
Journal of
Mathematical

Inequalities

Volume 15, Number 1 (2021), 173–200 doi:10.7153/jmi-2021-15-15

SOME GENERALIZED GRONWALL–BELLMAN TYPE

DIFFERENCE INEQUALITIES AND APPLICATIONS

ZIZUN LI

(Communicated by M. Krnić)

Abstract. We establish some generalized sums-difference inequalities involving a finite sum,
which includes three sums and seven sums, respectively. We present the estimation of the in-
equality is decided by a finite recursion. Using the lemma and difference techniques, we trans-
form the complex difference inequalities into the simple forms of difference inequalities. We
apply our results to boundary value problem of a partial difference equation for uniform bound-
edness, uniqueness and continuous dependence of the solutions.

1. Introduction

Gronwall-Bellman integral inequality is an important tool in the study of existence,
uniqueness, boundedness of solutions of differential equations and integral equations.
Various generalizations of Gronwall-Bellman type integral inequality [7, 21] and their
applications have attracted great attention of many mathematicians. Some recent works
of integral inequality with one variable can be found, e.g., in [5, 6, 8, 9, 16, 23, 32,
36, 47, 51] and some references therein. Some works of integral inequality with two
variables can be found in [10, 13, 17, 22, 26, 33, 42] and some references therein.
Agarwal et al. [5] investigated the inequality

u(t) � a(t)+
n

∑
i=1

∫ bi(t)

bi(t0)
gi(t,s)wi(u(s))ds, t0 � t < t1.

Agarwal et al. [6] discussed the retarded integral inequality

ϕ(u(t)) � c+
n

∑
i=1

∫ αi(t)

αi(t0)
uq(s)[ fi(s)ϕ(u(s))+gi(s)]ds,

where c is a constant. Zhou et al. [51] studied the following retarded integral inequality

u(t) � a(t)+
n

∑
i=1

{∫ bi(t)

bi(t0)
gi(t,s)wi(u(s))ds

}pi , t0 � t < ∞,
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where n ∈ N, pi � 1, and all a,bi,gi,wi and u are nonnegative continuous functions
for i = 1,2, · · · ,n. Kim [22] studied the retarded integral inequality with two variables

ψ(u(x,y)) � a(x,y)+ c(x,y)
n

∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)
uq(s,t)[ fi(s, t)ψ(u(s,t))+gi(s,t)]dtds,

for all (x,y)∈ [x0,X)× [y0,Y ). Wang et al. [42] considered the two variables of integral
inequality

ψ(u(x,y)) � a(x,y)+
n

∑
i=1

{∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)
uq(s, t)gi(x,y,s,t)dsdt

+
∫ δi(x)

δi(x0)

∫ γi(y)

γi(y0)
uq(s,t) fi(x,y,s, t)ϕi(u(s,t))dsdt

}
.

The inequality includes not only a nonconstant term outside the integrals but also more
than one distinct nonlinear integrals without assumption of monotonicity. Using ana-
lytical techniques, they obtained an appropriate upper bound estimation.

The theory of discrete inequalities of Gronwall-Bellman type is very important
in studying qualitative characteristics of solutions of difference equations. Recently,
with the development of the theory of difference equations, more attentions are paid
on some discrete versions of Gronwall type inequalities (e.g., [3, 44] for some early
works). Some recent works of difference inequality with one variable can be found,
e.g., in [1, 2, 4, 18, 19, 25, 34, 35, 37, 38, 39, 45, 46, 50] and some references therein.
Some works of difference inequality with two variables can be found in [11, 12, 14, 15,
20, 27, 28, 29, 30, 31, 40, 41, 43, 48, 49]. A fundamental one of those known results is
the sum-difference inequality

u(n) � a(n)+b(n)
n−1

∑
k=k0

f (k)u(k), n � k0,

as shown in [3], the unknown function u(n) is estimated by

u(n) � a(n)+b(n)
n−1

∑
k=k0

a(k) f (k)Πn−1
s=k+1(1+b(s) f (s)), n � k0.

Pachpatte [32, 35] studied the inequality

u(n) � a(n)+
n−1

∑
s=0

f (s)w(u(s)),

u2(n) � c2 +2
n−1

∑
s=0

[ f1(s)u(s)w(u(s))+ f2(s)u(s)],

where c is a constant, f , f1, f2,w are both real-valued nonnegative functions defined
on N0 = {0,1, · · · ,n}. Wu et al. [45] discussed the inequality

u(n) � a(n)+
m

∑
i=1

bi(n−1)

∑
bi(0)

fi(n,s)wi(u(s)),n ∈ N0,
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where a(n) is nonnegative, bi(n) are nondecreasing and bi(n) � n, fi are nonnegative,
wi are continuous and nondecreasing functions on [0,∞).

Meng et al. [30] studied the inequality with two variables

up(m,n) � a(m,n)+b(m,n)
m−1

∑
s=0

∞

∑
t=n+1

[c(s, t)u(s,t)+ e(s, t)],

for all m,n∈ N0, and p � 1 is a constant. Chueng et al. [11, 14] discussed the inequal-
ities

u(m,n) � c+
m−1

∑
s=0

n−1

∑
t=0

b(s,t)w(u(s,t)),

up(m,n) � c+
m−1

∑
s=m0

n−1

∑
t=n0

a(s,t)u(s,t)+
m−1

∑
s=m0

n−1

∑
t=n0

b(s, t)u(s,t)ϕ(u(s,t)),

where c � 0, and a,b are nonnegative real-valued functions in Z
2
+ , and ϕ is a contin-

uous nondecreasing function with ϕ(r) > 0, for r > 0. Ma and Cheung [27] studied
the inequality

ψ(u(m,n)) � a(m,n)+ c(m,n)
m−1

∑
s=0

∞

∑
t=n+1

ψ ′(u(s,t))[d(s,t)w(u(s,t))+ e(s,t)].

Wang et al. [41] investigated the inequality

ψ(u(m,n)) � c(m,n)+
k

∑
i=1

m−1

∑
s=m0

n−1

∑
t=n0

fi(m,n,s, t)ϕi(u(s,t)),

where ψ is a strictly increasing continuous function on R+, satisfying that ψ(∞) = ∞
and ψ(u) > 0 for all u > 0, φi are continuous and positive functions on R+ , a(m,n) �
0, fi are nonnegative functions in the domain. Ma [29] considered the power difference
inequality with two variables

up(m,n) � a(m,n)+ c(m,n)
m−1

∑
s=m0

n−1

∑
t=n0

b(s,t)uq(s,t)+
M−1

∑
s=m0

N−1

∑
t=n0

c(s, t)ur(s,t),

where p � q > 0, p � r > 0. Feng et al. [20] discussed the inequalities including four
sums

up(m,n) � c(m,n)+
m−1

∑
s=m0

n−1

∑
t=n0

[
b(s,t,m,n)uq(s,t)+

s

∑
ξ=m0

t

∑
η=n0

c(ξ ,η ,m,n)ur(ξ ,η)
]

+
M−1

∑
s=m0

N−1

∑
t=n0

[
d(s,t,m,n)uh(s,t)+

s

∑
ξ=m0

t

∑
η=n0

e(ξ ,η ,m,n)u j(ξ ,η)
]
.
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Li [24] investigated the five sums difference inequality

ψ(u(m,n)) � c(m,n)+
k

∑
i=1

(m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

fi(s,t, j, l)up(s, t)

+
m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

hi(s,t, j, l)uq(s,t)ϕi(u( j, l))
)
.

Motivated by the ideas in [5, 14, 24, 35, 41, 45, 51], in this paper, we establish
some new more general forms of sums-difference inequalities, and we do not require
the monotonicity to of the unknown functions. We apply a technique of monotonization
to overcome the difficulty from nonmonotonicity and give the upper bound estimation
of unknown function. We apply the obtained results to the bounded and uniqueness and
continuous dependence of the solutions of the difference equation.

