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CERTAIN QUANTUM ESTIMATES ON THE PARAMETERIZED
INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

TINGSONG DU*, CHUNYAN LUO AND BO YU

(Communicated by M. Krni¢)

Abstract. The present paper aims to study the parameterized inequalities of Hadamard—Simpson
type for quantum integrals. By employing a quantum integral identity of multi-parameter, we es-
tablish novel inequalities for a class of g-differentiable mappings, which are related to s- (ot,m) -
convex mappings. Moreover, we acquire estimation-type results by considering the boundedness
and the Lipschitz condition. As applications, we present two illustrative examples and several
quantum integral inequalities for the special means.

1. Introduction and preliminaries

1.1. Classical convexities and inequalities

Throughout this paper we let .#~ C R be a real interval and 2™ be the interior of
. We evoke, now, some basic definitions as follows.

DEFINITION 1.1. A mapping f:.# — R is said to be a convex mapping on %~
if
Fltvi+ (1 =0)va) <tf(vi)+ (1—1)f(v2) (1.1)
holds for all vi,v, € # and t € [0,1].

DEFINITION 1.2. [10] A mapping f : [0,00) — [0,0) is said to be s-convex in
the second sense if

Fltvi+ (L =0)va) <2 f(vi)+ (1—1)*f(va) (1.2)
holds for all vi,v, € # and t € [0,1].

The class of s-convex mappings in the second sense is usually denoted by K?.
Here is an example to illustrate that some mappings could be either an s-convex map-
ping in the second sense or not under different conditions.
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EXAMPLE 1.1. [21] Let s € (0,1) and a,b,c € R. Define the mapping f :
[0,0) — R as

a, t=0,
f) = {bts+c,t>0.

It can be easily checked that
(i) if >0 and 0 < c < a, then f € K2,
(i) if b>0and ¢ <0, then f & K?2.

Recall that a set . is m-convex if for any vi,v, € . and t € [0,1], rv; +m(1 —
1)v, € Z, or equivalently, mtv; + (1 —1)v, € 7.

DEFINITION 1.3. [49] A mapping f:.# CR — R is said to be m-convex with
m € [0,1] if
Fltvi+m(l—1)v2) <tf(vi) +m(1—1)f(va) (1.3)
holds for all vi,v, € .# and ¢t € [0,1], where . is an m-convex set.
It is worthy to mention that the above inequality is equivalent to

f(ml‘V1+(l—t)V2) <mtf(vi)+ (1 —1)f(va). (1.4)

DEFINITION 1.4. [32] A mapping f:[0,b*) — R is called (o, m)-convex if for
all vi, v, € [0,b*) with b* >0 and 7 € [0, 1], the following inequality holds:

Fltvi+m(L—1)va) <t%f(vi) +m(1—1%)f(vs), (1.5)
where (a,m) € (0,1] x (0,1].

Clearly, if m = 1, then an (o, m)-convex mapping is reduced to an ¢ -convex
mapping.

DEFINITION 1.5. [34] A mapping f : [0,00) — [0,e0) is called an s-(ct,m)-
convex mapping in the second sense, if for all v;,v, € [0,0) and ¢ € [0,1], the fol-
lowing inequality holds:

Flevi (1 =nva) <o piw) +m(1 =7 £ (32), (L.6)

where (a,m) € (0,1] x (0,1] and for certain fixed s € (0,1].

Note that for s=1=m, o« =1 =m as well as s = &« = m = 1, one obtains the
following classes of mappings respectively: o -convex, s-convex and convex. A series
of works ([8, 11, 24, 26, 37, 38, 39, 41, 44] and references therein) are devoted to con-
vex, s-convex, ¢(-convex, m-convex, (o,m)-convex and (a,s,m)-convex mappings
and some integral inequalities are established.

In fact, in terms of different convexity, many scholars have extended different
kinds of integral type inequalities, among which the Hermite—-Hadamard inequality and
Simpson inequality are the most famous. The Hermite-Hadamard inequality is stated
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as follows: If f: % — R is a convex mapping defined on the interval 2", vi,v, € %
with v| < v,, then

f(VI+vz)< L [ < I (1.7)

2 S v vy 2

Another classical inequality called Simpson’s inequality is described by: If f :
# — R is four-order differentiable on % °, where ||f@|| = sup,c oo | f@ (1)] < oo,
then

L
2880

Vi+ W 1

é[foq)+4f< 5 >-+f0@ﬂ-—v2_vbﬂff0ﬁﬂ

< ggo 7 (v =)

(1.8)

Considering the importance of Hermite—Hadamard and Simpson inequalities, many
researches generalized and extended them. Recently, Dragomir and Nikodem [16],
Khan et al. [23], Abramovich and Persson [1], Latif and Dragomir [27], Liao et al.
[29], Hwang and Dragomir [22], have obtained many Hermite—Hadamard type inequal-
ities for differentiable mappings which are strongly convex, s-convex, N -quasiconvex,
preinvex, o -preinvex and r-preinvex. Further results involving these two inequalities
with applications to fractional integrals have been carried out by many researchers,
including Chen and Katugampola [13] in the study of the Hermite—Hadamard type in-
equalities using the Katugampola fractional integrals, Ahmad et al. [3] in the Hermite—
Hadamard inequalities for new fractional integral operators with exponential kernel,
as well as Set et al. [43] in the Simpson-type inequalities for convex mappings via
Riemann-Liouville integrals. For more results related to these two inequalities, see, for
example, [2, 7, 17, 19, 20, 31, 33] and the references cited therein.

