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SOME GENERALIZED GRONWALL-BELLMAN TYPE
DIFFERENCE INEQUALITIES AND APPLICATIONS

Z1ZUN LI

(Communicated by M. Krni¢)

Abstract. We establish some generalized sums-difference inequalities involving a finite sum,
which includes three sums and seven sums, respectively. We present the estimation of the in-
equality is decided by a finite recursion. Using the lemma and difference techniques, we trans-
form the complex difference inequalities into the simple forms of difference inequalities. We
apply our results to boundary value problem of a partial difference equation for uniform bound-
edness, uniqueness and continuous dependence of the solutions.

1. Introduction

Gronwall-Bellman integral inequality is an important tool in the study of existence,
uniqueness, boundedness of solutions of differential equations and integral equations.
Various generalizations of Gronwall-Bellman type integral inequality [7, 21] and their
applications have attracted great attention of many mathematicians. Some recent works
of integral inequality with one variable can be found, e.g., in [5, 6, 8, 9, 16, 23, 32,
36, 47, 51] and some references therein. Some works of integral inequality with two
variables can be found in [10, 13, 17, 22, 26, 33, 42] and some references therein.
Agarwal et al. [5] investigated the inequality

no ebi(r)
u(t) < al) + 2/ ) S I(s))ds, 1o <1<
i=1bi(to
Agarwal et al. [6] discussed the retarded integral inequality
noorog(t)
o) < et X [ W OLpu) +si(s)ds
i=170ilto
where c is a constant. Zhou et al. [51] studied the following retarded integral inequality
1 bi(t) )
w0 <al)+ X[ slesmilu()ds}”, w0 <<,

bi(to)
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where n € N,p; > 1, and all a,b;,g;,w; and u are nonnegative continuous functions
for i=1,2,---,n. Kim [22] studied the retarded integral inequality with two variables

w(u(x,y)) < alx,y)+c(x,y) 2/{1 o) / » s, ) [fi(s,t)w(u(s,t)) + gi(s,1)]deds,

forall (x,y) € [x0,X) X [y9,Y). Wang et al. [42] considered the two variables of integral
inequality

yu(xy xy+z/

[o4] XO

/ (s,0)gi(x,y,s,1)dsdt
i yO

/xo /y u(5,0)fi(x.y.5.0) i (u(s.1) )dsdt }.

The inequality includes not only a nonconstant term outside the integrals but also more
than one distinct nonlinear integrals without assumption of monotonicity. Using ana-
Iytical techniques, they obtained an appropriate upper bound estimation.

The theory of discrete inequalities of Gronwall-Bellman type is very important
in studying qualitative characteristics of solutions of difference equations. Recently,
with the development of the theory of difference equations, more attentions are paid
on some discrete versions of Gronwall type inequalities (e.g., [3, 44] for some early
works). Some recent works of difference inequality with one variable can be found,
e.g.,in [1, 2,4, 18, 19, 25, 34, 35, 37, 38, 39, 45, 46, 50] and some references therein.
Some works of difference inequality with two variables can be foundin [11, 12, 14, 15,
20, 27,28, 29,30, 31, 40, 41, 43, 48, 49]. A fundamental one of those known results is
the sum-difference inequality

n—1
u(n) <a(n) +b(n) Y, fRu(k), n> ko,
k=ko
as shown in [3], the unknown function u(n) is estimated by
n—1
u(n) < a(n)+b(n) Y, ak) f(ILZE (1+b(s)f(s), n= ko.
k=ko

Pachpatte [32, 35] studied the inequality
n—1
n)+ Y fs)w(u(s))
s=0

n—1
u?(n) < ¢ +2 Z,O[fl (s)u(s)w(u(s)) + fa(s)u(s)],

where ¢ is a constant, f,f],f>,w are both real-valued nonnegative functions defined
on No ={0,1,---,n}. Wuetal. [45] discussed the inequality

m bi(n—1)

+Z Z Si(n,s)wi(u(s)),n € Ny,
(0)
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where a(n) is nonnegative, b;(n) are nondecreasing and b;(n) < n, f; are nonnegative,
w; are continuous and nondecreasing functions on [0, ).
Meng et al. [30] studied the inequality with two variables

m—1 o
uP (m,n) < a(m,n)+b(m,n) 2(') D 1[c(sJ)u(s,t) +e(s,t)],
5s=0 t=n+

for all m,n € Ny, and p > 1 is a constant. Chueng et al. [11, 14] discussed the inequal-
ities

u(m,n) < c+ z Ebst 1),
s=0 1=
m—1 n—1 m—1 n—1

Plmn) et 3, 3 alsnuls,)+ 3, 3 blsuls,0)e(uls,1),
s=mq=ngy s=mqt=ng

where ¢ > 0, and a,b are nonnegative real-valued functions in Zi, and ¢ is a contin-
uous nondecreasing function with @(r) > 0, for r > 0. Ma and Cheung [27] studied
the inequality

m—1 o
lalmn)) <almm) +clmn) 3 3, v (uls))dlsswlu(sn) +e(s.0)
s=0t=n+

Wang et al. [41] investigated the inequality

k m—1 n—1

v(u(m,n)) < c(m,n —|—z z Ef, m,n,s,t)Q;i(u(s,t)),

i=1s=mgt=ng

where v is a strictly increasing continuous function on R, satisfying that y/(e0) = oo
and y(u) >0 forall u >0, ¢ are continuous and positive functions on R, a(m,n) >
0, fi are nonnegative functions in the domain. Ma [29] considered the power difference
inequality with two variables

m—1 n—1 M—-1N—-1
uP (m,n) < a(m,n)+c(mn) >, > b(s,0)ul(s,t)+ >, >, cls,t)u (s,
s=mgyt=ny s=mgy=ngy

where p > g > 0,p > r > 0. Feng et al. [20] discussed the inequalities including four
sums

m—1 n—1
uP (m,n) < c(m,n)+ Y, Z{bs,umnuqst—i—z Z (&,n,m,n)u (571‘1)}
s=mq=ng gmon no

M—1N—1

+22[d(s,t,mn st—|—2 2 (§.n.m,n)u (ém)}

s=mgt=ny é mg N=no
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Li [24] investigated the five sums difference inequality
k  om—1n—1s—1t—1

y(u(m,n)) < c(m.n) Z(ZEZEﬁsm s.1)

i=1 " 5s=01=0 j=0I=

Z

||M|
||M|

i (5.1, D0 5. 1) ).

