev-Stein embedding inequality

on generalized weighted Besov-Morrey space.

THEOREM 6.11. (Sobolev-Stein embedding on generalized weighted Besov-Mor-
rey space) Let 1 < p < ∞ , 1

q = 1
p − 1

Q , w ∈ Ap,q(G) , (ϕ1,ϕ2) satisfy the condition
(4.11), 1 � θ � ∞ and 0 < s < 1 . Then

‖u‖BMs
qθ ,ϕ2

(G,wq) � ‖∇L u‖BMs
pθ ,ϕ1

(G,wp) for every u ∈C∞
0 (G).

The Dirichlet problem for the Kohn-Laplacian on G belongs to Folland [3, 4].
In particular, our results lead to the following apriori estimate for the sub-Laplacian
equation L f = g .

THEOREM 6.12. Let 1 < p < q < ∞ , w ∈ Ap,q(G) , 0 < s < 1 , 1 � θ � ∞ , g ∈
BMs

pθ ,wp(G) and L f = g

1) If 1
q = 1

p − 2
Q , and (ϕ1,ϕ2) satisfy the condition (4.11), then

‖ f‖BMs
qθ ,ϕ2

(G,wq) � ‖g‖BMs
pθ ,ϕ1

(G,wp).

2) If 1
q = 1

p − 1
Q , and (ϕ1,ϕ2) satisfy the condition (4.11), then

‖Xi f‖BMs
qθ ,ϕ2

(G,wq) � ‖g‖BMs
pθ ,ϕ1

(G,wp), i = 1,2, . . . ,n.

The proof of Theorems 6.11 and 6.12 are similar to Theorem 6.9.
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