1.2. Quantum integral inequalities

Quantum calculus, also known as g-calculus, refers to the study of calculus with-
out limits. Quantum calculus started its story when Euler introduced the parameter g
into Newton’s infinite series. Later in the early 20th century, Jackson(1910) began to
study the symmetry of g-calculus and introduced ¢-definite integral. This theme has
been widely used in various areas of mathematics and physics including basic hyper-
geometric functions, combinatorics, orthogonal polynomials, quantum theory, number
theory, relativity theory and mechanics. Quantum calculus has aroused great inter-
est of many researchers because it is considered as an incorporative subject between
mathematics and physics. The research of mathematical inequalities related to quan-
tum integral operators, especially Hermite-Hadamard’s inequality and Simpson-type
inequality, is a current research focus. At present, g-analogues of some identities and
inequalities have been obtained, see [6, 28, 40].

Now let us recall some concepts related to quantum integrals. These concepts are
mainly due to Tariboon and Ntouyas [47].
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DEFINITION 1.6. If the mapping f: .# — R is continuous, then the g-derivative
of f at r € % is defined by the expression

f) = flgr+(1=g)v)
(1=g)(t=w1)

Since f is a continuous mapping, one has that D, f(v) = lim,_y, v, Dy f(t).

leqf(t) =

, tF V. (1.9)

DEFINITION 1.7. Let f: .2 — R be continuous, the g-integral with ¢ € . is
defined as

[ f@vdu=(-ae-v) S L7+ -aw). (1.10)
Vi n=0

Moreover, if T € (vy,1), then the definite g-integral on [7,7] is described as

/;f(u)vldquz/vtlf(u)vldqu—/vjf(u)vldqu, (1.11)

n [45], Sudsutad et al. established the following lemma.

LEMMA 1.1. Let f: # — R be a continuous and q-differentiable mapping with
0<qg<lon° If vDyf isintegrable on J¢, then the following equation holds:

gf(vi)+f(v2) 1
1+¢ V2 — Vi
qg(va—v1)

:Tq/o ((l+q)t_l)Vquf((l_l)V1+lV2)odqt.

f( Jvidqu
(1.12)

In the same paper, Sudsutad et al. gave the following quantum estimation for the
upper bound of the left hand-side of equation (1.12) via convexity.

THEOREM 1.1. Let f: % — R be a continuous mapping with 0 < g < 1. If
Iv\Dgf|°, 0 > 1, is convex and integrable on X °, then the following inequality holds:

qf(vi) +f(v2)
l14¢ vz—vl/ flund

7 (*+q+2)(v,—v1)
(g+1)*

1
(P+4g+1) [y, Def (V)| + (2¢°+3¢*+1) |y, Do f (v1) |7 |
(*+q+1)(¢*+q+2) '

In [50], Tun¢ and Balgecti presented the following lemma and developed the cor-
responding quantum estimates.
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LEMMA 1.2. Let f: % — R be a continuous and q-differentiable mapping with
0<qg<lon° If vDyf isintegrable on ¢, then the following equation holds:

o+ ar(M5 ) )] - s [ g

Vo —Vq
= (V2 — Vl){ /07 (qt— é)leqf((l —Z)Vl +ZV2)()dqt
+/ gt — Vl qf((l—t)v1+tvz)0dqt}

THEOREM 1.2. Let f: % — R be a continuous mapping with 0 < g < 1. If
lv,Dyf| is convex and integrable on J¢°, then the following inequality holds:

1 Vi+WV2
z 4 ( )
o0 ar(BE2) )] - s [
va—vi | 144q+4q’+64° 1+2g+24°
b Dyf(v 55 |wDef(V2)||-
5 30227 Pl O T ez P ()]

THEOREM 1.3. Let f: % — R be a q-differentiable mapping on & ° with 0 <
q < 1.1If |y,Dyf|P is convex and integrable on % ° where p,p > 1, %—l—% =1, then

the following inequality holds:

V1 tI”

o rar(ME2) | -

(va—v1) (1-q) g
S 2 (6”“61(1 —61”“)>

><{(1+(3qy_1)f)+1)5<|vl Dyf ()| +

W qf<v1+v2>) );5
2 (52)f))

In 2018, Alp et al. extended the Hermite-Hadamard’s inequality to the version of
quantum integrals as follows.

+[(5 -390+ + (60— 5)°*!] : (}leqf(Vsz +

THEOREM 1.4. ([5]) Let f: % — R be convex and q-differentiable on J& with
0 < g < 1. Then we have that
1 V2
f<qvl+Vz> - af(vi) +f(v2) (1.13)

B u du<
l+q vi—viy g l+q




206 T.Du, C. LUO AND B. YU

The family of quantum integral inequalities associated with different kinds of con-
vex mappings is an interesting topic. For example, Liu and Zhuang [30], Noor et al.
[36], Zhuang et al. [54], Riahi et al. [42], and Zhang et al. [53], have presented some
quantum integral inequalities of Hermite—Hadamard type for differentiable mappings
which are convex, strongly convex, quasi-convex, s-convex and (o,m)-convex. Fur-
ther results involving other forms of quantum integral inequalities have been studied
by many researchers, including Chen and Yang [12] in the study of Chebyshev type
quantum integral inequalities on finite intervals, Sudsutad et al. [46] in the fractional
quantum integral inequalities for the new ¢-shifting operator ,®,(m) =gm+ (1 —q)a,
Yang [52] in the quantum integral inequalities of Fejér type on finite intervals, as well
as Bin-Mohsin et al. [9] in the quantum Hermite—-Hadamard inequalities of the ¢g-
Jackson integral operator in terms of harmonic convexity. For more results related to
the quantum integral inequalities, the interested reader is directed to [35, 25, 48] and
the references cited therein.

Inspired by the results mentioned above, especially the results developed in [45]
and [50], we notice that it is possible to treat these results uniformly through quan-
tum integral operators. For this purpose, we will establish a general quantum integral
identity for g-differentiable mappings. Using this quantum integral identity, we derive
certain parameterized quantum integral inequalities, which unifies the Simpson-type
inequality, the averaged midpoint-trapezoid inequality, as well as the trapezoid-like
inequality. This is the main contribution of this work.