Motivated by the ideas in [5, 14, 24, 35, 41, 45, 51], in this paper, we establish
some new more general forms of sums-difference inequalities, and we do not require
the monotonicity to of the unknown functions. We apply a technique of monotonization
to overcome the difficulty from nonmonotonicity and give the upper bound estimation
of unknown function. We apply the obtained results to the bounded and uniqueness and
continuous dependence of the solutions of the difference equation.

2. Lemma

Throughout this paper, R denote the set of all real numbers, let Ry := [0,0) and
No :={0,1,---}. my,n; € No,(i = 1,2,--+,k) are given numbers, I; := [0,m;) NNy
(i=1,2--- k) are two fixed lattices of integer points in R, A; =1} x L x --- X I; C
Nj,i=1,2,--k, Aoy Ny .z) = [0,M1) NNg x [0,N1) NNp x [0,Z1) NNp. Forany s €
Ay, let Ay denote the sublattice [0,s] NA; of Ay. For functions w(m),z(m,n, j),m,n €
Np, let A denotes the forward difference operator, i.e. Aw(m) := w(m+ 1) —w(m)
and Ajz(m,n, j) :=z(m+ 1,n, j) — z(m,n, j). Obviously, the linear difference equation
Ax(m) = b(m) with the initial condition x(0) = 0 has the solution ¥} b(s). For
convenience, in the sequel we define that ¥~} b(s) = 0.

LEMMA 1. Suppose w is a continuous and positive functions on Ry, f is a
nonnegative function on A X Ay, u is a nonnegative function on Ay, then we can
obtain the following formula

ml—l mkflsl—l Skfl

2o X X X Sl se i jwlui i)

S|:O Sk:O ./'1:0 jk:()

mj— 1 my— 1 ml,l mk—l
2 2 W 517 BELY 2 2 f(jlf"ajkasla"';sk)'
s1=0 sp=0 ,/1:.\'1+1 Jr=sr+1

Proof. We use mathematical induction with respect to m;,i = 1,2,--- k. If m; =
my = -+ =my = 2, we obtain

1 1 Sp—
Z RN 2 Flsuyeeessi vy w(u(in, -5 i)
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1

1
2 ZW Sl, S 2 2 f(j17"'7jkasl7"'ask)

s1=0 S j1:S1+1 Je=sr+1
:w(u(0,~~~,O))f(1,~~~,1,0,---,0).

Thus, we have
1 1
Z Z
51=0  53,=0

1

N

S1— Sk—
Z Z sla : 7S]<,j17'"7jk)W(u(j1,"'7jk))
1 1 1
2 Sl, S 2 2 f(jlf"ajkaslf"ask)'

./1:-\‘1+1 Jk=sitl

It means that the lemma is true for m; = 2,i=1,--- k. Suppose that the lemma is true
for mj =M;,i=1,--- k, thatis

Ml—l Mk*lsl—l .kal

o DY Y flsty Sk i)W k)

s1=0  5=0j=0  j=0

Mi—1 M1 My—1 M—1
= 2 Ew(u(sl’...7sk)) 2 2 f(jla“')jkaslf"’sk)'
s1=0 s;=0 Jj1=s1+1 Jr=sx+1

Consider m;j =M;+1,i=1,---,k, then we have

M, M,
2 Zw 517 S 2 2 f.]l7 ! ajkasla"'7sk)
s1=0  5;=0 Jj1=s1+1 Jr=sx+1
Mi—1  M—1 M, My

= Z Z W Sl, LY )) Z Z f(j17'”?jk7sl7"'ask)
51=0 5=0 J1=s1+1 Jr=sx+1
Mi—1 M1 M;—1 M;—1

= 2 2 W(I/L(Sl,"'7Sk)) 2 2 f(jlv"'7jk7sla"'7sk)
s1=0 sp=0 Jj1=s1+1 Jr=sx+1

Mi—1  M—1

+ 3 Y wlulsy, e s0)) f(My, - My st s)

S =0 Sk=0

M -1 M1 M —1 Mi—1
= Z Z W sla ) Z Z f(jlv"'7jk7sla"'7sk)
s1=0 sp=0 j1=51+1 Jr=sx+1
Mi—-1 M;—1
+ 2 2 Jla 7jk))f(M17'"’Mkajla"'ajk)
J1=0 jx=0
Ml Mk .\'171 Sk—l

Z Z 2 sty Sty jowu(in, - ji)

51=0  5=0,=0 ;=0
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Using the inductive assumption, then, we obtain

Ml Mk Sl—l .\'kfl

Doy X 2 st sk i w (s i)

51=0 Vk:()jl =0 =0

M,
2 2 sla S 2 2 f.]lv' '7jk7sla"'7sk)'
s1=0 s;=0 /1 s1+1 Jr=sp+1
It implies that it is true for m; = M;+1,i=1,--- k. Therefore, it is true for any natural

number m; > 2,i=1,---,k. This completes the proof. [J

COROLLARY 1. Suppose w is a continuous and positive functions on Ry, f is
a nonnegative function on Ay, u is a nonnegative function on Ay, then we can obtain
the following formula

m—1s—1 m—1 m—1
> Ef s, J)w = D wluls)) X, f(.9).
s=0 j=0 s=0 Jj=s+1

COROLLARY 2. Suppose w is a continuous and positive functions on Ry, f is
a nonnegative function on Ag, u is a nonnegative function on Az, then we can obtain
the following formula

m—1ln—1z—1s—1t—1le—1

z 2 2 2 z zf(s,t,e,j,l,r)w(u(j,l,r))

5s=0 t=0 =0 j=01=0r=0

m—1n—1z—1

m—1 n—1 z—1
= 2 2 EW S’t7e 2 2 2 f(j?lar7s7tae)'

5s=0 =0 e= Jj=s+1l=t+1r=e+1

3. Main result

Firstly, we consider the sums-difference inequality

m—1s—1 m—1s—1

v (u(m) +2[zzﬁsJuP )+ 2 X )]

i=1"s=0 j=0 s=0 j=0
Suppose that
(Hy) w is a strictly increasing continuous function on Ry, y(u) > 0 forall u >0,
(Hy) all ¢;,(i=1,2,--- k) are continuous functions on R and positive on (0,e0),
(H3) ¢(m)>0on Ay,
(H4) p>0,g >0 are constants and p > ¢,
(Hs) all fi,hi(i=1,2,--- k) are nonnegative functions on A;.

