
Journal of
Mathematical

Inequalities

Volume 15, Number 1 (2021), 229–238 doi:10.7153/jmi-2021-15-17

COMPLETE MONOTONICITY OF SOME FUNCTIONS

INVOLVING k–DIGAMMA FUNCTION WITH APPLICATION

LI YIN ∗ , LI-GUO HUANG AND XIU-LI LIN

(Communicated by T. Burić)

Abstract. We present several complete monotonicity properties involving k -digamma function
with single parameter. These established results provide a k -generalization for the known re-
sults obtained by Burić and Elezović in [5]. Finally, we give an application to the generalized
Nielsen’s β -function and pose two open problems.

1. Introduction

The Euler gamma function is defined for all positive real numbers x by

Γ(x) =
∫ ∞

0
tx−1e−tdt.

It is common knowledge that the logarithmic derivative of Γ(x) is called the psi or
digamma function, and ψ(m)(x) for m ∈ N are known as the polygamma functions.
The gamma, digamma and polygamma functions play an important role in the theory
of special functions, and have applications in many other branches, such as statistics,
fractional differential equations, mathematical physics and theory of infinite series. The
reader may see references [6, 7, 8]. some of the work about the complete monotonicity,
convexity and concavity, and inequalities of these special functions may refer to [1, 2,
3, 4, 9, 10, 11, 12, 19, 20, 21, 22, 25].

In 2007, Diaz and Pariguan [7] defined the k−analogue of the gamma function for
k > 0 and x > 0 as

Γk(x) =
∫ ∞

0
tx−1e−

tk
k dt = lim

n→∞

n!kn(nk)
x
k−1

x(x+ k) · · · (x+(n−1)k)
,

where limk→1 Γk(x) = Γ(x) . Similarly, we may define the k−analogue of the digamma
and polygamma functions as

ψk(x) =
d
dx

lnΓk(x) and ψ(m)
k (x) =

dm

dxm ψk(x).
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It is well known that the k−analogues of the digamma and polygamma functions
satisfy the following recursive formula and series identities (see [7])

Γk(x+ k) = xΓk(x), x > 0, (1.1)

ψk(x) =
lnk− γ

k
− 1

x
+

∞

∑
n=1

x
nk(nk+ x)

(1.2)

and

ψ(m)
k (x) = (−1)m+1m!

∞

∑
n=0

1
(nk+ x)m+1 (1.3)

= (−1)m+1
∫ ∞

0

1
1− e−kt t

me−xtdt. (1.4)

For more properties of these functions, the reader may see the references [14, 15, 16,
26].

A function f is said to be completely monotonic on an interval I if f has deriva-
tives of all orders on I and satisfies (−1)n f (n)(x) � 0 for x ∈ I and n � 0. For the
background and application, the reader may see [23]. A characterization of completely
monotonic functions is given by the Bernstein-Widder theorem which reads that a func-
tion f (x) on x ∈ [0,∞) is completely monotonic if and only if there exists a bounded
and non-decreasing function g(t) such that the integral

f (x) =
∫ ∞

0
e−xtdg(t)

converges for x ∈ [0,∞) . That is, a function f (x) is completely monotonic on x ∈
[0,∞) if and only if it is a Laplace transform of a bounded and non-decreasing measure
g(t) . From above theorem it follows that completely monotonic functions on [0,∞) are
always strictly completely monotonic unless they are constant (see [18]).

Recently, Burić and Elezović [5] studied complete monotonicity properties of
some functions involving the psi function and they proved necessary and sufficient con-
ditions for these functions to be complete monotonic. It is a natural question if these
results can be generalized to k -digamma functions. The main aim of this paper is to
generalize theorems proved by Burić and Elezović and establish monotonicity proper-
ties of some functions involving k -digamma function.

2. Main results

LEMMA 2.1. ([5]) Let ϕ be bounded and continuous at 0 . Suppose that for all
positive x we have ∫ ∞

0
e−xtϕ (t)dt � 0. (2.1)

Then, it holds ϕ (0) � 0 .