The remainder of the paper is organized as follows. Some new quantum inte-
gral inequalities, including Simpson-type, averaged midpoint—trapezoid, as well as
trapezoid-like inequalities for s-(o,m)-convex mappings are established in Section
2, where a quantum integral identity of multi-parameter is utilized. Several further
estimation-type results, by considering the boundedness and the Lipschitz condition of
aDgyf(x), are obtained in Section 3. Two illustrative examples are presented in Section
4 and several quantum integral inequalities for some special means are given in Section
5. Finally, a conclusion is drawn in Section 6.

2. Main results

The principal goal of this section is to prove the Hadamard—Simpson type inequal-
ities for s- (o, m)-convex mappings through quantum integrals. To this end, we present
the following lemma.

LEMMA 2.1. Let f: % — R be a continuous and q-differentiable mapping on
J° with 0 < q < 1. If (Dyf is an integrable mapping on J , then for each u € |a, b
the following identity

Ar(@)+ (1 s )+ (= 0f (30) L [ sy e

= (b—a){ /07(qt—l)aqu((l—t)a—i—tb)odqt—i—/; (qt—k)aqu((l—t)a—f—tb)odqt}
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holds for all k,A € R.

Proof. On one hand, using Definition 1.6 and Definition 1.7, one has that

Nl—

/0 (gt — 2)aDg f (1 —1)a+1b)odgt

:/§qtaqu((1 —t)a+tb)odqt—7L/07quf((1 —1)a+1tb)odyt
/ f((1=1) a+tb) F((1—gt)a+qrb)
—q)(b—a)
3 f((l—t)a—|—tb)—f((1—qt)a—|—qtb)
2 (T -a)b—a)
iqn+1f<<1—%q">a+%q"b> iy, i F((1=3g" Da+1q"'b)
= 2

()dql‘

odqt

1

2 b—a ) b—a

f((1-3g"a+34') | 5 F((1=Lqa+ Lgmt1p)
b—a = b—a

2.2)

%
I & 1——q)a—|— q"b
a3 24"D)
A

=
anif(o—%q>a+iq"b>+b?a2f<<l—%q">a+%q"b>

(123 ) 300) 55 ()
a+b

1

:—m/oéf(tb—i-(l—l)a)odqt-i- (%—l>biaf<a;b> +bk fla).

On the other hand, according to equality (1.11), we have that

/ll(qt k)aDgf (tb+ (1 —1t)a)odgt
2.3)

=

—/ aDyf (tb+(1—1)a )odqt—/O (gt —k)aDgf (1b+ (1 —1)a)odqt.

Similar technique yields that

/1 (gt —k)aDgf (1b+ (1 —1)a)odgt
0 (2.4)

= _bia/Olf(tbwL(l—t)a)odqt+(1—k)
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and

1

/2 (gt —k)aDgf (1 —1)a+1tb)odgt
’ 1 (2.5)

_ _ﬁ/ozf(tb—k(l—t)a)odqt—i— (%—k)biaf(l;b) +bfaf(a).

Now, let us substitute (2.4) and (2.5) into (2.3), and then add the corresponding results
to (2.2), finally we have that

/Oj(qt Va qf((l—t)a+tbodqt+/ gt — K)aDy f (1= t)a+th)odyt

A 1—k k—A sa+b 1 1

BT A A f( 2 ) b—a/ F(eb+ (1=1)a)odyt
2 1—k k—2 a+b

AR e e af( 2 /f

which proves the desired resultin (2.1). [

REMARK 2.1. Consider Lemma 2.1.

(i) Taking A = % and k = %, we have Lemma 3 presented by Tung¢ and Balgecti
in [50].

(if) Taking A =k = L + , we have Lemma 3.1 provided by Sudsutad et al. in [45].
(iii) Taking A = § and k = 3 we have that

i
D)) - 5 [ 1000

:(b_a){/ol@t ) Dyf((1—1)a+1b)odyt

+/11 <6]t—%)aqu((l—t)a—f—tb)odqt},

sl (%

which is a new form of Lemma 2.1.

REMARK 2.2. If we take ¢ — 1~ on both sides of equation (2.1), then we have
Lemma 2.1 established by Du et al. in [18] for the case of m = 1.

Considering s- (o, m)-convexity, Lemma 2.1 can be applied to obtain our first
parameterized bound as follows.
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THEOREM 2.1. Let f: % — R be a continuous function with 0 < g < 1. If
|aDyf| is an s- (o, m)-convex function on J¢°, then the following inequality

a;b> B bia/abf(u)ad "

Af@)+(1-070)+ - 2)f

s a
< <b—a>{(21 (i) = Faler5,250) )m|aDof ()| + (5. 2:4) Do (B)]
1-s a
+ (2" B ksa) — Zaltss k) )mlaDy f () |+ Zi(.s, ki) aqu(b>|}
(2.6)
holds for k,A € [0,1], where
8AZ—2A(14q)+ A 1
Tty 0 0S5<D
A / lgt — A]odgt = (2.7)
20 (14+q)—q l<&
4+q) 2> ¢q
3q—2k(14+q) k 1
g 0SS
1
) _ ) 8K®—6k(1+q)+5¢ 1 _ k
Talkia) = [ lar—Hlodys = | EGHRS { < b, 2.38)
2k(1+9)—3q k
“ag 0 1<y
%
%(a,s,l;q)=/ gt = A[t™odgt
0
27La'r+2(17q)2
(1_qas+1)(1 qm+2) (29)
om+2
= +(12224(z(1 )quz(r+l)()1( ar+2) ’ 0 < % < %7
_ (1=9)(g=A)+(g=1)(1-2)g**? L2
2ar+2(1 qarﬂ)(l qar+2) () q
and
1
:%((X,S,k;q) :‘/1 |qt—k’tasodqt
2
Kl-q)(1=2%41) | g(1—q)@%2-1) o &k 1
2w+1(1,qas+l) 2a.r+2(1,qw+2) ’ N g X2
_k1-g)(12%H) | g(1—q)(142%7"2) (2.10)
o 2as+l(1_qa.2v+l) ) 2a.r+2(1_qocs+2)
- 2k0s+ (lfq) 1 k
@iy 25 St
_k(l-q)(1=2%1) | g(1—q)(1-2%"2) 1<k
2as+l(1,qm’+l) 2as+2(1,qm’+2) 9 q°
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Proof. Combining Lemma 2.1 with the s- (o, m)-convexity of |,Dgf| on Z°
yields that