2. Lemma

Throughout this paper, R denote the set of all real numbers, let R+ := [0,∞) and
N0 := {0,1, · · ·} . mi,ni ∈ N0,(i = 1,2, · · · ,k) are given numbers, Ii := [0,mi)∩N0

( i = 1,2 · · · ,k ) are two fixed lattices of integer points in R , Λi := I1 × I2 × ·· ·× Ii ⊂
N

i
0, i = 1,2, · · · ,k , Λ(M1,N1,Z1) := [0,M1)∩N0× [0,N1)∩N0× [0,Z1)∩N0. For any s ∈

Δ1, let Δs denote the sublattice [0,s]∩Δ1 of Δ1. For functions w(m),z(m,n, j),m,n ∈
N0 , let Δ denotes the forward difference operator, i.e. Δw(m) := w(m + 1)−w(m)
and Δ1z(m,n, j) := z(m+1,n, j)− z(m,n, j) . Obviously, the linear difference equation
Δx(m) = b(m) with the initial condition x(0) = 0 has the solution ∑m−1

s=0 b(s) . For
convenience, in the sequel we define that ∑0−1

s=0 b(s) = 0.

LEMMA 1. Suppose w is a continuous and positive functions on R+ , f is a
nonnegative function on Λk ×Λk , u is a nonnegative function on Λk , then we can
obtain the following formula

m1−1

∑
s1=0

· · ·
mk−1

∑
sk=0

s1−1

∑
j1=0

· · ·
sk−1

∑
jk=0

f (s1, · · · ,sk, j1, · · · , jk)w(u( j1, · · · , jk))

=
m1−1

∑
s1=0

· · ·
mk−1

∑
sk=0

w(u(s1, · · · ,sk))
m1−1

∑
j1=s1+1

· · ·
mk−1

∑
jk=sk+1

f ( j1, · · · , jk,s1, · · · ,sk).

Proof. We use mathematical induction with respect to mi, i = 1,2, · · · ,k . If m1 =
m2 = · · · = mk = 2, we obtain

1

∑
s1=0

· · ·
1

∑
sk=0

s1−1

∑
j1=0

· · ·
sk−1

∑
jk=0

f (s1, · · · ,sk, j1, · · · , jk)w(u( j1, · · · , jk))

= f (1, · · · ,1,0, · · · ,0)w(u(0, · · · ,0)),
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1

∑
s1=0

· · ·
1

∑
sk

w(u(s1, · · · ,sk))
1

∑
j1=s1+1

· · ·
1

∑
jk=sk+1

f ( j1, · · · , jk,s1, · · · ,sk)

= w(u(0, · · · ,0)) f (1, · · · ,1,0, · · · ,0).

Thus, we have

1

∑
s1=0

· · ·
1

∑
sk=0

s1−1

∑
j1=0

· · ·
sk−1

∑
jk=0

f (s1, · · · ,sk, j1, · · · , jk)w(u( j1, · · · , jk))

=
1

∑
s1=0

· · ·
1

∑
sk=0

w(u(s1, · · · ,sk))
1

∑
j1=s1+1

· · ·
1

∑
jk=sk+1

f ( j1, · · · , jk,s1, · · · ,sk).

It means that the lemma is true for mi = 2, i = 1, · · · ,k . Suppose that the lemma is true
for mi = Mi, i = 1, · · · ,k , that is

M1−1

∑
s1=0

· · ·
Mk−1

∑
sk=0

s1−1

∑
j1=0

· · ·
sk−1

∑
jk=0

f (s1, · · · ,sk, j1, · · · , jk)w(u( j1, · · · , jk))

=
M1−1

∑
s1=0

· · ·
Mk−1

∑
sk=0

w(u(s1, · · · ,sk))
M1−1

∑
j1=s1+1

· · ·
Mk−1

∑
jk=sk+1

f ( j1, · · · , jk,s1, · · · ,sk).

Consider mi = Mi +1, i = 1, · · · ,k , then we have

M1

∑
s1=0

· · ·
Mk

∑
sk=0

w(u(s1, · · · ,sk))
M1

∑
j1=s1+1

· · ·
Mk

∑
jk=sk+1

f ( j1, · · · , jk,s1, · · · ,sk)

=
M1−1

∑
s1=0

· · ·
Mk−1

∑
sk=0

w(u(s1, · · · ,sk))
M1

∑
j1=s1+1

· · ·
Mk

∑
jk=sk+1

f ( j1, · · · , jk,s1, · · · ,sk)

=
M1−1

∑
s1=0

· · ·
Mk−1

∑
sk=0

w(u(s1, · · · ,sk))
M1−1

∑
j1=s1+1

· · ·
Mk−1

∑
jk=sk+1

f ( j1, · · · , jk,s1, · · · ,sk)

+
M1−1

∑
s1=0

· · ·
Mk−1

∑
sk=0

w(u(s1, · · · ,sk)) f (M1, · · · ,Mk,s1, · · · ,sk)

=
M1−1

∑
s1=0

· · ·
Mk−1

∑
sk=0

w(u(s1, · · · ,sk))
M1−1

∑
j1=s1+1

· · ·
Mk−1

∑
jk=sk+1

f ( j1, · · · , jk,s1, · · · ,sk)

+
M1−1

∑
j1=0

· · ·
Mk−1

∑
jk=0

w(u( j1, · · · , jk)) f (M1, · · · ,Mk, j1, · · · , jk)

=
M1

∑
s1=0

· · ·
Mk

∑
sk=0

s1−1

∑
j1=0

· · ·
sk−1

∑
jk=0

f (s1, · · · ,sk, j1, · · · , jk)w(u( j1, · · · , jk))
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Using the inductive assumption, then, we obtain

M1

∑
s1=0

· · ·
Mk

∑
sk=0

s1−1

∑
j1=0

· · ·
sk−1

∑
jk=0

f (s1, · · · ,sk, j1, · · · , jk)w(u( j1, · · · , jk))

=
M1

∑
s1=0

· · ·
Mk

∑
sk=0

w(u(s1, · · · ,sk))
M1

∑
j1=s1+1

· · ·
Mk

∑
jk=sk+1

f ( j1, · · · , jk,s1, · · · ,sk).

It implies that it is true for mi = Mi +1, i = 1, · · · ,k . Therefore, it is true for any natural
number mi � 2, i = 1, · · · ,k . This completes the proof. �

COROLLARY 1. Suppose w is a continuous and positive functions on R+ , f is
a nonnegative function on Λ2 , u is a nonnegative function on Λ1 , then we can obtain
the following formula

m−1

∑
s=0

s−1

∑
j=0

f (s, j)w(u( j)) =
m−1

∑
s=0

w(u(s))
m−1

∑
j=s+1

f ( j,s).

COROLLARY 2. Suppose w is a continuous and positive functions on R+ , f is
a nonnegative function on Λ6 , u is a nonnegative function on Λ3 , then we can obtain
the following formula

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

s−1

∑
j=0

t−1

∑
l=0

e−1

∑
r=0

f (s,t,e, j, l,r)w(u( j, l,r))

=
m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

w(u(s,t,e))
m−1

∑
j=s+1

n−1

∑
l=t+1

z−1

∑
r=e+1

f ( j, l,r,s,t,e).

3. Main result

Firstly, we consider the sums-difference inequality

ψ(u(m)) � c(m)+
k

∑
i=1

[m−1

∑
s=0

s−1

∑
j=0

fi(s, j)up(s)+
m−1

∑
s=0

s−1

∑
j=0

hi(s, j)uq(s)ϕi(u( j))
]
. (1)

Suppose that
(H1) ψ is a strictly increasing continuous function on R+ , ψ(u) > 0 for all u > 0,
(H2) all ϕi,(i = 1,2, · · · ,k) are continuous functions on R+ and positive on (0,∞) ,
(H3) c(m) > 0 on Λ1 ,
(H4) p > 0,q > 0 are constants and p > q ,
(H5) all fi,hi(i = 1,2, · · · ,k) are nonnegative functions on Λ2 .