We consider a sequence of functions w;(s), which can be calculated recursively
by

wi(s) == maXze(o,s] o1(7) + se Ry, @)
Wit1(8) 1= maxeep,] q)’“ }wl( ), i=1,2,--- k—1,s€ Ry,
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where € > 0 is an an arbitrarily small positive number. We define the functions:

u ds
Wp(u) = /0 o)’ u>0, (3)
u ds
Wo(u) = /0 W o))’ u>0, 4)
u ds
i = —,.:1,2,"', ’ )
W= ), Sy e ©

u ds
W)= [ T

i=1,2,k u>0.

Then, ¥),,¥, and W;, W; are strictly increasing and continuous functions, let ‘I’;l , Wfl

denote W, W; inverse function, respectively, then both ‘1’;1 and Wlf1 are also continu-
ous and increasing functions. Furthermore, let

¢(m): = max c(m) (6)
7€(0,m]

film,s): = max fi(7,s), (N
7€(0,m]

hi(m,s) : = max h;(t,s), (8)
7€(0,m]

which are nondecreasing in m for each fixed s and satisfies film,s) = fi(m,s) >0,
hi(m,s) > hi(m,s) >0, forall i=1,2,--- k.

THEOREM 1. Suppose that (Hy — Hs) hold and u(m) is a nonnegative function
on A satisfying (1). Then, case one: if yw~'(z(m)) > 1,

u(m) <y {0 (W (Wi(Ex(m) +z&mwn ©)

for (m < My) € Ay, where w~'(z(m)) is defined in (13)
k m—1s—1
Erlm) = ¥p(@m) + 2, 2, X, fi(5:)),
i=15s=0 j=0
El(m) = VVz:i <VVI‘*1(EI'*1(m)) + i gifl(mvs)>7i = 2737~~~7k7
s=0

and My € Ay is arbitrarily given on the boundary of the lattice

m—1 < ds
R = {m€A1 :W(Ei(m))JFZb hi(m, s) </o wily (¥ (s)))’
B m=—1 e ds
W 1<W,(Ez(m))+§6 h,(m,s)> S/O y/—l(s)’l: 1,2, ’k}
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Case two: if y~1(z(m)) < 1,
u(m) < w‘l{\Pgl (W, (W Ex(m) + 3, 8k(m.s))] } (10)

m—1s

—1
> fils. ),
0

I
_
o
Il
<
~
Il

m—1
El(m) = VNVz_i <V~Vl‘*1(El'*1(m)) + Z gifl(mvs)>7i = 2737~~~7k7
s=0

and My € Ay is arbitrarily given on the boundary of the lattice

%::{( n) €A:W(E +2h (m,s) /:W;W7
s . < ds
W, I(W/}(Ei(m))—i—géhi(m,s)) g/o mﬂzl,z,...,k}.

Proof. First of all, we monotonize some given functions ¢; in the sums. Obvi-
ously the sequence w;(s) defined by ¢;(s) in (2) are nondecreasing and nonnegative
functions and satisfy w;(s) > @;(s),i = 1,2,---,k. Moreover, the ratio w;.(s)/w;(s)
are also nondecreasing, i = 1,2,---,k. By (1), (6), (7), (8), from (2), we have

k
y(u(m)) < &(m)+ ;

for all m € A;. From (11), we have

m—1s—1 m—1s—1

(2 St urs)+ 5, S hs ptom(u(i)- 11

s=0 j=0

m—1s—1
y(u(m)) < (M +z(z zﬁs]up >+;);)%i<s,j>uq<s>wi<u<j>>). (12)
s=0 j=

i=1 " 5=0 j=0

for M € A, where 0 < M < M is chosen arbitrarily. Let z(m) denote the function on
the right-hand side of (12), which is a nonnegative and nondecreasing function on Ay
and z(0) = ¢(M). Then we obtain the equivalent form of (12)

u(m) <y z(m)), Yme Ay. (13)

Since w; is nondecreasing and satisfy w;(u) > 0, for u > 0. By the definition of z and
(13), from (12), we have

k m—1 k m—1
Aiz(m) =3, film, jJul (m)+ 3, Y hi(m, jud (m)wi(u(j))
i=1j=0 i=1j=0
k m—1 k m—1
<O D Flm )y @m)? + X, Y, hilm, )y (2(m)) I wi(y ™ (=())))
i=1 j=0 i=1j=0
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Case one: if y~!(z(m)) > 1. Using the monotonicity of y~! and z, from (14),
we have

k m—1 k m—1
Bizlm) < (v~ @m)))” (3 X, Fm )+ X X, Falm (™ 2(3)) - (15)
i=1 j= i=1 j=
that is
AlZ(m) k m—1 o k m_l~, S o )
(v (z(m)))? g;jzo i ’]>+z§1j:0hl( SDwily ™ (2(7)))- (16)

On the other hand, by the mean-value theorem for integrals, for arbitrarily given m,m+
1 € Ay, in the open interval (z(m),z(m+ 1)), there exists &, which satisfies
z(m+1) ds

m  (y=(s))?
A]Z(m) A]Z(m)

W, (2(m+ 1)) — W, (z(m)) = /

a7)

Substituting m with s in (18). Then, taking the sums on both sides of (18) over
s=0,1,---,m—1, we have

k  m—1s—1 m—1s—1
¥p(z(m)) < ¥p(z(0)) + Zl ( 20 Zoﬁs,n + 20 Zoh,(w)wl(w‘l(z(]))))
= s=0 j= 5s=0 j=
k M—1s—1 5 m—1s—1
<)+ 3 (T X Al0i)+ X, S s ity )
k m—1s—1
=GM)+X Y S (s, wi(y ' (2())), (19)
i=1 5=0 j=0
where
k M—1s—1 5
G(M) =) (c(M))+ D, i(s,))- (20)
i=1 s=0 j=0
Let

v(m) =¥p(z(m)). 2D
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From (19), we have

v(m) <

Il M»

Z; (5, w0 (8, (0(0), 22)

forall m <M € A;. Using the Corollary 1, (22) can be written as

k m—1

v(m) < Ce(M)+ Y Z gilm,s)wi(y™ (¥, (v(9)))), (23)

i=1s=

where g;(m,s) = ZJ L hi(j,s). Obviously, gi(m,s), i =1,2,---k are nondecreasing
in m for each fixed s and g;(m,s) > 0. Then from (23), we have

k
vm) < GM)+ 3

From (24), we can conclude that

m—1

g (M, s)wi(y™ (W51 (v()))- 24)

v(m) < Wt (WaEx(m) + 2 M.s)), (25)

for m <M € A, where
M—1
EM): = W (Wt (B (M) + X, 81 (M.9)), =2,k (26)
s=0
El(M) L= CI(M)