THEOREM 2.1. Let k,a,b,c,d be some given positive numbers and a � c. Then
the function

fk,1 (x) = ψk (ax+b)−ψk (cx+d)+ log
( c

a

)
. (2.2)
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is completely monotonic on (0,∞) if and only if

λ � k (c−a)
2

. (2.3)

where λ = k (c−a)+ad−bc.

Proof. Direct calculation yields

(−1)n f (n)
k,1 (x) = (−1)n

[
anψ(n)

k (ax+b)− cnψ(n)
k (cx+d)

]
=
∫ ∞
0

cntne−(cx+d)t

1−e−kt dt− ∫∞
0

antne−(ax+b)t

1−e−kt dt.
(2.4)

The substitutions t = au and t = cu turn (2.4) into

(−1)n f (n)
k,1 (x) =

∫ ∞
0

cnan+1une−(cx+d)au

1−e−kau du− ∫∞
0

ancn+1une−(ax+b)cu

1−e−kcu du

=
∫ ∞
0 (act)n

[
ae−adt

1−e−kat − ce−bct

1−e−kct

]
e−acxtdt

.

Denote

gk,1 (t) =
ae−adt

1− e−kat −
ce−bct

1− e−kct . (2.5)

It can be written as follows

gk,1 (t) = e(ka−ad)t

(
a

ekat −1
− ceλ t

ekct −1

)
(2.6)

where λ is defined by
λ = k (c−a)+ad−bc. (2.7)

In order to prove Theorem 1.1, we shall show gk,1 (t) � 0. This is equivalent to

hk,1 (t) = a
(
ekct −1

)
− ceλ t

(
ekat −1

)
� 0. (2.8)

For λ � 0 and a � c , a simple computation gives

hk,1 (t) =
∞

∑
n=1

kncn+1a
n!

(
cn−1−an−1eλ t

)
� 0.

If λ > 0, we get

hk,1 (t) = a
∞
∑

n=1

kncntn
n! −c

∞
∑
i=0

λ iti
i!

∞
∑
j=1

k ja jt j

j!

=
∞
∑

n=1

(
akncntn

n! − c
n−1
∑
j=1

λ n− j

(n− j)!
k ja j

j!

)
tn

=
∞
∑

n=1

c[akncn−1−(ka+λ )n+λ n]
n! tn.

So, we only show that the following inequality holds true

akncn−1− (ka+ λ)n + λ n � 0. (2.9)

For n = 1, the inequality(2.4) is trivial. For n = 2, it is equivalent to (2.3). Now,
we prove (2.9) for n > 2 by mathematical induction.
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In order to prove

akn+1cn− (ka+ λ)n+1 + λ n+1 � 0. (2.10)

we only need to prove

(ka+ λ)n+1 = (ka+ λ)n (ka+ λ)

�
(
akncn−1 + λ n

)
(ka+ λ)

� λ n+1 +akn+1cn

by assumption of induction. This is sufficient to prove

kn+1acn−1 + kn−1cn−1λ + λ n � kn+1cn. (2.11)

Note that ka � kc−2λ and λ � kc , that we have

kn+1acn−1 + kn−1cn−1λ + λ n

� kncn−1 (kc−2λ)+ kn−1cn−1λ + λ n

� kn+1cn + λ
[
λ n−1− (kc)n−1

]
� kn+1cn

This implies that the inequality (2.11) holds true.
On the other hand, if fk,1 is completely monotonic on (0,∞) , we can get∫ ∞

0
e−acxtgk,1 (t)dt > 0

by taking n = 0. Applying Lemma 2.1, we get gk,1 (0) � 0. A direct computation
results in

gk,1 (0) = lim
t→0

(
a

ekat−1
− ceλ t

ekct−1

)
= lim

t→0

a(ekct−1)−ceλ t(ekat−1)
(ekat−1)(ekct−1)

= k(c−a)−2λ
2k

� 0.

That is λ � k(c−a)
2 . The proof is complete. �

REMARK 2.1. If k = 1, the Theorem 2.1 reduces to Theorem 1 in [5].

By Theorem 2.1, the following corollaries can be easily obtained.

COROLLARY 2.1. Let k,a,b,c,d be given positive numbers. Then the function

ψk (ax+b)−ψk (ax+d) (2.12)

is completely monotonic on (0,∞) if and only if d � b.