As@+(1-070)+ =27 (“52) = 5 [ g

2 b—ala
<w—w{4ﬂw—
o

AllaDgf ((1 —t)a—!—tb)‘odqt

aDaf (( l—t)a—f—tb)’odqt}
< (b—a){/o7 ’qt—?t‘ [m(l 1o C,qu(%) ‘ o aqu(b)Hodqt

+/l1 ’qt—k’ [m(l gy aDJ(%) ‘ e aqu(b)”odqt},

Using the inequality (1 —¢%)* <2175 —+% for ¢ € [0,1] with certain fixed & € (0, 1]
and s € (0,1], we get that

/0% gt = 2| (1 =19 odyr < /0% a1 2|21 =1 )odyr

Similarly,

1 1
/% ’qt—k’(l —1%)%0dgt < A

2

gt — k’ (2175 = 1% odt.

This ends the proof. [

Particular cases are stated as follows.

COROLLARY 2. 1 Conszder Theorem 2.1.
(i) Taking A = 6 and k = 6 , we obtain the Simpson-type integral inequality

‘é[f()+4f<a+b>+f ] _ a/f
<m0 (251 (fu0) -7 (o)) qf<g))+%(a7s7g;q) D,1(6)

+ (21”%(%;61) - %(a,s, %;q))m MJ(%) ‘ + 94(‘“’ 2;‘0 “D’ff(b))}'

In particular, if s=a=m=1 and g — 1™, then we have that
@] +1r®)).

‘é {f( )+4f(a+b) +f(b)] _ bia/a”f(u)du
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which is established by Alomari et al. in [4, Corollary 1].
(ii) Taking A = % and k = %, we obtain the averaged midpoint-trapezoid integral
inequality

3@+ 20 (52) )] - 51 [ g
< (b—a){ (21‘5% (%m)—%(a,s, %m)) J(%) )+%(ms7 %wz) aqu(b))
+ <21‘S%(%;q) - %(a,s, %;q))m aqu<%> ‘ + Zx(am %;q) aqu(b))}'

In particular, if s=a=m=1 and g — 1™, then we have that

@2 (50) ]| - [

which is established by Xi and Qiin[51, Corollary 3.4].
(iii) Taking A =k = we obtain the trapezoid-like integral inequality

C a1 @)+ 0)

T

‘qf(l)—f—q L a/ Flu
<o (za (e > %@,s,#))wgﬂ
(Al o) o)

+ 73 i) quf(b>\}-

In particular, if s = o =m =1, then we have that

'Qf(l)—kq b a/ UC

q°(14+3¢=+2¢°)
g“"‘”{(1+q>4<1+q+q2>

Dy ()| + (e, 71—z)

*(14+49+4%)
(1+g)*(1+q+4%)

Daf (@) +

Dy () }

A similar result is available for e; > 1 and |,D,f|! being s-(ct,m)-convex on
A

which is established by Sudsutad et al. in [45, Theorem 4.1].

THEOREM 2.2. Let f: % — R be continuous and q-differentiable on ¢ ° and
aDgf be integrable on X . If |,Dyf|" with ey > 1 is s-(ot,m)-convex on J and e



212 T.Du, C. LUO AND B. YU

is the conjugate index of ey, i.e., efl + e;l =1, then the following inequality

@+ =070+ =27 (50) - 1 [

2
2ut ()

€2

< (b—a){ Ll(x ge1) {m<2—f—cp1(a7s,q)) .

1

+d>1(a,s,q>|aqu<b>}€2]

oF (k.gsen) [m@x_q,z(mq)) Dt (%) 82+<D2(a,s,6])|aqu(b)}ez] }

2.11)
holds for k,A € [0,1], where
1—g
@ (OC § q) 2as+1(1 _ as+1)
(1-q)2** 1)
q)z(OC,S,q) = 2as+l(l_qas+l) ’
Ou(gien) = [ o210l
> n+l
21 3q ( —l>
n=0
_) A s g (1-g7)", o<t <l
n=0 d
1—g < n+1Y\ €1 1 2
anéoqn(l_qz ) ’ 25y
and
1
ylkgier) = | lar—kl1odyr
)
(1—61)§q"(q"“—k)61—15—qEq"(q";_k>q7 0<5<s,
n=0
2(1—gik1tt &, n n( e
g b (1—61) +(1-q) X ¢"(¢"" =k
— oon* ., e n=
S o (G k) 1<s<l,
n=
b g n+1 €l
(l_q)néoqn(k_qrﬂrl)el_'_l qngoqn<qz —k) , lgg
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Proof. Evoking Lemma 2.1 and Holder inequality, we have that