We consider a sequence of functions wi(s) , which can be calculated recursively
by {

w1(s) := maxτ∈[0,s] ϕ1(τ)+ ε, s ∈ R+,

wi+1(s) := maxτ∈[0,s]{ϕi+1(τ)
wi(τ) }wi(s), i = 1,2, · · · ,k−1,s ∈ R+,

(2)
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where ε > 0 is an an arbitrarily small positive number. We define the functions:

Ψp(u) :=
∫ u

0

ds
(ψ−1(s))p , u > 0, (3)

Ψq(u) :=
∫ u

0

ds
(ψ−1(s))q , u > 0, (4)

Wi(u) :=
∫ u

0

ds

wi(ψ−1(Ψ−1
p (s)))

, i = 1,2, · · · ,k, u > 0, (5)

W̃i(u) :=
∫ u

0

ds

wi(ψ−1(Ψ−1
p (s)))

, i = 1,2, · · · ,k, u > 0.

Then, Ψp,Ψq and Wi,W̃i are strictly increasing and continuous functions, let Ψ−1
p ,W−1

i

denote Ψ,Wi inverse function, respectively, then both Ψ−1
p and W−1

i are also continu-
ous and increasing functions. Furthermore, let

c̃(m) : = max
τ∈[0,m]

c(m) (6)

f̃i(m,s) : = max
τ∈[0,m]

fi(τ,s), (7)

h̃i(m,s) : = max
τ∈[0,m]

hi(τ,s), (8)

which are nondecreasing in m for each fixed s and satisfies f̃i(m,s) � fi(m,s) � 0,
h̃i(m,s) � hi(m,s) � 0, for all i = 1,2, · · · ,k .

THEOREM 1. Suppose that (H1 −H5) hold and u(m) is a nonnegative function
on Λ1 satisfying (1) . Then, case one: if ψ−1(z(m)) > 1 ,

u(m) � ψ−1
{

Ψ−1
p

[
W−1

k

(
Wk(Ek(m))+

m−1

∑
s=0

g̃k(m,s)
)]}

, (9)

for (m < M1) ∈ Λ1 , where ψ−1(z(m)) is defined in (13)

E1(m) := Ψp(c̃(m))+
k

∑
i=1

m−1

∑
s=0

s−1

∑
j=0

f̃i(s, j),

Ei(m) := W−1
i−1

(
Wi−1(Ei−1(m))+

m−1

∑
s=0

g̃i−1(m,s)
)
, i = 2,3, . . . ,k,

and M1 ∈ Λ1 is arbitrarily given on the boundary of the lattice

R :=
{

m ∈ Λ1 : Wi(Ei(m))+
m−1

∑
s=0

h̃i(m,s) �
∫ ∞

0

ds

wi(ψ−1(Ψ−1
p (s)))

,

W−1
i

(
Wi(Ei(m))+

m−1

∑
s=0

h̃i(m,s)
)

�
∫ ∞

0

ds
ψ−1(s)

, i = 1,2, · · · ,k
}

.
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Case two: if ψ−1(z(m)) < 1 ,

u(m) � ψ−1
{

Ψ−1
q

[
W̃−1

k

(
W̃k(Ek(m))+

m−1

∑
s=0

g̃k(m,s)
)]}

, (10)

for (m,n) ∈ ΛM1 , where

E1(m) := Ψq(c̃(m))+
k

∑
i=1

m−1

∑
s=0

s−1

∑
j=0

f̃i(s, j),

Ei(m) := W̃−1
i−1

(
W̃i−1(Ei−1(m))+

m−1

∑
s=0

g̃i−1(m,s)
)
, i = 2,3, . . . ,k,

and M1 ∈ Λ1 is arbitrarily given on the boundary of the lattice

R :=
{
(m,n) ∈ Λ : W̃i(Ei(m))+

m−1

∑
s=0

h̃i(m,s) �
∫ ∞

0

ds

w̃i(ψ−1(Ψ−1
q (s)))

,

W−1
i

(
W̃i(Ei(m))+

m−1

∑
s=0

h̃i(m,s)
)

�
∫ ∞

0

ds
ψ−1(s)

, i = 1,2, · · · ,k
}

.

Proof. First of all, we monotonize some given functions ϕi in the sums. Obvi-
ously the sequence wi(s) defined by ϕi(s) in (2) are nondecreasing and nonnegative
functions and satisfy wi(s) � ϕi(s), i = 1,2, · · · ,k . Moreover, the ratio wi+1(s)/wi(s)
are also nondecreasing, i = 1,2, · · · ,k. By (1), (6), (7), (8), from (2), we have

ψ(u(m)) � c̃(m)+
k

∑
i=1

(m−1

∑
s=0

s−1

∑
j=0

f̃i(s, j)up(s)+
m−1

∑
s=0

s−1

∑
j=0

h̃i(s, j)uq(s)wi(u( j))
)
. (11)

for all m ∈ Λ1 . From (11), we have

ψ(u(m)) � c̃(M)+
k

∑
i=1

(m−1

∑
s=0

s−1

∑
j=0

f̃i(s, j)up(s)+
m−1

∑
s=0

s−1

∑
j=0

h̃i(s, j)uq(s)wi(u( j))
)
. (12)

for M ∈ Λ1 , where 0 � M � M1 is chosen arbitrarily. Let z(m) denote the function on
the right-hand side of (12), which is a nonnegative and nondecreasing function on ΛM

and z(0) = c̃(M) . Then we obtain the equivalent form of (12)

u(m) � ψ−1(z(m)), ∀m ∈ ΛM. (13)

Since wi is nondecreasing and satisfy wi(u) > 0, for u > 0. By the definition of z and
(13), from (12) , we have

Δ1z(m) =
k

∑
i=1

m−1

∑
j=0

f̃i(m, j)up(m)+
k

∑
i=1

m−1

∑
j=0

h̃i(m, j)uq(m)wi(u( j))

�
k

∑
i=1

m−1

∑
j=0

f̃i(m, j)(ψ−1(z(m)))p +
k

∑
i=1

m−1

∑
j=0

h̃i(m, j)(ψ−1(z(m)))qwi(ψ−1(z( j))).

(14)



GRONWALL-BELLMAN TYPE DIFFERENCE INEQUALITIES 181

Case one: if ψ−1(z(m)) > 1. Using the monotonicity of ψ−1 and z , from (14),
we have

Δ1z(m) � (ψ−1(z(m)))p
( k

∑
i=1

m−1

∑
j=0

f̃i(m, j)+
k

∑
i=1

m−1

∑
j=0

h̃i(m, j)wi(ψ−1(z( j)))
)
. (15)

that is

Δ1z(m)
(ψ−1(z(m)))p �

k

∑
i=1

m−1

∑
j=0

f̃i(m, j)+
k

∑
i=1

m−1

∑
j=0

h̃i(m, j)wi(ψ−1(z( j))). (16)

On the other hand, by the mean-value theorem for integrals, for arbitrarily given m,m+
1 ∈ ΛM , in the open interval (z(m),z(m+1)) , there exists ξ , which satisfies

Ψp(z(m+1))−Ψp(z(m)) =
∫ z(m+1)

z(m)

ds
(ψ−1(s))p

=
Δ1z(m)

(ψ−1(ξ ))p � Δ1z(m)
(ψ−1(z(m)))p .