For k = 1, let z;(m) denote the function on the right-hand side of (24), which is
a nonnegative and nondecreasing function on A;, z;(0) = C;(M) and v(m) < z;(m).
Then we obtain

Arzi(m) = g1 (M, m)wi (y' (¥, (v(m))))
<&M mwi(w ' (¥, (z21(m)))). @7
From (27), we have
Aiz (m) < &(M,m). (28)

wi(y (¥ (@1(m))))

By the mean-value theorem for integrals, there exists £ in the open interval (z;(m),
z1(m+ 1)), for arbitrarily given (m),(m+ 1) € A; such that

71 (m+1) S
)=t = [ )
Z1(m w P N
Arz1(m)
wi(y (¥, (§)))
- Ayzi(m)
Sy, (i (m)

(29)
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From (28) and (29), we have
Wi(zi(m+1)) < Wi(z1(m)) + g1 (M, m). (30)

Substituting m with s in (30). Then, taking the sums on both sides of (30) over s =
0,1,---,m—1, we have

W21 (m)) < Wi(21(0)) +'§g1<M,s>
= Wl(Cl +2g1 M s) 31)
Using v(m) < z1(m), from (31), we get
v(m) < z1(m) <KW (Wl(Cl +’:20181 M S)) (32)

for all m < M € A;. This proves that (25) is true for k = 1.
Next, we make the inductive assumption that (25) is true for k =, then

m—1
vom) < W (W(E (M) + 3, 21(M.5) ). (33)
s=0

for all m € Ay, where

El(M) L= Cl(M),
M-1

E(M): = WL (Wit (B (M) + X, 8i1(M,9)), i=2,3,0,1
s=0
‘We consider
[+1m—1
v(m) < Cri(M)+ Y, Z &M, )wi(y (¥, (v(5)))), (34)

i=1 s=

for all m < M € Ay. Let zo(m) denote the nonnegative and nondecreasing function of
the right-hand of (34), then z,(0) = C;41(M) and v(m) < zp(m). Let

q)l(u) zw,(u)/wl(u), 121,2,,l+1 (35)

By (2), we conclude that ¢; i =1,2,---,] are nondecreasing functions. From (34), we
have

A1z2(m)
wi(y (¥, (z2(m))))
_ SEEMmwi(y (Y, (v(m))
wi(y ! (¥ (z22(m))))
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Z’*lgl(M m)wi(y~ (P, (z2(m))))
wi(y= (¥, (22(m))))

I+1

< &i1(M,m) + %gi(M,m)@(Vf_l(T;I(Zz(m))))

l
= & (M,m) + ¥ gt (M, m) i1 (W (¥, (z2(m)))). (36)

i=1

By the mean-value theorem for integrals, there exists & in the open interval (z;(m),z2 (m+
1)), for arbitrarily given m,m+ 1 € Ay , we obtain

(m+1) 5
Wittt = [ )
22(m w p S

A1z2(m)
wi(y= 1 (¥, 1(§)))
. Aiza(m)
Sy (¥ (2(m)

(37)

From (36) and (37), we get

Wi(z2(m+1)) = Wi(z2(m))
l

< &M m) + X g1 (M m)gi (™ (¥, (22(m)))) (38)
i=1

Substituting m with s in (38), then taking the sums on both sides of (38) over s =
0,1,---,m—1, we have

Wi(z2(m)) < Wi (G (M) +'gg1<M7s>
+iilr:§;gi+1(M,s>¢i+1(w‘l(‘P;I(zz(s»)L (39)
forall m <M € A;.
Let
0(m) = Wi(za(m)), (40)
pi(M) := Wi <c1+1<M>>+A§g1<M,s>. @1

Using (40) and (41), from (39), we have

6(m)) <

HM~

2 Gt (M, s)ou [y (W Om))). @2)
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It has the same form as (24). We are ready to use the 1nduct1ve assumption for (42). Let
8(s) ==y (W, (W '(5))). Since y~!,¥,!, W', ¢; are continuous, nondecreas-
ing and positive on (0,0), each ¢;(5(s)) is contlnuous and nondecreasing on (0,eo).
Moreover

0:18() _ win®) _ 0 fon@Y s,
¢l(6(5)) B Wi(5(S)) a 1[18%( )]{ Wi(T) }’ 1’2’ ’l7 (43)

which is also continuous and nondecreasing and positive on (0,e). Therefore, by the
inductive assumption in (33), from (42), we have

m—1

0(m) <@ <(Dl(Pl )+ Y, G (M S)) (44)
s=0
where
,u>0, i=1,2,---.1, 45)
/ Oir1(y (Wl 1(5))))
M—1
pi(M) ;:@;_11( Pl (M) + 3 &(M,s)), i=23,0 (46)
s=0
Note that

o= [ OE W e

Wi+1(W_1(T;1(W171(S)))) 7

_/Wl (u) ds
0 wir (=1 (¥, (5)))

(W), i=1,2,- L. (47)
Thus, from (40), (44) and (47), we have

v(m) < z2(m) =Wy ' (6(m))

< Wit (! (@(py(m)) +legz+1 M.5)))
m—1
=3 (Wt (W 01() + 3, 811 (M.9)). (48)

We can prove that the term of W, ! (p;(M)) in (48) is just the same as E; (M) defined
in (26). Let p;(M) := W, '(p:(M)). By (41), we have

p1(M) =Wy (p1(M))
M-1
=W (Wi(Craa (M) + Y, gl(M’s)>

s=0
— Ex(M).
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Then by the mathematical induction for i, using (46) and (47), we get

M~—1

pilM) = Wi (@} (@1 (pit (M) + 3, Gi(M.s)) )

s=0

= W WiW (pi-1 (M) + Z(,) gi(M,s)]
M—1

= W, [Wi(pio1 (M) + ZO gi(M.,s)]

= Ei((M),i=273,1.

This proves that W,"!(p;(M)) in (48) is just the same as E; (M) defined in (26) .
Hence (48) can be equivalently written as

m—1
v(m) < W} (W,H(El+1 M)+ Y ng(M,s)), Y me Ay (49)
s=0

The estimation (25) of unknown function v in the inequality (22) is proved by induction.
By (13), (21), (25) and (49), we have

u(m) < w7 (2m) <y (W, (v(m)))
m—1

<y (9 (W (B 00) + 3 a01.9)) ). (50)

forall m <M € A;. Let m= M, from (50), we have

wM) < y! (\P;l (W,;l (Wi (E(M)) +A§{)1gk(M,s))>>.