2 b—ua

} S N

< (b—a){</02 |qz—x|elodqz> 1 (/02 Daf (1=1)a+1b)| zodqt> ’
1 . |

+ </l gt — k| 10dq’> (/1

2 2

Considering the s- (o, m)-convexity of |,D,f|®> and using the inequality (1 —7%)* <
2175 — 1% for ¢ € [0,1] with certain fixed o € (0,1] and s € (0, 1], we get that

1
/2
0

@+ =00+ k- (50) - [

aDgf((1 —t)a—l—tb)’ezodqt) g }

«Daf((1 —t)a-l—tb)’ezodqt

1
/ ’ [m(l ey
0
-5 l_q
< m<2 o 2as+1(1 _qas+l)>
and that
1
J
2

PRI Lasell)

- QasHl(] — gastl)

N

Dy ()] 411D, 8)[

a
m
a\ |e 1—¢q
quf(_>
m

e
T qarig  gavrry [Pl ()]

aDaf((1 —t)a—|—tb)rzodqt

e (1 _ q)(2a5+1 1

) e
20(.\'+1(1 _qaerl) |aqu(b)’ :

(%)

Thus, the proof is completed. [l

REMARK 2.3. By taking suitable choices of the special parameter A and k in
Theorem 2.2, we get several new results, for example, on Simpson-type, averaged
midpoint-trapezoid, and trapezoid-like integral inequalities.

The following result presents an upper bound of g-integral inequality through the
product of two s- (¢, m)-convex mappings.

THEOREM 2.3. Let f,g : & — R be continuous and nonnegative on & . If
f and g are s-(oy,m)-convex and s-(0p,m)-convex on %, then the following q-
inequality

b
[ W
1—

q 2 (1—-q) l—¢ a
S l—q(a1+a2)s+1f(b)g(b) + ( 1 — goas+l 1 — glota)s+l mf<%>g(b)
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2175(1 —¢) 1—gq a
+ ( 1— qa1s+1 o 1— q(a1+a2)s+l mf(b)g(%)

(oo 220-9) 27(0-9)  1-4 2f( ) <a>
1— qal-v+l 1— qa2s+1 1— q(a1+a2 )s+1 m

(2.12)

holds for certain fixed oy, 0 € (0,1].

Proof. Considering the s- (¢, m)-convexity of f and the s- (o, m)-convexity of
g, respectively, we have, for all ¢ € [0, 1], that

Ftb+(1—1)a) <t £(b) +m(1 —t“l)sf(%> (2.13)
and that
g(th+(1—1)a) <t*'g(b) +m(1 —taz)sg(%>. (2.14)

Multiplying both sides of (2.13) with corresponding parts of (2.14) and noticing that all
these terms are nonnegative, we get that

f(tb+(1—1)a)g(tb+ (1—1)a)
< tlonta)s _40\S,00s a _ L0p\S,0qS a
<) f(b)g(b) + (1 —1%) 't mf (= ) g(b) + (1 = 1)1 mf (b)g (=)
_£00NsS _ 4+00N\s 2 ﬁ ﬁ
(1= =y f (S )g(2).
Taking ¢-integral for (2.15) with respect to # on (0,1) and using the inequality (1 —

t%)* <2175 — 1% for ¢ € (0,1) with certain fixed & € (0,1] and s € (0,1], we obtain
that

(2.15)

1

/o f(tb+(1—1)a)g(tb+ (1 —1)a)odyt
1

| t(alJrOQ)'Yodql—i—mf(%)g(b)/ol(l — 1151950 d
+mf(b g(%)/ ) t%odgt
w2 f(£)e(%) / () (1= 1) odgt

1

1
< 7®)go) [ e od gt mp(£)a(b) [ -0

<sw)se) |

1
emf(b)g(2) [ =1 odye
1
ﬁ 1-s _ Loqs 1-s _ Lops
g< )/0 (2175 — 9) (2175 — 1%yt

m
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_ l—q 215 (1—¢q) 1—g¢ a
- W]‘(b)g(b) + ( [—gootl  1— glaronsil mf(ﬁg(b)
21_5(1 —q) l—g a
+ ( l_qa1s+1 o l—q(a1+az)s+l)mf(b)g<Z)

(oo 220-g) 27(-q) 1-4 2f( ) (a>
1— qa1s+1 1— qaszrl 1— q(a1+a2 )s+1 m/)’

(2.16)

A simple calculation yields that

/Olf(tb—l—(l—t)a)g(tb—i—(l—t) a)odgt = /f (2.17)

Combining (2.16) with (2.17), we deduce the desired result in (2.12). Thus, the proof
is finished. [J

COROLLARY 2.2. Ifwe take oty = & = 0 in Theorem 2.3, then we have that
al, s
l1—gq 2175(1—¢q) l1—gq a a
< Wﬂ )g(b) + ( [—goil gt m{f(g)ﬂb)"'f(b)g(Z)}
2275(1—¢q) 1—gq a a
2(1-s) _ 204 el
+<2 * l_qa.\'Jrl +1_q2ax+l mf(m>g<m>
Specially, if & =1=m, then we have that

/ e
27%(1-q)  _1-¢q

Wf( )g(b )+< 1—g+T 1—q2-"+1) [f(a)g(b)—l—f(b)g(a)

b—
<

23(l-q)  1-g
2(1-
o (e O ) st
Furthermore, if we take s = 1, then we get Theorem 4.3 established by Sudsutad et al.
in [45].
Our next result describes a lower bound for g-integral inequality via a product of

two mappings.