COROLLARY 2.2. Let k,a,c be given positive numbers. Then the function

ψk (ax+1)−ψk (cx+1)+ log
( c

a

)
(2.13)

is completely monotonic if and only if a � c and k � 2 .
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LEMMA 2.2. For k > 0 and x > 0 , the following duplication formula holds true

ψk (2kx) =
1
2

ψk (kx)+
1
2

ψk

(
kx+

k
2

)
+

1
k

ln2. (2.14)

Proof. Using identity [7]

Γk (x) = k
x
k−1Γ

(x
k

)
(2.15)

and Legendre relation

22x−1Γ(x)Γ
(

x+
1
2

)
= π

1
2 Γ(2x) , (2.16)

we easily obtain
Γk (kx) = kx−1Γ(x) , (2.17)

Γk

(
kx+

k
2

)
= kx− 1

2 Γ
(

x+
1
2

)
, (2.18)

and

Γk (2kx) =
(2k)2x−1

π 1
2

Γ(x)Γ
(

x+
1
2

)
. (2.19)

Combining (2.17),(2.18) with (2.19), we have(π
k

) 1
2 Γk (2kx) = 22x−1Γk (kx)Γk

(
kx+

k
2

)
. (2.20)

Taking logarithm and differentiating on both sides of (2.20), we get (2.14). This
completes the proof. �

COROLLARY 2.3. Let k > 0 . Then the function

ψk (x+ ξ)− 1
2

ψk (kx)− 1
2

ψk

(
kx+

k
2

)
+

k−1
k

ln2 (2.21)

is completely monotonic on (0,∞) if and only if

ξ � 2k−1
4

.

Proof. Applying Lemma 2.2, we easily complete the proof. �

THEOREM 2.2. If k,a,b,c,d are positive numbers, then the function

fk,2 (x) = ψk (ax+b)− k log(cx+d) (2.22)

is completely monotonic on (0,∞) if and only if it holds

μ � kc
2

(2.23)

where μ = kc+ad−bc.
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Proof. Using integral representation of k -psi function and identity

logx =
∫ ∞

0

e−t − e−xt

t
dt. (2.24)

we have

(−1)n f (n)
k,2 (x) = (−1)n

[
anψ(n)

k (ax+b)− kcnlog(n) (cx+d)
]

=
∫ ∞
0 (act)ne−acxtgk,2 (t)

dt

where

gk,2 (t) =
e−adt

t
− kce−bct

1− e−kct . (2.25)

Direct calculation yields

gk,2 (t) =
e−adt

t(ekct −1)
hk,2 (t)

where

hk,2 (t) = ekct −1− kcteμt. (2.26)

For the positivity of the function gk,2 (t) , it suffices to prove hk,2 (t) � 0 for t ∈ (0,∞) .
Now, let us prove hk,2 (t) � 0 in two cases.

Case 1. Suppose μ � 0. For k > 0 and t > 0, we have

ekct � 1+ kct. (2.27)

This implies that hk,2 (t) � 0 holds true for μ � 0.
Case 2. For μ > 0, we have

hk,2 (t) =
∞
∑

n=1

(kct)n

n! − kct
∞
∑

n=0

(μt)n

n!

= kc
∞
∑

n=1

tn
n!

(
kn−1cn−1−nμn−1

)
.

So, we need to show

kn−1cn−1−nμn−1 � 0. (2.28)

For n = 1, it is trivial. For n = 2, it is equivalent to (2.23). That is

2ad < (2b− k)c. (2.29)

Let us assume that it is valid for n , and we shall show that it is also valid for n + 1.
Considering the condition(2.23), we have

(n+1)μn = nμn−1μ + μn

� kn−1cn−1μ + μn

� kn−1cn−1 kc
2 + (kc)n

2

= kncn.

So, we prove (2.28) by induction.
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Next, we prove necessity. Suppose f is completely monotonic. Then the follow-
ing integral ∫ ∞

0
e−acxtgk,2 (t)dt � 0.