This proves (9), since M and N are chosen arbitrarily.
Case two: if y~!(z(m)) < 1. Using the monotonicity of y~! and z, we can
conclude that (y~!(z(m)))? < (y~!(z(m)))?, from (14), we have

k m—1 k m—1
Aizlm) < (v G (3 3, )+ 33, hilms iy 7)) G
i=1 j=0 i=1 j=0

This follows from (51) by similar arguments as in the proof of Case one, we get

o) < o (0 O3, ).

This completes the proof. [l
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Next, we consider the following sums-difference inequality

w(u(m,n,z)) < c(m,n,z)+ 3 2 Z 2 Z Zfz s,t,e, j,1,r)ul (s,t,e)
i=1 5s=0 t=0e=0j=01=0r=0
k m—1ln—lz—1s—1t—le—1
+3 hi(s,1,, j,1r)u (s,t,€)@i(u(j,1,r)). (52)
i=1 5=0 1=0 =0 j=0{=0r=0
Suppose that
(Ly) v is astrictly increasing continuous function on Ry, w(u) > 0 forall u > 0,
(L) all @;,(i=1,2,---,k) are continuous functions on R, and positive on (0,ce),
(L3) c(m,n,z) >0 on Az,
(Ls) p >0, is aconstant,
(Ls) all fi,hi(i=1,2,---,k) are nonnegative functions on Ag.
Let
é(m,n,z) := max c(m,n,z), 53
( ) (1.€.,v)€[0,m] x[0,n]x[0.2] ( ) 6
fi(m,n,z,s.1,e) = max V,s.t,e 54
fl( ) (1,€,v)€[0,m]x[0,n] x[0,2] ( é ) (>4)
hi(m,n,z,s,t,e) = max (T,&,Vv,s,t,¢e), 55
l( ¢ ) (7,&,v)€[0,m]x[0,n] x[0,z] l( é ) (55)

which are nondecreasing in m, n, z for each fixed s and ¢ and e and satisfies ﬁ-(m7n7z7s7t,e)
> fi(m,n,z,s,t,e) >0, hi(m,n,z,s,t,e) > hi(m,n,z,s,t,e) >0, forall i=1,2,--- k.

THEOREM 2. Suppose that (L) — Ls) hold and u(m,n,z) is a nonnegative func-
tion on A3 satisfying (52). Then

m—1n—1z—1

u(m,n,z) < l//fl{‘{’;l [kal(Wk(Ek(m,n)) + z 2 ng(m,n,z,s,t,e))] }, (56)

s=0 =0 e=0

Sor (m,n,z) € Ay Ny z,) Where

—_

HM\

lz—1s—1t—1e—1

I ZEﬁ sit.e.j1r),

0 e=0,j=0[/=0r=

m—

k
El(m,l’l,Z) ::lP m7n7Z 2 2

m—1ln—1z—1

Ei(m,l’l,Z) = W 1<VVZ I(El l m,n, Z + 2 2 Egl 1 m7n7Z S,t,€)>,i:2,3,...,k,
s=0 t=0 e=

and (My,Ny1,Z)) € A3 is arbitrarily given on the boundary of the lattice

m71n71171~ o d
% {(mnz)GA Wi(Ei(m, n,z))—i—E ZZhi(m7n7z7s7t,e)</ R
s=0 t=0 e=0 i
mflnflzfl~

< d
Wi—l(Wi(Ei(m,n,Z))-F ¥y zhi<m,n,z,s,t,e>) g/o _as i 1,2,...,,(},
5s=0 t=0e=0
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Proof. By the similar arguments as in the proof of Theorem 1, we can obtain the
estimation (56). [

4. Corollaries

COROLLARY 3. Suppose that (Hy,Hs,Hs) holdand p=q=1, y(u(m)) = u(m)
is a nonnegative function on Ay satisfying

m—1s— m—1s—

+2(22ﬁs1 +22hs1 oi(u))).
i=1 " s=0 j=0 5=0 j=0
Then
m—1n—1
u(m,n) < exp [W{l (Wi(Ex(m,n)) + ;) Z{)gk(m,n,s,t))],

for m € Ay, , where

m—1
El(m) = VVl:i <VVI‘,1(E[,1(I’)’Z)) + Z gifl(mas)>7i = 2737'”7k7
s=0

and My € Ay is arbitrarily given on the boundary of the lattice.

Proof. This follows immediately from Theorem 1. [

COROLLARY 4. Suppose that (Hy —Hs) holdand f; =0, 0< p <1, y(u(m)) =
u(m) is a nonnegative function on A satisfying

k m—1s—
u(m) < c Z Z, Z @i (u(f))-

Then

_ g
Wiu) ::/0 L i=12,k u>0,
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_ 1

Ey(m) :=¢(m) -,

m—1
. <V[7,-,1(E,-,1(m)) + 2 gifl(mvs)> 7i = 2737'”7k7
s=0

P’
I
%\

and My € Ay is arbitrarily given on the boundary of the lattice.

COROLLARY 5. Suppose that (Hy — Hs) hold and f; =0, y(u(m)) = u(m) is a
nonnegative function on A satisfying

k om—1s—
u(m) < c( ZZZ (s,7) @i (u(j))-

Then
1 m—1
u(m) <KW, (Wi(Er(m))+ Y, g(m,s)),
s=0
for m € Ay, , where
- U ds
Wi(u ::/ , = ok, u>0,
(u) b i)
E_l(m) = &(m),
m—1

Ei(m) =W, (W,-,I(E,-,l(m)) + Zog,-,l(m,s)) i=2.3,....k,

and My € Ay is arbitrarily given on the boundary of the lattice.

COROLLARY 6. Suppose that (L — Ls) hold and p =1, w(u(m,n,z))
= u(m,n,z) is a nonnegative function on A satisfying

m—1In—1z—1s—1t—1le—1

u(m,n,z) < c(m,n,z) —l—E(E Y 2222]‘, (s,t,e,j,0,r)u(s,t,e)

i=1 " 5=0 t=0e=0j=0[=0r=

m—1ln—1z—1s—1t—1le—1

+ z 2 2 2 2 2h,-(s,t7e7j,l7r)u(sJ,e)(pi(u(jJ,r))).