(17)

Using the definition of Ψp in (3). From (15) and (17), we obtain

Ψp(z(m+1)) � Ψp(z(m))+
( k

∑
i=1

m−1

∑
j=0

f̃i(m, j)+
k

∑
i=1

m−1

∑
j=0

h̃i(m, j)wi(ψ−1(z( j)))
)
. (18)

Substituting m with s in (18) . Then, taking the sums on both sides of (18) over
s = 0,1, · · · ,m−1, we have

Ψp(z(m)) � Ψp(z(0))+
k

∑
i=1

(m−1

∑
s=0

s−1

∑
j=0

f̃i(s, j)+
m−1

∑
s=0

s−1

∑
j=0

h̃i(s, j)wi(ψ−1(z( j)))
)

� Ψp(c̃(M))+
k

∑
i=1

(M−1

∑
s=0

s−1

∑
j=0

f̃i(s, j)+
m−1

∑
s=0

s−1

∑
j=0

h̃i(s, j)wi(ψ−1(z( j)))
)

= Ck(M)+
k

∑
i=1

m−1

∑
s=0

s−1

∑
j=0

h̃i(s, j)wi(ψ−1(z( j))), (19)

where

Ck(M) = Ψp(c(M))+
k

∑
i=1

M−1

∑
s=0

s−1

∑
j=0

f̃i(s, j). (20)

Let

v(m) = Ψp(z(m)). (21)
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From (19), we have

v(m) � Ck(M)+
k

∑
i=1

m−1

∑
s=0

s−1

∑
j=0

h̃i(s, j)wi(ψ−1(Ψ−1
p (v( j)))), (22)

for all m < M ∈ Λ1 . Using the Corollary 1, (22) can be written as

v(m) � Ck(M)+
k

∑
i=1

m−1

∑
s=0

g̃i(m,s)wi(ψ−1(Ψ−1
p (v(s)))), (23)

where g̃i(m,s) = ∑m−1
j=s+1 h̃i( j,s) . Obviously, g̃i(m,s) , i = 1,2, · · ·k are nondecreasing

in m for each fixed s and g̃i(m,s) � 0. Then from (23), we have

v(m) � Ck(M)+
k

∑
i=1

m−1

∑
s=0

g̃i(M,s)wi(ψ−1(Ψ−1
p (v(s)))). (24)

From (24), we can conclude that

v(m) � W−1
k

(
Wk(Ek(m))+

m−1

∑
s=0

g̃k(M,s)
)
, (25)

for m < M ∈ Λ1 , where

Ei(M) : = W−1
i−1

(
Wi−1(Ei−1(M))+

M−1

∑
s=0

g̃i−1(M,s)
)
, i = 2, · · · ,k, (26)

E1(M) : = C1(M).

For k = 1, let z1(m) denote the function on the right-hand side of (24), which is
a nonnegative and nondecreasing function on Λ1 , z1(0) = C1(M) and v(m) � z1(m) .
Then we obtain

Δ1z1(m) = g̃1(M,m)w1(ψ−1(Ψ−1
p (v(m))))

� g̃1(M,m)w1(ψ−1(Ψ−1
p (z1(m)))). (27)

From (27), we have

Δ1z1(m)
w1(ψ−1(Ψ−1

p (z1(m))))
� g̃1(M,m). (28)

By the mean-value theorem for integrals, there exists ξ in the open interval (z1(m) ,
z1(m+1)), for arbitrarily given (m),(m+1) ∈ Λ1 such that

W1(z1(m+1))−W1(z1(m)) =
∫ z1(m+1)

z1(m)

ds

w1(ψ−1(Ψ−1
p (s)))

=
Δ1z1(m)

w1(ψ−1(Ψ−1
p (ξ )))

� Δ1z1(m)
w1(ψ−1(Ψ−1

p (z1(m))))
. (29)
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From (28) and (29), we have

W1(z1(m+1)) � W1(z1(m))+ g̃1(M,m). (30)

Substituting m with s in (30) . Then, taking the sums on both sides of (30) over s =
0,1, · · · ,m−1, we have

W1(z1(m)) � W1(z1(0))+
m−1

∑
s=0

g̃1(M,s)

= W1(C1(M))+
m−1

∑
s=0

g̃1(M,s), (31)

Using v(m) � z1(m) , from (31), we get

v(m) � z1(m) � W−1
1

(
W1(C1(M))+

m−1

∑
s=0

g̃1(M,s)
)
, (32)

for all m < M ∈ Λ1 . This proves that (25) is true for k = 1.
Next, we make the inductive assumption that (25) is true for k = l , then

v(m) � W−1
l

(
Wl(El(M))+

m−1

∑
s=0

g̃l(M,s)
)
, (33)

for all m ∈ ΛM , where

E1(M) : = C1(M),

Ei(M) : = W−1
i−1

(
Wi−1(Ei−1(M))+

M−1

∑
s=0

g̃i−1(M,s)
)
, i = 2,3, · · · , l.

We consider

v(m) � Cl+1(M)+
l+1

∑
i=1

m−1

∑
s=0

g̃i(M,s)wi(ψ−1(Ψ−1
p (v(s)))), (34)

for all m < M ∈ Λ1 . Let z2(m) denote the nonnegative and nondecreasing function of
the right-hand of (34), then z2(0) = Cl+1(M) and v(m) � z2(m) . Let

φi(u) := wi(u)/w1(u), i = 1,2, · · · , l +1. (35)

By (2), we conclude that φi i = 1,2, · · · , l are nondecreasing functions. From (34), we
have

Δ1z2(m)
w1(ψ−1(Ψ−1

p (z2(m))))

=
∑l+1

i=1 g̃i(M,m)wi(ψ−1(Ψ−1
p (v(m))))

w1(ψ−1(Ψ−1
p (z2(m))))
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� ∑l+1
i=1 g̃i(M,m)wi(ψ−1(Ψ−1

p (z2(m))))

w1(ψ−1(Ψ−1
p (z2(m))))

� g̃1(M,m)+
l+1

∑
i=2

g̃i(M,m)φi(ψ−1(Ψ−1
p (z2(m))))

= g̃1(M,m)+
l

∑
i=1

g̃i+1(M,m)φi+1(ψ−1(Ψ−1
p (z2(m)))). (36)

By the mean-value theorem for integrals, there exists ξ in the open interval (z2(m),z2(m+
1)) , for arbitrarily given m,m+1 ∈ Λ1 , we obtain

W1(z2(m+1))−W1(z2(m)) =
∫ z2(m+1)

z2(m)

ds

w1(ψ−1(Ψ−1
p (s)))

=
Δ1z2(m)

w1(ψ−1(Ψ−1
p (ξ )))

� Δ1z2(m)
w1(ψ−1(Ψ−1

p (z2(m))))
. (37)

From (36) and (37), we get

W1(z2(m+1))−W1(z2(m))

� g̃1(M,m)+
l

∑
i=1

g̃i+1(M,m)φi+1(ψ−1(Ψ−1
p (z2(m)))) (38)

Substituting m with s in (38), then taking the sums on both sides of (38) over s =
0,1, · · · ,m−1, we have

W1(z2(m)) � W1(Cl+1(M))+
m−1

∑
s=0

g̃1(M,s)

+
l

∑
i=1

m−1

∑
s=0

g̃i+1(M,s)φi+1(ψ−1(Ψ−1
p (z2(s)))), (39)

for all m < M ∈ Λ1 .
Let

θ (m) := W1(z2(m)), (40)

ρ1(M) := W1(Cl+1(M))+
M−1

∑
s=0

g̃1(M,s). (41)

Using (40) and (41), from (39), we have

θ (m)) � ρ1(M)+
l

∑
i=1

m−1

∑
s=0

g̃i+1(M,s)φi+1[ψ−1(Ψ−1
p (W−1

1 (θ (m))))]. (42)
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It has the same form as (24). We are ready to use the inductive assumption for (42). Let
δ (s) := ψ−1(Ψ−1

p (W−1
1 (s))) . Since ψ−1,Ψ−1

p ,W−1
1 ,φi are continuous, nondecreas-

ing and positive on (0,∞) , each φi(δ (s)) is continuous and nondecreasing on (0,∞) .
Moreover

φi+1(δ (s))
φi(δ (s))

=
wi+1(δ (s))
wi(δ (s))

= max
τ∈[0,δ (s)]

{
ϕi+1(τ)
wi(τ)

}
, i = 1,2, · · · , l, (43)

which is also continuous and nondecreasing and positive on (0,∞) . Therefore, by the
inductive assumption in (33), from (42), we have

θ (m) � Φ−1
l

(
Φl(ρl(M))+

m−1

∑
s=0

g̃l+1(M,s)
)
, (44)

where

Φi(u) :=
∫ u

0

ds

φi+1(ψ−1(Ψ−1
p (W−1

1 (s))))
, u > 0, i = 1,2, · · · , l, (45)

ρi(M) := Φ−1
i−1

(
Φi−1(ρi−1(M))+

M−1

∑
s=0

g̃i(M,s)
)
, i = 2,3, · · · , l. (46)

Note that

Φi(u)=
∫ u

0

w1(ψ−1(Ψ−1
p (W−1

1 (s))))ds

wi+1(ψ−1(Ψ−1
p (W−1

1 (s))))
,

=
∫ W−1

1 (u)