THEOREM 2.4. Let [ : % — R be an s-(o,m)-convex mapping. If h: # — R
is nonnegative and integrable on JZ  with symmetric property about x = ”+b , then the
following q-integrable inequality holds:

f (“”’) /bh<x>ad x

<z—°“/ FOOR(X)adgx+m (215 —27%) /abf@)h(x)udqx.

m

(2.18)
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Proof. Since f is s-(o,m)-convex, for all x,y € [a,b] we have that

f (%) <27 f () +m(1-27f(2). (2.19)

According to the inequality (1 —¢%)* < 2! —¢* for ¢ € [0, 1] with certain fixed
o € (0,1] and s € (0,1] in (2.19), if we put x = SEa+ Z2p and y = FEa+ SEp
with u € [—1,1] and notice that / is nonnegative, then we have that

a+b 1—u I+u
r(457) (e M)
_ (Y (1-u 1+u 1 /14+u —u 1—u I+u
UGS +—)+2(— a1 80) ) (e 52 )
Lip, 1
g{z(}ﬂf(l ) 21 s 20(8)]‘( 2 a

1—u I+u
h —b).
X ( > a+ > b)

Integrating both sides of the above inequality with respect to i over [—1,1], we get
that

a+b\ (1 (1—u 1+u
£(557) [op(FF e 5 )
s [ l—u 1+u 1—u 1+u
< os -
<2 /1f< e b)h( Lot 2B )
1

Y l—u  14pu
217.\'_270{.\'/ 2 2 a .
m( ) _1f< — h 5 At — b | adglt

Since h is symmetric about x = # , we have that

+b\ 2 b
f<a2 )b—a/ hx)adyx
b
2—asb a/f Jadgx +m(21* 2—as)b a/a f(%)h(a-yb—x)adqx

b
s 1—s s X
R a/ FOh(x)adgx+m (27— 27 “)b_a/a f(%>h(x)udqx.
The proof of Theorem 2.4 is completed. [J

2

l\) |

COROLLARY 2.3. Ifwe take m =1 in Theorem 2.4, then we get

»-lf (Clzib) /abh(x)udqx < /abf(x)h(x) dgx

In particular, if we take h(x) =1 and put g — 1=, then we have the left-side part of the
Hermite—Hadamard’s inequality for s-convex mappings established by Dragomir and
Fitzpatrick in [15].
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3. Further estimation results

To obtain further estimation-type results, let us deal with the boundedness and the
Lipschitz condition of D, f(x).

THEOREM 3.1. Let f: % — R be continuous and q-differentiable on ¢ °, and

aDyf be integrable on . If there exist constants r and R with r < R satisfying that
—oo <1 < oDy f(x) <R < oo forall x € X, then the following inequality

1 b
- b—a/a J(u)adqu

‘kﬂ@*%l—Mf@%+%—lw(a;b)

3.1)

B (b—a)2(r+R)<1—(’1_q_k—;7L>

BN [ 51 (hsq) + Al

<

holds for k,A € [0,1], where F1(A;q) and F(k;q) are defined by (2.7) and (2.8),
respectively.

Proof. Using Lemma 2.1, we have that

M@+ (L-R070)+ k- 7 (F0) - 1 [ e

2
=w—@{42
+/ gt — [ qf((l—t)a+’b)_+TR+r;R]0d‘1’}

Oz(qt—k) [aqu((l —1)a+1tb)— r;R}Odqt

(gt — 1) [quf((l )t 1b) - ’;R n ’;R}Odqz

+/ gt —k [ Dyf((1—t)a+1b)— ZR]odqt}

+ W{/j(qz— k)odqt+/;(qf —k)Odqt}

:(b—a){/o%
+/ gt —k [ Dyf((1—t)a+1b)— %R]odqt}

n (b—a)z(r—i—R)(lj]—q_k—fz—?L).

(gt —A )[ qf((l—t)a+tb) ;R}Odqt
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For the convenience of expression, let us define the quantity

ﬁ::Af(a)+(1—k)f(b)—i—(k—)t)f(a;b)—bia/ahf(u) dyu
_(b—a)(r+R)< q _k+7L>'
1

2 Yq 2
Thus,
:(b—a){/o%(qt—l){aqu((l—t)a—i—tb)—Hz—R]odqt
+/ qt — [qf((l—t)aﬂb) ;R}odqf}
Therefore,
F| < (b— a{/)Mp— ﬂ(l—ﬂa+ﬂﬁ——%§0%t

+

aDgf ((1—1)a+1b)— —

+/ |qt— odqt}

. %{ /f lar— Alodyt + /% ,qt_k;odqt}.

Since 4Dy f satisfies —oo < 1 < oDyf(x) <R < +oo, we have that

r+R r+R r+R
——F—<dD - <SR- )
) af () == 2
which implies that

r+R R—r
D, — < .

The proof of Theorem 3.1 is completed. [J

Particular cases are stated as follows.

COROLLARY 3.1. Consider Theorem 3.1.

(i) Taking A = é and k = % we obtain that

[t &= R0 0

1 a+b
g[f( )+4f< >+f( } b—a 4(1+q)
b—a)(R—r)(1—
S 0<ash
b—a)(R—r)(11+18.
<q ! )(72(11((1) 2, 7<q<3,
(b—a)(R—r)(1+30q) 5 <q<l

72(1+q) "6
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(ii) Taking A = § and k = 3, we have that

ip‘)+Z“f+b)+f@ﬂ—bia[fﬂwauw+@‘“§61?f—ﬂ>

(b—a)(R—r)(1—q) 1
4(1+q) q; 0<C]<§;
(b—a)(R—r)(3-2q) 3
< oy 1 <4<,
(b—a)(R—r) 3
“Srg o 1<a<lL

COROLLARY 3.2. In Theorem 3.1, if we take A =k = 1-7-_11’ then we get that

qf(a)+ (b—a)(R-1)q’
’ T | | <
In particular, if ¢ — 17, then we have that
fla)+f(b (b—a)(R—r)
‘ 2 b—ua / flu 8 '

THEOREM 3.2. Let f: % — R be continuous and q-differentiable on J¢°, and
Dy f be integrable on . If Dy f satisfies Lipschitz condition for certain L >0 on
J, then the following q-integrable inequality

Pf@»ﬂl—@fww+w—an(“§b)—bia47AWﬂu

_”b_aﬂ<4uiqf‘%)””f@**(«fiq>‘§>””fwﬂ‘ -

<Lb-a)*[Z(1,1,2:9) + Zalkiq) - Fa(1. 1. kiq)|

holds for k,A € [0,1], where F(k;q), F3(0,s,A5q) and Ta(o,s,k;q) are defined by
(2.8), (2.9) and (2.10), respectively.