5s=0 t=0¢=0 j=01=0r=0

Then

m—1n—1z—1

u(m,n,z) < exp [VAV,:l(W (Ex(m,n,z))+ 2 2 ng (m,n,z, s,he))]

s=0 =0 e=

Sor (m,n,z) € Ay Ny z,), Where

) “ d
Wi(u) ::/ B 12,k u>0,
o wi(exp(s))
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m—ln—1z—1ls—lt—1le—1

El(m’n’z) ln mnz +ZZ Zzzzzﬁs’t’e J’l’r

i=1 5s=0 t=0e=0j=01=0r=0

m—1ln—1z—1

Ei(m,n,z) = W }(Wl VWE;i_1(m,n,2)) + Z Z Zgl 1(m,n,z, s,t,e)),i=2,3,...,k,
s=0 1=0 e=

and (My,Ny1,Z) € A3 is arbitrarily given on the boundary of the lattice.

COROLLARY 7. Supposethat (L, —Ls) holdand f; =0, 0<p <1, y(u(m,n,z)) =
u(m,n,z) is a nonnegative function on A3z satisfying

k m—1n—1z—1s—1lt—1le—1

u(m,n,z) < c(m,n,z —|—2 2 2 2 ZEEh s,tye, j, Lr)uP (s,t,e)o;(u(j,1,r)).

i=1 5s=0 t=0e=0j=01=0r=
Then

-1 m—1n—1z—1

u(m,n,z) < [W; (Wk(Ek(m,n,z)) + Zf) 2{) Ef)gk m,n,z,s,1,e))] IL

Li=1,2,- .k, u>0,

_ m—1ln—1z—1

E,‘(m,n,z) = Wi—l<Wi—l(Ei—l(man’Z))+ 2 2 Zgi_l(m,n,z,s,t,e)>,i=2,3,...,k,
5s=0 =0 e=0

and (My,N1,Z)) € A3 is arbitrarily given on the boundary of the lattice.

COROLLARY 8. Supposethat (L, —Ls) hold and f; =0, w(u(m,n,z)) = u(m,n,z)
is a nonnegative function on A3 satisfying
k m—1ln—1z—1s—1t—1le—1

u(m,n,z) <clmn,z2)+> 3 Y ZZZZh syt e, j L)@ (u(j,1,r)).

i=1 5s=0 t=0e=0 j=01=0r=
Then

u(m,n,z) <KW, (Wk(E (m,n,z)) Z Z ng(m,n,z,s,t7e))7
for (m,n,z) € A, N, z,), where
- u ds
Wi(u ::/ —i=12,---k, u>0,
(u) b i)

E\(m,n,z) := &(m,n,z),
m—1ln—1z—1

_ ~1
Ei(m,n,z) == W,_ (Wl WE;_1(m,n,z)) + 2 2 th 1(m,n,z, s,t,e)),i:2,3,...,k,
s=0 =0 e=

and (My,Ny) € A is arbitrarily given on the boundary of the lattice.
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5. Analysis of the finite recursion

Consider the following finite recursion

m—1
ui(t) :‘/Vi_l l:m(ui—l(t))+ Z ﬁ(m7t):|7 i= 1,2,"',k, (57)
t=0

for 1 € Ny, where f;s are nonnegative continuous functions (i = 1,2,--- k), W; €
C(R,R) is strictly increasing such that W;(-+c0) = +oo, then the inverse W, ! is well
defined on [W;(0),+oo).

Define a mapping 7; on (Ny,Ry)

m—1
Tu(t) =Wi(u(t))+ Y, film,t), i=1,2,--- k. (58)
t=0

Foreach u: Ny — R, we have Tu(t) € [W;(0), +oo) forall # € Ny, then, W, (Tiu;—1 (¢))
is well defined for all r € Ny.
The following Theorem gives the asymptoticity of u,,.

THEOREM 3. Suppose that f;,W; are given as in (57), if up € (No,R.) satisfies
limy o uo(z) =0 and

if (Ar)
tlgggaﬁ(t,s) =0, forall i,

then 1im; e u, () = 0.

if (A2)

ling)Wi(u) = —oo, forall i,

and Y5 fi(t,s) is bounded on Ny. Then limy_ou;i(t) =0,i=1,2,--- k.
Proof. By definition (58) of T;, the recursion (57) implies that

ui(t) = (W N T w1 (1), i=1,2,-- k. (59)

1

In the case (A}), due to W; is continuous and strictly increasing, from (59), we have

limsupu;(t) = W, ! (limsup Tru;_1(¢))
[—o0 [—00
< W (limsupW;(u;—1 (¢)) +limsup Y, fi(t,s))
100 =% 520
< W (W(limsupu;_y (1))

i
f—o0

= limsupu;_ (7).

f—o0
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By induction, we can prove that 0 < limsup,_., u,(t) < limsup,_,., up(t) = 0.
In the case (A;). From lim;_... ug(t)
=0, we assume inductively that lim,_...u;_1(t) = 0, from (59), we have

limsupu;(t) = W, ! (limsup Tru;_1(¢))

[{—o0 [—o00

< W (limsup Wi (u;—1 (1 ))—l—hmsupil (t,5))

{—o00 I—ee ()
< W (Wi(limsupu;_i (¢ ))+hmsup2ﬁ (t,5))
f—o0 I—e0 ()
= limsupW, ! (u) =0,

where Yo fi(t,s) is bounded guarantees that limsup,_, .. Yo fi(¢,s) is finite, (A2)
guarantees that lim,_q+ Wi(#) = —co and lim,_,_..W, ' () = 0. Then, by induction
we also can prove that limy_... u,(1) = 0. This completes the proof. [

6. Applications

In this section, we apply our result to study the boundedness, uniqueness and con-
tinuous dependence of the solutions to the difference equations.