0

ds

wi+1(ψ−1(Ψ−1
p (s)))

= Wi+1(W−1
1 (u)), i = 1,2, · · · , l. (47)

Thus, from (40), (44) and (47), we have

v(m) � z2(m) = W−1
1 (θ (m))

� W−1
1

(
Φ−1

l

(
Φl(ρl(M))+

m−1

∑
s=0

g̃l+1(M,s)
))

= W−1
l+1

(
Wl+1

(
W−1

1 (ρl(M))
)

+
m−1

∑
s=0

g̃l+1(M,s)
)
. (48)

We can prove that the term of W−1
1 (ρl(M)) in (48) is just the same as El+1(M) defined

in (26). Let ρ̃i(M) := W−1
1 (ρi(M)) . By (41), we have

ρ̃1(M) = W−1
1 (ρ1(M))

= W−1
1

(
W1(Cl+1(M))+

M−1

∑
s=0

g̃1(M,s)
)

= E2(M).
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Then by the mathematical induction for i , using (46) and (47), we get

ρ̃i(M) = W−1
1

(
Φ−1

i−1

(
Φi−1(ρi−1(M))+

M−1

∑
s=0

g̃i(M,s)
))

= W−1
i

[
Wi(W−1

1 (ρi−1(M)))+
M−1

∑
s=0

g̃i(M,s)
]

= W−1
i

[
Wi(ρ̃i−1(M))+

M−1

∑
s=0

g̃i(M,s)
]

= Ei+1(M), i = 2,3 · · · , l.

This proves that W−1
1 (ρl(M)) in (48) is just the same as El+1(M) defined in (26) .

Hence (48) can be equivalently written as

v(m) � W−1
l+1

(
Wl+1(El+1(M))+

m−1

∑
s=0

g̃l+1(M,s)
)
, ∀ m ∈ ΛM. (49)

The estimation (25) of unknown function v in the inequality (22) is proved by induction.
By (13), (21), (25) and (49), we have

u(m) � ψ−1(z(m)) � ψ−1
(

Ψ−1
p

(
v(m)

))

� ψ−1
(

Ψ−1
p

(
W−1

k

(
Wk(Ek(M))+

m−1

∑
s=0

g̃k(M,s)
)))

, (50)

for all m < M ∈ Λ1 . Let m = M , from (50), we have

u(M) � ψ−1
(

Ψ−1
p

(
W−1

k

(
Wk(Ek(M))+

M−1

∑
s=0

g̃k(M,s)
)))

.

This proves (9), since M and N are chosen arbitrarily.
Case two: if ψ−1(z(m)) < 1. Using the monotonicity of ψ−1 and z , we can

conclude that (ψ−1(z(m)))p < (ψ−1(z(m)))q , from (14), we have

Δ1z(m) � (ψ−1(z(m)))q
( k

∑
i=1

m−1

∑
j=0

f̃i(m, j)+
k

∑
i=1

m−1

∑
j=0

h̃i(m, j)wi(ψ−1(z( j)))
)
. (51)

This follows from (51) by similar arguments as in the proof of Case one, we get

u(m) � ψ−1
(

Ψ−1
q

(
W̃−1

k

(
W̃k(Ek(m))+

m−1

∑
s=0

g̃k(m,s)
)))

.

This completes the proof. �
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Next, we consider the following sums-difference inequality

ψ(u(m,n,z)) � c(m,n,z)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

s−1

∑
j=0

t−1

∑
l=0

e−1

∑
r=0

fi(s,t,e, j, l,r)up(s,t,e)

+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

s−1

∑
j=0

t−1

∑
l=0

e−1

∑
r=0

hi(s,t,e, j, l,r)up(s,t,e)ϕi(u( j, l,r)). (52)

Suppose that
(L1) ψ is a strictly increasing continuous function on R+ , ψ(u) > 0 for all u > 0,
(L2) all ϕi,(i = 1,2, · · · ,k) are continuous functions on R+ and positive on (0,∞) ,
(L3) c(m,n,z) > 0 on Λ3 ,
(L4) p > 0, is a constant,
(L5) all fi,hi(i = 1,2, · · · ,k) are nonnegative functions on Λ6 .
Let

c̃(m,n,z) := max
(τ,ξ ,ν)∈[0,m]×[0,n]×[0,z]

c(m,n,z), (53)

f̃i(m,n,z,s,t,e) := max
(τ,ξ ,ν)∈[0,m]×[0,n]×[0,z]

fi(τ,ξ ,ν,s,t,e), (54)

h̃i(m,n,z,s,t,e) := max
(τ,ξ ,ν)∈[0,m]×[0,n]×[0,z]

hi(τ,ξ ,ν,s,t,e), (55)

which are nondecreasing in m,n,z for each fixed s and t and e and satisfies f̃i(m,n,z,s,t,e)
� fi(m,n,z,s, t,e) � 0, h̃i(m,n,z,s,t,e) � hi(m,n,z,s,t,e) � 0, for all i = 1,2, · · · ,k .

THEOREM 2. Suppose that (L1 −L5) hold and u(m,n,z) is a nonnegative func-
tion on Λ3 satisfying (52). Then

u(m,n,z) � ψ−1
{

Ψ−1
p

[
W−1

k

(
Wk(Ek(m,n))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃k(m,n,z,s, t,e)
)]}

, (56)

for (m,n,z) ∈ Λ(M1,N1,Z1) , where

E1(m,n,z) := Ψp(c̃(m,n,z))+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

s−1

∑
j=0

t−1

∑
l=0

e−1

∑
r=0

f̃i(s,t,e, j, l,r),

Ei(m,n,z) := W−1
i−1

(
Wi−1(Ei−1(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃i−1(m,n,z,s,t,e)
)
, i = 2,3, . . . ,k,

and (M1,N1,Z1) ∈ Λ3 is arbitrarily given on the boundary of the lattice

R:=
{
(m,n,z) ∈ Λ : Wi(Ei(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

h̃i(m,n,z,s, t,e) �
∫ ∞

0

ds

wi(ψ−1(Ψ−1
p (s)))

,

W−1
i

(
Wi(Ei(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

h̃i(m,n,z,s,t,e)
)

�
∫ ∞

0

ds
ψ−1(s)

, i = 1,2, · · · ,k
}

.
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Proof. By the similar arguments as in the proof of Theorem 1, we can obtain the
estimation (56). �

4. Corollaries

COROLLARY 3. Suppose that (H2,H3,H5) hold and p = q = 1 , ψ(u(m)) = u(m)
is a nonnegative function on Λ1 satisfying

u(m) � c(m)+
k

∑
i=1

(m−1

∑
s=0

s−1

∑
j=0

fi(s, j)u(s)+
m−1

∑
s=0

s−1

∑
j=0

hi(s, j)u(s)ϕi(u( j))
)
.

Then

u(m,n) � exp
[
Ŵ−1

k

(
Ŵk(Êk(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃k(m,n,s,t)
)]

,

for m ∈ ΛM1 , where

Ŵi(u) :=
∫ u

0

ds
wi(es)

, i = 1,2, · · · ,k, u > 0,

Ê1(m) := ln(c̃(m))+
k

∑
i=1

m−1

∑
s=0

s−1

∑
j=0

f̃i(s, j),

Êi(m) := Ŵ−1
i−1

(
Ŵi−1(Êi−1(m))+

m−1

∑
s=0

g̃i−1(m,s)
)
, i = 2,3, . . . ,k,

and M1 ∈ Λ1 is arbitrarily given on the boundary of the lattice.

Proof. This follows immediately from Theorem 1. �

COROLLARY 4. Suppose that (H2−H5) hold and fi = 0 , 0 < p < 1 , ψ(u(m)) =
u(m) is a nonnegative function on Λ1 satisfying

u(m) � c(m)+
k

∑
i=1

m−1

∑
s=0

s−1

∑
j=0

hi(s, j)up(s)ϕi(u( j)).