From Lemma 2.1, we have gk,2 (0) � 0. Using Taylor formula, we get

lim
t→0

gk,2 (t) = lim
t→0

e−adt(1−e−kct)−kcte−bct

t(1−e−kct)

= lim
t→0

(1−adt)
(
kct− k2c2t2

2

)
−kct(1−bct)+o(t2)

t(kct)+o(t2)
= bc−ad− kc

2 .

This is equivalent to (2.23). This completes the proof. �

REMARK 2.2. Taking k = 1 in theorem 2.2, we get Theorem 2 in [5].

3. An application

In this section, we shall give an application to the generalized Nielsen’s Beta func-
tion by using Theorem 2.1. The classical Nielsen’s β -function can be defined as ([17])

β (x) =
∫ 1

0

tx−1

1+ t
dt =

∫ ∞

0

e−xt

1+ e−t dt =
∞

∑
n=0

(−1)n

n+ x
,

=
1
2

{
ψ
(

x+1
2

)
−ψ

( x
2

)}
,

where x ∈ (0,∞) . This function is closely related to other special functions such as
hypergeometric function F(a,b;c;x) , beta function B(x,y) and so on. Here we have
two interesting equations:

β (x)+ β (1− x) = B(x,1− x) (3.1)

and

β (x) =
1
x2 F(1,x;x+1;−1). (3.2)

Very naturally, we may define the k -generalization of the Nielsen’s β -function as

βk(x) =
∫ 1

0

tx−1

1+ tk
dt

=
∫ ∞

0

e−xt

1+ e−kt dt

=
∞

∑
n=0

(
1

2nk+ x
− 1

2nk+ k+ x

)

=
1
2

{
ψk

(
x+ k

2

)
−ψk

( x
2

)}
.

By using Theorem 2.1, we easily obtain complete monotonicity of generalizedNielsen’s
β -function.
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THEOREM 3.1. For k > 0 and 0 < α � 1 , the function xα−1βk(x) is complete
monotonic on (0,∞) .

Proof. In Theorem 2.1, by taking a = c = 1
2 ,b = k

2 ,d = 0, we easily obtain the
function 2βk(x) is complete monotonic on (0,∞) . Since the product of any two com-
pletely monotonic function is also completely monotonic on their domain, and the
function xα−1 for 0 < α � 1 is clearly completely monotonic on (0,∞) , so we ob-
tain that the function xα−1βk(x) is complete monotonic on (0,∞) . This completes the
proof. �

4. Open problems

Very recently, K. Nantomah, E. Prempeh and S. B. Twum[16] introduced a new
definition of gamma function with two parameters as follows:

Γp,k(x) =
(p+1)!kp+1(pk)

x
k−1

(x)p,k
,x > 0 (4.1)

where (x)p,k = x(x + k)(x + 2k) . . .(x + pk) and lim
p→∞

Γp,k(x) = Γk(x) . Furthermore,

we naturally define the (p,k)- analogue of the digamma and polygamma functions

as follows: ψp,k(x) =
Γ′

p,k(x)
Γp,k(x)

and ψ(m)
p,k (x) = dm

dxm ψp,k(x). In [24], Yin established the

following theorem:

THEOREM 4.1. (Theorem 4.1, [24]) For p ∈ N,k > 0 and α � 1 , the function

δp,k,α(x) = xα
[
1
k

ln
pkx

x+ k(p+1)
−ψp,k(x)

]
is complete monotonic on (0,∞) .

Setting p �→ ∞ , we get

THEOREM 4.2. For k > 0 and α � 1 , the function

δk,α (x) = xα
[
1
k

lnx−ψk(x)
]

is complete monotonic on (0,∞) .

By proved results of Matejiv̌cka in [13], we may obtained complete monotonic
degree of the function 1

k lnx−ψk(x) as follows:

degx
cm

[
1
k

lnx−ψk(x)
]

= 1. (4.2)

Very natural, we pose the following open problems:
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OPEN PROBLEM 4.1. If k,a,b,c,d are positive numbers, then determine α,k,a,
b,c,d for which the function

xα [ψk (ax+b)− k log(cx+d)] (4.3)

is completely monotonic on (0,∞) .

OPEN PROBLEM 4.2. Discuss complete monotonic degree of the function
ψk (ax+b)− k log(cx+d) under the condition that the above open problem 4.1 is
valid.
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