EXAMPLE 1. We consider the difference equation

m—1 m—1 ~H—
TE=RRNIC +Zﬁ 20, (60)

v(m) 200 ’

m+3

for all m € A, where A is defined as in the section 2 . From (60), we have

m—lszf.\'
s 22 M)
[v(m) m+3+22 Vv +2s3 Iv(s )|+S=20200e . (6D
Let |v(m)| = u(m), we obtain

52_ u(s)
200 ’

(62)

u(m) +3+22 Vi +2S3 u(s

m

where ¢(m) = m+r3 , J1(mys) =275 wi(u) =/u, fr(m,s)=s3"5wy(u)=u, f3(m,s)=
25 w3(u) = ¢". We can conclude that = < and 22 = 7 are nondecreasing for

w1
u > 0, then, we have

)

1
2<t<m T+ 3 g
film,s) = fi(m,s), i=1,2,3,

Ei(m) = é(m) = max !
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u 2
W) = [* =21, W w) = (5 1)
« ds
Ws (1) :LK S = o, W) =,
Wau) = 1u§ —el e W3_1(u) — lnﬁ’ (63)

from (63), we have
Ey(m) = Wy wEl +22]

=W pvEm - n+2-(3)" ]
- (VB 1= (5))’

and
m—1
&w:%ﬂ% +Zﬁ]
= [+ 335 (3) " 55 )
-smon(3- 2015

Lgo—s
<W[WE }
3 (B3 (m +Zwo

:WB—l{e—l e~ E3lm )+L(2_§L_m_—2>],

200 4 2m=3  pm—1
1 1
=In
exp(—Eg(m)) — 2(1)—0(2 _ %2’”%3 _ ;1:’;21)
1 1
= 1n
exp(—Ez(m)exp(f—‘_%(%)m—z_%%))_ﬁ(z_%ﬁ_%)
1
=In

exp (= (y/mz+1-(2)")

The above function In l always makes sense, since exp (— ( Lot+1- (l)m) : exp(3 —

m—+3 2 4
S5 (1\ym—-2 1 m—2 . .
5 (3)" 2= 323)) is a decreasing function, and i (2 — 3 575 — ) is a increas-
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lng fU.nCtl()Il. When m= 2, we ha\/e

—exp (- (\EJF %)2exp (%)) ~0.1353,

1 301
— 2———): 0025.
200( 123) =000

When m — oo, we have

) 1 1y\m\2 3 5 1,., 1m=2
fimewp (= (37541 (3) ) e (356"~ 557))
1 2 3
:exp(— (54— 1) exp <Z>> ~0.0119,
2

1(231 m—

Jim 550

Therefore, in ln%, 0 < s < 1 always true. This implies that u(m) is bounded for
m € Np.

EXAMPLE 2. We consider the partial difference equation with the initial boundary
value conditions.

MM Ay (z(myn,c)) = F(myn,c, @1 (z(m,n,c)), -, o (z(m,n,c))), (64)
W(Z(m7070)) = al(m)v y/(z(O,n,O)) = a2(n)v W(Z(0,0,C)) = a3(c)v (65)

for all (m,n,c) € A3, where A3 is defined as in the section 2, and a;(0) = a,(0) =
az(0) =0, y(z) € C(R,R) is a strictly increasing odd function on R, satisfying y(0) =
0and w(u)>0foru>0, F:A3xRF =R, a;: [ =Randar:h —R, a3: 5 =R,
¢ : Ry — R, are nondecreasing continuous functions and the ratio ¢;1/¢; are also
nondecreasing, @;(u) >0 foru>0i=1,2,--- k.

In the following, firstly, we apply our result to discuss boundedness on the solution
of problem (64).

THEOREM 4. Assume that F : A3 x R¥ — R is a continuous function satisfying

‘F(mvnac7(pl(u)a"'7(pk(u))‘
k

<Y [fitM,N,C,m,n,c)|ulP + gi(M,N,C,m,n,c)|ul¢;(Ju])], (66)
i=1

lai(m) + az(n) + az(c)| < a(m,n,c), (67)

Sorall (m,n,c) € Az, where p > q >0 isaconstant, f;(M,N,C,m,n,c), gi(M,N,C,m,n,c),
i=1,2,---,k, are continuous nonnegative functions and nondecreasing in M,N,C for
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each fixed m,n,c , a(m,n,c) : A3 — Ry is nondecreasing in each variable If z(m,n,c)
is any solution of (64) with the condition (65), then, case one: if w~'(3(m,t,e)) > 1,

|z(m,n,c)| < l[/_l{‘I’;l [G,:l (Gr(Hy(m,n,c)) —|—Wi ’i Ci‘ gk(M,N,C,s,t,e))} },
s=0 t=0 e=0

(68)
forall (m,n,c) € Ay n ), where ¥ (u) is defined by (3), and

u ds
0, o
Hi(m,n,c) :=¥,(a(m,n,c)),

m—1ln—1c—1
H;(m,n,c) := Gi:ll [Gi—1(Hi—1(m,n,c)) + 2 2 Egi_l(M,N,C,s,t,e)],
s=0 =0 e=0
‘P; and G7l denote the inverse function of ¥, and G.
Case two: if w1 (3(m,t,e)) < 1,

m—1ln—1c—1

lz(m,n,c)| < w—l{\yq—l [G,;I(Gk(ﬁk(m,n,c))+ Yy ng(M7N7C,s,t7e))} }

5s=0 t=0e=0
(69)
for all (m,n,c) € A n,c), where Wy(u) is defined by (4), and
= ,u>0,
/ oy (¥ (5)
H(m,n,c) := ¥, (a (mnc))
m—1n—1
Hi(m,n,c) := G\ [Gi_1(Hi—1(m,n,c))+ Y, Y, gi-1(M,N,C,s,1,e)],
s=0 t=0

‘1’;1 and G,:l denote the inverse function of ¥, and G.

Proof. The solution z(m,n,c) of (64) satisfies the following equivalent difference
equation

y(z(m,n,c)) = ar(m) +ax(n) + as(c)
1

m—1ln—1lc—1
=+ F(S’t7e7(p1(z(s7t’e>) ;(Pk( (S’t7e))) (70)
s=0 =0 e=0
By (66),(67) and (70), we obtain
m—1ln—1c—
lw(z(m,n,c))| < a(m,n,c)+ Y, D Z|F 5,1, @1(z(s,1,€)), -+, pi(z(s,1,e)))|
s=0 1=0 e=

k m—1n—1lc—1

a(mn,c)+3, Y > > filM,N,C,s,1,e)|z(s,1,¢)"|

i=1s=0 1t=0e=0

> 2 |2(s,2,€)|8i(M,N,C,s,t,e)] @i(|z(s,2,e)]). (71)
i=1 s=0 t=0 e=0
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Since |y (z(m,n,c))| = y(|z(m,n,c)|), (71) has the same form of (52). Let Z(m,n,c)
denote the function on the right-hand side of (71), then |z(m,n,c)| < w~ ! (Z(m,n,c)).
Applying Theorem 2 to inequality (71), we obtain the estimation of z(m,n,c) as given
n (68) and (69).
If there exists a constant M > 0, such that
m—1ln—1c—1
Hi(m,n,c) <M, > 3 3 gi(M,N,C,s,t,e) <M, i=12,--k (72)
5s=0 1=0e=0

forall (m,n,c) € A n.c)» thenevery solution z(m,n,c) of (64) is boundedon Ay v c)-