Then

u(m) �
[
W

−1
k

(
Wk(Ek(m))+

m−1

∑
s=0

g̃k(m,s)
)] 1

1−p ,

for m ∈ ΛM1 , where

Wi(u) :=
∫ u

0

ds

wi(s
1

1−p )
, i = 1,2, · · · ,k, u > 0,
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E1(m) := c̃(m)
1

1−p ,

Ei(m) := W
−1
i−1

(
Wi−1(Ei−1(m))+

m−1

∑
s=0

g̃i−1(m,s)
)
, i = 2,3, . . . ,k,

and M1 ∈ Λ1 is arbitrarily given on the boundary of the lattice.

COROLLARY 5. Suppose that (H2 −H5) hold and fi = 0 , ψ(u(m)) = u(m) is a
nonnegative function on Λ1 satisfying

u(m) � c(m)+
k

∑
i=1

m−1

∑
s=0

s−1

∑
j=0

hi(s, j)ϕi(u( j)).

Then

u(m) � W
−1
k

(
Wk(Ek(m))+

m−1

∑
s=0

g̃k(m,s)
)
,

for m ∈ ΛM1 , where

Wi(u) :=
∫ u

0

ds
wi(s)

, i = 1,2, · · · ,k, u > 0,

E1(m) := c̃(m),

Ei(m) := W
−1
i−1

(
Wi−1(Ei−1(m))+

m−1

∑
s=0

g̃i−1(m,s)
)
, i = 2,3, . . . ,k,

and M1 ∈ Λ1 is arbitrarily given on the boundary of the lattice.

COROLLARY 6. Suppose that (L2 −L5) hold and p = 1 , ψ(u(m,n,z))
= u(m,n,z) is a nonnegative function on Λ satisfying

u(m,n,z) � c(m,n,z)+
k

∑
i=1

(m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

s−1

∑
j=0

t−1

∑
l=0

e−1

∑
r=0

fi(s,t,e, j, l,r)u(s,t,e)

+
m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

s−1

∑
j=0

t−1

∑
l=0

e−1

∑
r=0

hi(s,t,e, j, l,r)u(s,t,e)ϕi(u( j, l,r))
)
.

Then

u(m,n,z) � exp
[
Ŵ−1

k

(
Ŵk(Êk(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃k(m,n,z,s,t,e)
)]

,

for (m,n,z) ∈ Λ(M1,N1,Z1) , where

Ŵi(u) :=
∫ u

0

ds
wi(exp(s))

, i = 1,2, · · · ,k, u > 0,
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Ê1(m,n,z) := ln(c̃(m,n,z))+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

s−1

∑
j=0

t−1

∑
l=0

e−1

∑
r=0

f̃i(s,t,e, j, l,r),

Êi(m,n,z) := Ŵ−1
i−1

(
Ŵi−1(Êi−1(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃i−1(m,n,z,s,t,e)
)
, i = 2,3, . . . ,k,

and (M1,N1,Z1) ∈ Λ3 is arbitrarily given on the boundary of the lattice.

COROLLARY 7. Suppose that (L2−L5) hold and fi = 0 , 0 < p < 1 , ψ(u(m,n,z))=
u(m,n,z) is a nonnegative function on Λ3 satisfying

u(m,n,z) � c(m,n,z)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

s−1

∑
j=0

t−1

∑
l=0

e−1

∑
r=0

hi(s,t,e, j, l,r)up(s,t,e)ϕi(u( j, l,r)).

Then

u(m,n,z) �
[
W

−1
k

(
Wk(Ek(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃k(m,n,z,s,t,e)
)] 1

1−p ,

for (m,n,z) ∈ Λ(M1,N1,Z1) , where

Wi(u) :=
∫ u

0

ds

wi(s
1

1−p )
, i = 1,2, · · · ,k, u > 0,

E1(m,n,z) := c̃(m,n,z)
1

1−p ,

Ei(m,n,z) := W
−1
i−1

(
Wi−1(Ei−1(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃i−1(m,n,z,s,t,e)
)
, i = 2,3, . . . ,k,

and (M1,N1,Z1) ∈ Λ3 is arbitrarily given on the boundary of the lattice.

COROLLARY 8. Suppose that (L2−L5) hold and fi = 0 , ψ(u(m,n,z))= u(m,n,z)
is a nonnegative function on Λ3 satisfying

u(m,n,z) � c(m,n,z)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

s−1

∑
j=0

t−1

∑
l=0

e−1

∑
r=0

hi(s,t,e, j, l,r)ϕi(u( j, l,r)).

Then

u(m,n,z) � W
−1
k

(
Wk(Ek(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃k(m,n,z,s,t,e)
)
,

for (m,n,z) ∈ Λ(M1,N1,Z1) , where

Wi(u) :=
∫ u

0

ds
wi(s)

, i = 1,2, · · · ,k, u > 0,

E1(m,n,z) := c̃(m,n,z),

Ei(m,n,z) := W
−1
i−1

(
Wi−1(Ei−1(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃i−1(m,n,z,s,t,e)
)
, i = 2,3, . . . ,k,

and (M1,N1) ∈ Λ is arbitrarily given on the boundary of the lattice.
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5. Analysis of the finite recursion

Consider the following finite recursion

ui(t) = W−1
i

[
Wi(ui−1(t))+

m−1

∑
t=0

fi(m,t)
]
, i = 1,2, · · · ,k, (57)

for t ∈ N0 , where fis are nonnegative continuous functions (i = 1,2, · · · ,k) , Wi ∈
C(R+,R) is strictly increasing such that Wi(+∞) = +∞, then the inverse W−1

i is well
defined on [Wi(0),+∞) .

Define a mapping Ti on (N0,R+)

Tiu(t) = Wi(u(t))+
m−1

∑
t=0

fi(m,t), i = 1,2, · · · ,k. (58)

For each u : N0 →R+, we have Tiu(t)∈ [Wi(0),+∞) for all t ∈N0, then, W−1
i (Tiui−1(t))

is well defined for all t ∈ N0.
The following Theorem gives the asymptoticity of un.

THEOREM 3. Suppose that fi,Wi are given as in (57), if u0 ∈ (N0,R+) satisfies
limt→∞ u0(t) = 0 and
if (A1)

lim
t→∞

∞

∑
s=0

fi(t,s) = 0, f or all i,

then limt→∞ un(t) = 0.
if (A2)

lim
u→0

Wi(u) = −∞, f or all i,

and ∑∞
s=0 fi(t,s) is bounded on N0. Then limt→∞ ui(t) = 0, i = 1,2, · · · ,k.

Proof. By definition (58) of Ti , the recursion (57) implies that

ui(t) = (W−1
i (Ti))ui−1(t), i = 1,2, · · · ,k. (59)

In the case (A1) , due to Wi is continuous and strictly increasing, from (59), we have

limsup
t→∞

ui(t) = W−1
i (limsup

t→∞
Tiui−1(t))

� W−1
i

(
limsup

t→∞
Wi(ui−1(t))+ limsup

t→∞

∞

∑
s=0

fi(t,s)
)

� W−1
i

(
Wi(limsup

t→∞
ui−1(t))

)
= limsup

t→∞
ui−1(t).
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By induction, we can prove that 0 � limsupt→∞ un(t) � limsupt→∞ u0(t) = 0.
In the case (A2) . From limt→∞ u0(t)

= 0, we assume inductively that limt→∞ ui−1(t) = 0, from (59), we have

limsup
t→∞

ui(t) = W−1
i (limsup

t→∞
Tiui−1(t))

� W−1
i

(
limsup

t→∞
Wi(ui−1(t))+ limsup

t→∞

∞

∑
s=0

fi(t,s)
)

� W−1
i

(
Wi(limsup

t→∞
ui−1(t))+ limsup

t→∞

∞

∑
s=0

fi(t,s)
)

= limsup
u→−∞

W−1
i (u) = 0,

where ∑∞
s=0 fi(t,s) is bounded guarantees that limsupu→−∞ ∑∞

s=0 fi(t,s) is finite, (A2)
guarantees that limu→0+ Wi(u) = −∞ and limu→−∞W−1

i (u) = 0. Then, by induction
we also can prove that limt→∞ un(t) = 0. This completes the proof. �

6. Applications

In this section, we apply our result to study the boundedness, uniqueness and con-
tinuous dependence of the solutions to the difference equations.