Proof. Utilizing Lemma 2.1, one has that

Ap(@)+ (1) + (=0 (“30) 1 [ g

=w—@{47

+ / gt — [qf((l—t)a—I—tb) qf(b)+aqu(b)odqt”

(qt — ?L) [aqu((l —1)a +tb) — oDy f(a)+ aqu(a)} odgt
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:(b—a){/o7

+/ qt — k[ Dyf (1 —t)a+1b) — 4 qf(b)}odqt}

(gt — 1) [aqu((l —1t)a+1b) —quf(a)} odgt

1

+(b—a) {aDq f(a) /O " (gt = A)odgt + Dy f (b) /l (qt— k)odqt}

=w—@{42

+/ gt — k[ Dyf ((1=t)a+1b) -, qf(b)}odqt}

%{b—@{<4uiqy—%>ﬂ%fw%+<quqy—§)dhKM}~

For the convenience of expression, we define the quantity

a b
7 =@+ (1 =0r0)+ k-2 (52) = = [ Flwadg

_4b—aﬂ<4oiqy—%>ﬁ%fw%+<quqy—§)d%fwﬂ~

T — (b—a){/oz (qt—2) [quf((l —1)a+1b) —aqu(a)] odgt

(gt — ) [aqu((l —t)a+1b) —quf(a)} odgt

Thus,

+/ (gt — k) [ Dyf((1—t)a+1b)—, qf(b)}odqt}.
Since Dy f satisfies Lipschitz conditions for some L > 0, we have that
=Llt|(b—a)

oDqgf (1=1)a+1b) — Dyf(a)| <L|(1—t)a+tb—a

and that

aqu((l—t)a—Hb)—quf(b)’ gL‘(l —t)a+tb—b’:L|1—t|(b—a).

Hence,

| 7| <L(b—a) [/ t)qt — A}Odqﬂ-/ (1—1)|gr — k}odqt]
(3.3)

=L(b—a)? [/1 |qt—k|0dqt—|—/0 t|qt—7L|0dqt—/1 t|qt—k|0dqt}
2 2
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Using (2.8)—(2.10) with o = s =1 in (3.3), one gets the desired result in (3.2). Thus,
the proof is completed. [

COROLLARY 3.3. In Theorem 3.1, if we take A = k = l-li]-_q’ then we get that

qu(l)+q b a/ flu

-4+ q-64+q 2q°
41+q)(1+q+4¢>) 4(1+q)P (1+g)*(l1+q+4%)

L(b—a)?

q(b—a)
4(1+q)

[laDaf (@) +[uDuf ®)]].

In particular, if ¢ — 17, then we have that

a b _
IO [ | <°

which is presented by Dragomir and Agarwal in [14, Theorem 2.2].

2 r@+rm),

4. Examples

In this section, we present two examples to illustrate our main results.

EXAMPLE4.1. Leta=0,b=2,A=1, k=3, s=a=m=1,andlet f(x) =

ﬁxz, x €[0,2] with ¢ = %. Then all the assumptions in Theorem 2.1 are satisfied.
The left-hand side term of (2.6) turns out to be:

2

—1><O—i-1><8—i-2><2 ! 2<22>d
~ |3 473737372 ), \3")0%H

@+ =00+ k- 0r(57) - 5 [ s

4.1

11
= — ~0.5238.
21

Clearly, we have oD ! f(x) = x. The right-hand side term of (2.6) becomes:

of (5)|+ Fi(os. 2:0)| D 1)

D,f(b) }

(b—a){ (21—&%@;61) - %(a7s7a;q))m

+ (21‘5%(16;61) - %(Owk;q))m

aqu(%)\+%(a7s7k;q> )
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S { AT (B0 [ e (R P

H(ra ) - a2 ool 200 3wy

51
= — ~0.6071. 4.2
84 4-2)

It is clear that 0.5238 < 0.6071, which demonstrates the results described in The-
orem 2.1.

EXAMPLE4.2. Leta=0,b=2,A=% k=2, s=a=m=1,andlet f(x) =
ﬁxz, x € [0,2] with g = % Obviously, OD%f( x) =x, x € [0,2], we have r =0 <
oD ! f(x) <2 =R. Then all the assumptions in Theorem 3.1 are satisfied.

The left-hand side of inequality (2.6) is:

a;b> B bia/ahf(u) dgu

B (b—a)(r—|—R)< q _k—i—)L)

‘kﬂ@+&1—@f@%+w—kﬁ(

2 1+¢ 2
1 1 8 4 2 12,2, 20042)( 4 i+42
e TR BT e —)d— 2 _ 676
6 "6 376372, O )
19
= — ~0.3016.
63
(4.3)
The right-hand side of inequality (2.6) turns out to be:
b—a)(R—r
DR [ Zi(sq) + Sk
11 51
Ak )+ G) )
_ [8X(%)2—2X6X§+§ 2X%X%—%} @D
- 3 o 3
4)(5 4><2
11
= — ~0.4074.
27

It is clear that 0.3016 < 0.4074, which demonstrates the results described in The-
orem 3.1.
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5. Applications

For positive numbers @ > 0 and b > 0, we consider some applications of the
obtained theorems to the following special means:

The arithmetic mean: &7 := ./ (a,b) = “%”

The geometric mean: & =% (a,b) = \ab.

ppF+1_p+1

1
p
The generalized log-mean: %, (a,b) := (m) , peR\{-1,0} and

a#b.
The log-mean: % (a,b) := m7 a#b.
We have propositions as follows.