O
Next, we discuss the uniqueness of the solutions of (64).
THEOREM 5. Assume additionally that
|F(m,n,c, @1 (1), (1)) = F(m,n,c, 1 (u2), -, @e(u2))]|
< ihi(MMC»mm»C)IW(ul) —v(w)l"ei(ly (1) — y(u2)]), (73)

i=1

Sor uj,uy € R and (m,n,c) € Az, where A; is defined in the section 2, h; : Ag — R

are nonnegative functions, i =1,2,--- k, ¢; : Ry — R are continuous nondecreasmg

with the nondecreasing ratio @;y1/@; such that @;(u) >0 for all u> 0, and fl d‘ =

oo, fori=1,2,---,k, and y € C'(R,R) is a strictly increasing odd function satlsfylng
v(u) >0, forall u> 0. Then, (64) has at most one solution on Aj.

Proof. Let z(m,n,c) and Z(m,n,c) are two solutions of (64). From (70) and
(73), we have

w(z(m,n )) w(z(m,n,c))l

m—1n

k Cle—
2 2 2 Z (M,N,C,s,t,e)|y(z(s,t,e)) — w(Z(s,t,e))|?

i=1 t=0e
X Qi | (z(s,2,€)) = y(Z(s,2,€))[) (74)

for all (m,n,c) € Az, (74) is the special form of (52), where f; =0, i=1,2,--- ,k,
a(m,n,c) =0, hj(M,N,C,s,t,e), i=1,2,--- k, are continuous nonnegative functions
and nondecreasing in M,N,C for each fixed s,7,e . Applying Theorem 2, we ob-
tain an estimation of the difference |y(z(m,n)) — w(Z(m,n))| in the form (68), where
Hi(m,n,c) =0, because ¥, (0) = 0. Furthermore, by the definition of G;, we conclude
that

lim G;(u) = —eo, lim G;'(u)=0, i=1,2,-- k. (75)

u—0 U——oo

It follows that

m—1ln—1c—1

G;(H;(m,n,c)) + 2 2 Ehi(M,N,C,s,t,e) = —oo,

5s=0 t=0e=0
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m—1ln—1lc—1
G Gi(Hi(m,n,c))+ >, Y Y hi(M,N,C,s,t,e)] =0, i=1,2,- k.
s=0 =0 e=0
From (68), we deduce that |y(z(m,n,c)) — w(Z(m,n,c))| <0, implying that z(m,n,c) =
Z(m,n,c), for all (m,n,c) € Az .
Finally, we consider the continuous dependence of solutions of (64) on the given
functions F,ay,as,a3. For that, we consider a perturbation of (64),

AsBaAy (z(m,n,c)) = F(m,n,c,pi(z(m,n,c)), -, @e(z(m,n,c))), (76)
¥(2(m,0,0)) = ai(m), y(2(0,n,0)) = az(n), ¥(z(0,0,c)) = as(c), (77)

for all (m,n,c) € Az, and a;(0) = a2(0) = a3(0) =0, y(z) € C(R,R) is a strictly
increasing odd function on R, satisfying w(0) =0 and y(u) > 0 for u >0, F : A3 X
RfF R, a;: »Rand a: b — R, a3 : s — R, ¢;: R, — R, are nondecreasing

continuous functions and the ratio @;+/¢; are also nondecreasing, ¢;(«) >0 for u >0
i=1,2,- k. 0O

THEOREM 6. Suppose that
max|§1 —a1| < 8,max|672—a2| <E,
max |ay —ap| < &, max|F — F| < &. (78)

where € > 0 is a arbitrary small number. Then the solution z(m,n,c) of (76) is suffi-
ciently close to the solution z(m,n,c) of (64).

Proof. Let z(m,n,c) and Z(m,n,c) be the solutions of (76) and (64), respec-
tively. Then, 7 satisfies the equivalent difference equation

y(z(m,n,c)) = ai(m )+Ez( )+ as(c)
m—1n—1c—

s=0 1=0 e=

From (70), (73), (78), (79), we have

|l[/(z(m,n,c)) - W(E(m7n7c))|
< lai(m) —ai(m)| +|az(n) — az(n)| + las(e) — as(c)|

m—1ln—1c—1

+ Z Z Z \F(s,t7e7 ¢1 (Z(S7tve))7"'7¢k(z(svt7e)))

s=0 =0 e=0
—F(s,t,e (Pl( (S’t7e)) . ’(Pk( (s,t,e)))|
m—1n—1c—
< 3e+ 2 2 2 |F s,1,e, (Pl Sat7e)) ",(Pk(Z(S,l,E)))
s=0 =0 e=

—F(s,t,e (Pl( (S’t7e)) a(Pk( (s,t,e)))|
—1ln—1lc—

+ 2 2 2 |F(s,t,e,@01(z(s,t,€)), -, 0e(2(s,2,€)))

s=0 =0 e=
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_F(57t7e7 ¢1(Z(S7tve))7"'7§0/<(Z_(Svt7e)))|
k m—1n—1c—1

< (3+M1N1C1)8+§ Z(,) ZO Zohi(MMC,m,n,c)lw(Z)—w(Z)Iqwi(lw(Z)—w(z’)I)

(80)

(80) has the same form of Corollary 7, using Corollary 7 to (80), we obtain
m—1ln—1z—1 1
|l[/(Z(m,l’l,C)) - W(Z(m,n,c))| < [W]:l(Wk(Ek(m’naZ)) + 2 z Egk(m’nazasat7e))] e
s=0 =0 e=0

for (m,n,z) € Ay Ny z2y)» Where Ey = (3+MN,C)e, then E; — 0 as € — 0. Since

|
—

1
gNk(m7n7Z7s7tae))a
0

Z

m—1n
Ex =W, (Wi(Ex(m,n,2)) + 3,
s=01=0e

from (75), we have limg_,¢ E; = 0, and that
g‘ln%) ‘V/(Z(m7n7c)) - l//(Z_(m,n,c))| =0.

Thus, y(z) depends continuously on F,ay,a,a3. O
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