EXAMPLE 1. We consider the difference equation

v(m) =
1

m+3
+

m−1

∑
s=0

2−s
√
|v(s)|+

m−1

∑
s=0

s3−sv(s)+
m−1

∑
s=0

s2−s

200
ev(s), (60)

for all m ∈ Λ , where Λ is defined as in the section 2 . From (60), we have

|v(m)| � 1
m+3

+
m−1

∑
s=0

2−s
√
|v(s)|+

m−1

∑
s=0

s3−s|v(s)|+
m−1

∑
s=0

s2−s

200
e|v(s)|. (61)

Let |v(m)| = u(m) , we obtain

u(m) � 1
m+3

+
m−1

∑
s=0

2−s
√

u(s)+
m−1

∑
s=0

s3−su(s)+
m−1

∑
s=0

s2−s

200
eu(s), (62)

where c(m)= 1
m+3 , f1(m,s)= 2−s,w1(u)=

√
u, f2(m,s)= s3−s,w2(u)= u, f3(m,s)=

s2−s

200 , w3(u) = eu. We can conclude that w3
w2

= eu

u and w2
w1

= u√
u are nondecreasing for

u > 0, then, we have

E1(m) = c̃(m) = max
2�τ�m

1
τ +3

=
1
5
,

f̃i(m,s) = fi(m,s), i = 1,2,3,
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W1(u) =
∫ u

1

ds√
s

= 2(
√

u−1), W−1
1 (u) =

(u
2

+1
)2

,

W2(u) =
∫ u

1

ds
s

= lnu, W−1
2 (u) = eu,

W3(u) =
∫ u

1

ds
es = e−1− e−u, W−1

3 (u) = ln
1

e−1−u
, (63)

from (63), we have

E2(m) = W−1
1

[
W1(E1(m))+

m−1

∑
s=0

2−s
]
,

= W−1
1

[
2(

√
E1(m)−1)+2−

(1
2

)m−1]
,

=
(√

E1(m)+1−
(1

2

)m)2
,

and

E3(m) = W−1
2

[
W2(E2(m))+

m−1

∑
s=0

s3−s
]
,

= W−1
2

[
lnE2(m)+

3
4
− 5

12

(1
3

)m−2− 1
2

m−2
3m−1

]
,

= E2(m)exp
(3

4
− 5

12

(1
3

)m−2− 1
2

m−2
3m−1

)
.

Using Theorem 1, we obtain

u(m)

� W−1
3

[
W3(E3(m))+

m−1

∑
s=0

s2−s

200

]
,

= W−1
3

[
e−1− e−E3(m) +

1
200

(
2− 3

4
1

2m−3 −
m−2
2m−1

)]
,

= ln
1

exp(−E3(m))− 1
200

(
2− 3

4
1

2m−3 − m−2
2m−1

)
= ln

1

exp
(−E2(m)exp( 3

4 − 5
12 ( 1

3)m−2 − 1
2

m−2
3m−1 )

)− 1
200

(
2− 3

4
1

2m−3 − m−2
2m−1

)
= ln

1

exp
(−(√ 1

m+3+1−( 1
2 )m

)2
exp( 3

4− 5
12( 1

3 )m−2− 1
2

m−2
3m−1 )

)− 1
200

(
2− 3

4
1

2m−3− m−2
2m−1

) .

The above function ln 1
s always makes sense, since exp

(−(√
1

m+3 +1−( 1
2)

m
)2

exp( 3
4 −

5
12( 1

3 )m−2− 1
2

m−2
3m−1 )

)
is a decreasing function, and 1

200

(
2− 3

4
1

2m−3 − m−2
2m−1

)
is a increas-
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ing function. When m = 2, we have

exp
(
−

(√
1

2+3
+1−

(1
2

)2)2
exp

(3
4
− 5

12

))

= exp
(
−

(√
1
5

+
3
4

)2
exp

(1
3

))
≈ 0.1353,

1
200

(
2− 3

4
1

22−3

)
= 0.0025.

When m → ∞, we have

lim
m→∞

exp
(
−

(√
1

2+3
+1−

(1
2

)m)2
exp

(3
4
− 5

12
(
1
3
)m−2 − 1

2
m−2
3m−1

))
= exp

(
−

(1
5

+1
)2

exp
(3

4

))
≈ 0.0119,

lim
m→∞

1
200

(
2− 3

4
1

2m−3 −
m−2
2m−1

)
= 0.01.

Therefore, in ln 1
s , 0 < s < 1 always true. This implies that u(m) is bounded for

m ∈ N0.

EXAMPLE 2. We consider the partial difference equation with the initial boundary
value conditions.

Δ3Δ2Δ1ψ(z(m,n,c)) = F(m,n,c,ϕ1(z(m,n,c)), · · · ,ϕk(z(m,n,c))), (64)

ψ(z(m,0,0)) = a1(m),ψ(z(0,n,0)) = a2(n),ψ(z(0,0,c)) = a3(c), (65)

for all (m,n,c) ∈ Λ3 , where Λ3 is defined as in the section 2, and a1(0) = a2(0) =
a3(0)= 0, ψ(z)∈C(R,R) is a strictly increasing odd function on R , satisfying ψ(0)=
0 and ψ(u) > 0 for u > 0, F : Λ3×R

k →R , a1 : I1 →R and a2 : I2 →R , a3 : I3 →R ,
ϕi : R+ → R+ are nondecreasing continuous functions and the ratio ϕi+1/ϕi are also
nondecreasing, ϕi(u) > 0 for u > 0 i = 1,2, · · · ,k .

In the following, firstly, we apply our result to discuss boundedness on the solution
of problem (64).

THEOREM 4. Assume that F : Λ3×R
k → R is a continuous function satisfying

|F(m,n,c,ϕ1(u), · · · ,ϕk(u))|

�
k

∑
i=1

[
fi(M,N,C,m,n,c)|u|p +gi(M,N,C,m,n,c)|u|qϕi(|u|)

]
, (66)

|a1(m)+a2(n)+a3(c)| � a(m,n,c), (67)

for all (m,n,c)∈Λ3 , where p > q > 0 is a constant, fi(M,N,C,m,n,c) , gi(M,N,C,m,n,c) ,
i = 1,2, · · · ,k, are continuous nonnegative functions and nondecreasing in M,N,C for
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each fixed m,n,c , a(m,n,c) : Λ3 →R+ is nondecreasing in each variable. If z(m,n,c)
is any solution of (64) with the condition (65) , then, case one: if ψ−1(z̃(m, t,e)) > 1 ,

|z(m,n,c)| � ψ−1
{

Ψ−1
p

[
G−1

k

(
Gk(Hk(m,n,c))+

m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

gk(M,N,C,s, t,e)
)]}

,

(68)
for all (m,n,c) ∈ Λ(M,N,C) , where Ψp(u) is defined by (3) , and

Gi(u) :=
∫ u

1

ds

ϕi(ψ−1(Ψ−1
p (s)))

, u > 0,

H1(m,n,c) := Ψp(a(m,n,c)),

Hi(m,n,c) := G−1
i−1[Gi−1(Hi−1(m,n,c))+

m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

gi−1(M,N,C,s,t,e)],

Ψ−1
p and G−1

k denote the inverse function of Ψp and G.
Case two: if ψ−1(z̃(m,t,e)) < 1 ,

|z(m,n,c)| � ψ−1
{

Ψ−1
q

[
G̃−1

k

(
G̃k(H̃k(m,n,c))+

m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

gk(M,N,C,s, t,e)
)]}

,

(69)
for all (m,n,c) ∈ Λ(M,N,C) , where Ψq(u) is defined by (4) , and

G̃i(u) :=
∫ u

1

ds

ϕi(ψ−1(Ψ−1
q (s)))

, u > 0,

H̃1(m,n,c) := Ψq(a(m,n,c)),

H̃i(m,n,c) := G̃−1
i−1[G̃i−1(H̃i−1(m,n,c))+

m−1

∑
s=0

n−1

∑
t=0

gi−1(M,N,C,s, t,e)],

Ψ−1
q and G̃−1

k denote the inverse function of Ψq and G̃.