PROPOSITION 5.1. Let 0<a<b, 0<s<1,0<g<1,and A+k=1 with
k,A €[0,1]. Then we have that

22
s+1

k—A
s+1

JZ{(CZSJFI,bSJrl)

1
e ab) - Qi)

<(b—a){(21‘sﬁ(%;q)—%(l,s,%;q))a + 4(1,5,2:9).25 (gb+ (1 - q)a,b)

+ (27 %lkg) - A(15k:q) )@+ Ta(Ls,kiq) L2 (ab+ (1 —q)mb)}
(5.1
where

Qi(a,b;q,s): Zq("b—F (1—¢g ))Hl,

T(L:q), Skq), F(o,s,A;q) and Ti(o,s,k;q) are defined in Theorem 2.1.

Proof. Applying f(x) = 1 where x > 0 and certain fixed s € (0, 1) to Theorem
2.1 with oc =1 =m, the de51red result is proved. [J

COROLLARY 5.1. In Proposition 5.1, if we let ¢ — 17, then we have that

2A
s+1

JZ{(a'YJrl,b'YJrl)

k—2 s+1 1 s+1
+1 — ( 7b) S—D‘Z (aab)

+
Yy (k,A,s)a® +W(k,A,s)b*, 0 <
<(b-a)
Yy(k,A,s)a® +Ws(k,A,s)b*, 0 <
where

2-Y+2()L-"+2+k“‘+2)+2“‘+1((s+l)l—k) -1
25t (s+1)(s+2) '

lPl(k7z’7s):
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3

Tﬁthzzl%}?+#—§k—%x+%)—wmhag,

1+ 25 (As+1—2k)

¥k A9 = S e 612
and
3A—k
‘P4(k,7t,s) = ZST —\P3(k,k,s).

PROPOSITION 5.2. Let 0<a<b, 0<s<1,0<g<1,and A+k=1 with
k,A €[0,1]. Then we have that

’Mﬂ@ﬂﬁﬂ+w—mﬂ”@m—@@@%ﬂ

1/ s \? g
<(b—a)] @ (A q,en[z ( 1+s) +¢1<17S7CI>-A1] (5.2)

Ll 1/ s \? )
(k 6],61) 2 l+s +q)2(17s7q)'A1 5

where efl —i—e;1 =1,

Q2(a,b;q,s) :== Zq("b—l— (1—¢q )>_S,

e 82
A= (s ab+ (1 - gab)) " — (ﬁ) ’

Di(0,s,q), D2(a,s,q), P3(A,q;e1) and O4(k,q;e1) are defined in Theorem 2.2.

Proof. Applying f(x) = & with x > 0 and certain fixed s € (0,1) to Theorem 2.2
with oo = 1 = m, the proof is clear. [J

COROLLARY 5.2. In Proposition 5.2, if we let ¢ — 1~ and A = % =k, then we
have that

l%(a‘s,b_s) - f_‘f(mb)l
1 1 1 1
< (b—a){@f' Y% (a,b,s,ez) + 05" - Y5> (a7b7s7ez)}7

where efl —|—€£1 =1,

1
25t2(s+1)(s+2)°

0, =
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5257 41
@2: y )
25F2(s4+1)(s+2)
2S+l —1 e l —1— e
b s\ €2 b 1-s\€2
Yi(a,b,s,er) = 25+1(S+1)( a ) +25+1(s+1)(s )
and
2S+3_25+1 | B 2s+1_1
Y _ —1-s\€2 —1-s
2(a,b,S,€2) 2_\~+1(S_|_1) a ) 2.\'+1(S_|_1)(S )

PROPOSITION 5.3. Let 1 <01 <0y, 0<s<1,0<g<1,and A +k=1 with
k,A €0,1]. Then we have that

(Inoy —Inoy)(r+R)(1—q)
45(14q)

2047 (01,02) + (k—A)¥(01,02) — Q3(01, 0239, 5) +

- (Inop —Inoy)(R—r
= 2s

[ As) + 75(kcq)].
(5.3)

where

Q3(01,02:4,5) == (1 —q) ), fln'Gl(HI : 'ng’
n=0
T1(Asq) and F(k;q) are defined in Theorem 2.1.

Proof. Applying f(x) = ™ with x > 0 and certain fixed s € (0,1) to Theorem
3.1 with 6) = ', 0, = ¢, we get the desired result. [

COROLLARY 5.3. In Proposition 5.3, if we let ¢ — 17, then we have that

2047 (01,02) + (k—A)¥9(01,02) — Z(01,02)

D=

_ (Inoy —Ino))(R—1) AA+ I+ A -3k 0<A < L <k<
. ® 3~k 0<k<i<a<l

=

6. Conclusion

Utilizing mappings with the property that the absolute values of their first deriva-
tives are s- (o, m)-convex, we establish some different forms of quantum integral in-
equalities in terms of a new multi-parameter identity. For the quantum integral inequal-
ities, we obtain their upper and lower bounds by considering the product of two dif-
ferent mappings. Furthermore, we use the boundedness and the Lipschitz condition of
«Dgyf(x) and then acquire further estimation-type results related to Hadamard—Simpson
type inequality. Some minor results can be derived from our main results by choosing
special parameter values for A and k. It is worthwhile to mention that some inequalities
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presented in this paper generalize parts of the results given by Sudsutad et al. (2015).
With these contributions, we hope to motivate the interested researchers to explore this
fascinating field of the quantum integral inequality based on the techniques and ideas
developed in the present paper.
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