Proof. The solution z(m,n,c) of (64) satisfies the following equivalent difference
equation

ψ(z(m,n,c)) = a1(m)+a2(n)+a3(c)

+
m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

F(s,t,e,ϕ1(z(s, t,e)), · · · ,ϕk(z(s,t,e))). (70)

By (66),(67) and (70) , we obtain

|ψ(z(m,n,c))| � a(m,n,c)+
m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

|F(s,t,ϕ1(z(s, t,e)), · · · ,ϕk(z(s,t,e)))|

� a(m,n,c)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

fi(M,N,C,s, t,e)|z(s,t,e)p |

+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

|z(s,t,e)|qgi(M,N,C,s,t,e)
]
ϕi(|z(s,t,e)|). (71)
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Since |ψ(z(m,n,c))| = ψ(|z(m,n,c)|) , (71) has the same form of (52). Let z̃(m,n,c)
denote the function on the right-hand side of (71), then |z(m,n,c)| � ψ−1(z̃(m,n,c)) .
Applying Theorem 2 to inequality (71), we obtain the estimation of z(m,n,c) as given
in (68) and (69) .

If there exists a constant M > 0, such that

Hi(m,n,c) < M,
m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

gi(M,N,C,s,t,e) < M, i = 1,2, · · · ,k, (72)

for all (m,n,c)∈Λ(M,N,C) , then every solution z(m,n,c) of (64) is bounded on Λ(M,N,C) .
�

Next, we discuss the uniqueness of the solutions of (64) .

THEOREM 5. Assume additionally that

|F(m,n,c,ϕ1(u1), · · · ,ϕk(u1))−F(m,n,c,ϕ1(u2), · · · ,ϕk(u2))|

�
k

∑
i=1

hi(M,N,C,m,n,c)|ψ(u1)−ψ(u2)|qϕi(|ψ(u1)−ψ(u2)|), (73)

for u1,u2 ∈ R and (m,n,c) ∈ Λ3 , where Λi is defined in the section 2 , hi : Λ6 → R+
are nonnegative functions, i = 1,2, · · · ,k, ϕi : R+ →R+ are continuous nondecreasing
with the nondecreasing ratio ϕi+1/ϕi such that ϕi(u) > 0 for all u > 0 , and

∫ 1
0

ds
ϕi(s)

=
∞ , for i = 1,2, · · · ,k , and ψ ∈C1(R,R) is a strictly increasing odd function satisfying
ψ(u) > 0, for all u > 0 . Then, (64) has at most one solution on Λ3 .

Proof. Let z(m,n,c) and z̃(m,n,c) are two solutions of (64) . From (70) and
(73) , we have

|ψ(z(m,n,c))−ψ(z̃(m,n,c))|

�
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

hi(M,N,C,s,t,e)|ψ(z(s,t,e))−ψ(z̃(s,t,e))|q

×ϕi(|ψ(z(s,t,e))−ψ(z̃(s,t,e))|) (74)

for all (m,n,c) ∈ Λ3 , (74) is the special form of (52) , where fi = 0, i = 1,2, · · · ,k ,
a(m,n,c) = 0, hi(M,N,C,s,t,e) , i = 1,2, · · · ,k, are continuous nonnegative functions
and nondecreasing in M,N,C for each fixed s,t,e . Applying Theorem 2, we ob-
tain an estimation of the difference |ψ(z(m,n))−ψ(z̃(m,n))| in the form (68) , where
H1(m,n,c) = 0, because Ψp(0) = 0. Furthermore, by the definition of Gi , we conclude
that

lim
u→0

Gi(u) = −∞, lim
u→−∞

G−1
i (u) = 0, i = 1,2, · · · ,k. (75)

It follows that

Gi(Hi(m,n,c))+
m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

hi(M,N,C,s,t,e) = −∞,



GRONWALL-BELLMAN TYPE DIFFERENCE INEQUALITIES 197

G−1
i [Gi(H̃i(m,n,c))+

m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

hi(M,N,C,s,t,e)] = 0, i = 1,2, · · · ,k.

From (68) , we deduce that |ψ(z(m,n,c))−ψ(z̃(m,n,c))|� 0, implying that z(m,n,c)=
z̃(m,n,c) , for all (m,n,c) ∈ Λ3 .

Finally, we consider the continuous dependence of solutions of (64) on the given
functions F,a1,a2,a3. For that, we consider a perturbation of (64),

Δ3Δ2Δ1ψ(z(m,n,c)) = F(m,n,c,ϕ1(z(m,n,c)), · · · ,ϕk(z(m,n,c))), (76)

ψ(z(m,0,0)) = a1(m),ψ(z(0,n,0)) = a2(n),ψ(z(0,0,c)) = a3(c), (77)

for all (m,n,c) ∈ Λ3 , and a1(0) = a2(0) = a3(0) = 0, ψ(z) ∈ C(R,R) is a strictly
increasing odd function on R , satisfying ψ(0) = 0 and ψ(u) > 0 for u > 0, F : Λ3 ×
R

k → R , a1 : I1 → R and a2 : I2 → R , a3 : I3 → R , ϕi : R+ → R+ are nondecreasing
continuous functions and the ratio ϕi+1/ϕi are also nondecreasing, ϕi(u) > 0 for u > 0
i = 1,2, · · · ,k . �

THEOREM 6. Suppose that

max |a1−a1| < ε,max |a2−a2| < ε,

max |a2−a2| < ε,max |F −F| < ε. (78)

where ε > 0 is a arbitrary small number. Then the solution z(m,n,c) of (76) is suffi-
ciently close to the solution z(m,n,c) of (64) .

Proof. Let z(m,n,c) and z(m,n,c) be the solutions of (76) and (64) , respec-
tively. Then, z satisfies the equivalent difference equation

ψ(z(m,n,c)) = a1(m)+ a2(n)+ a3(c)

+
m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

F(s,t,e,ϕ1(z(s,t,e)), · · · ,ϕk(z(s, t,e))). (79)

From (70), (73), (78), (79), we have

|ψ(z(m,n,c))−ψ(z(m,n,c))|
� |a1(m)− a1(m)|+ |a2(n)− a2(n)|+ |a3(e)− a3(c)|

+
m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

|F(s,t,e,ϕ1(z(s,t,e)), · · · ,ϕk(z(s,t,e)))

−F(s, t,e,ϕ1(z(s,t,e)), · · · ,ϕk(z(s,t,e)))|

� 3ε +
m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

|F(s,t,e,ϕ1(z(s,t,e)), · · · ,ϕk(z(s,t,e)))

−F(s, t,e,ϕ1(z(s,t,e)), · · · ,ϕk(z(s,t,e)))|

+
m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

|F(s,t,e,ϕ1(z(s,t,e)), · · · ,ϕk(z(s,t,e)))



198 Z. LI

−F(s, t,e,ϕ1(z(s,t,e)), · · · ,ϕk(z(s,t,e)))|

� (3+M1N1C1)ε+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

c−1

∑
e=0

hi(M,N,C,m,n,c)|ψ(z)−ψ(z)|qϕi(|ψ(z)−ψ(z)|).

(80)

(80) has the same form of Corollary 7, using Corollary 7 to (80), we obtain

|ψ(z(m,n,c))−ψ(z(m,n,c))| � [
W−1

k

(
Wk(Ek(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃k(m,n,z,s,t,e)
)] 1

1−p ,

for (m,n,z) ∈ Λ(M1,N1,Z1) , where E1 = (3+M1N1C1)ε , then E1 → 0 as ε → 0. Since

Ek = W−1
k

(
Wk(Ek(m,n,z))+

m−1

∑
s=0

n−1

∑
t=0

z−1

∑
e=0

g̃k(m,n,z,s,t,e)
)
,

from (75), we have limε→0 Ek = 0, and that

lim
ε→0

|ψ(z(m,n,c))−ψ(z(m,n,c))| = 0.

Thus, ψ(z) depends continuously on F,a1,a2,a3. �
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