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PARAMETRIC LITTLEWOOD-PALEY OPERATORS
ON VARIABLE HERZ-MORREY SPACES

WENHUA WANG AND QINGDONG GUO*

(Communicated by Y. Sawano)

Abstract. Let a(-) € L?(R") and p(-) : R" — (0, o) be variable exponent functions satisfying
the globally log-Hélder continuous condition. In this paper, the authors obtain the boundedness
of parametric Littlewood-Paley operators and their commutators generated by BMO functions
on variable Herz-Morrey spaces. All these results are still new even when the exponent function
o) is o.

1. Introduction

Suppose that §"~! is the unit sphere in the n-dimensional Euclidean space R" (n >
2). Let Q be a homogeneous function of degree zero on R" which is locally integrable
and satisfies the cancellation condition

lQ(x’)dcf(x/) =0, (1.1)
s

where do is the Lebesgue measure and x' := x/|x| for any x # 0. For a function f
on R", the parametric area integrals ;,Lg ¢ and Littlewood-Paley operators ug’; are,
respectively, defined by setting, for any x € R", 7

, Q(y—2) > ayar \"
”Q’S / /Iy x| <t /\y d<r [y —z2"~ pf( 4 2p+l 7
and
ug 5 fx)
2 dydt

[ L)
0 Jrett \r+[x—y|

where p € (0,00) and A € (1, 00).

/ Q=3 ) a;

y—z|<t ly—z["=P

tn+2p+l )
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In 1999, the operators [.157 ¢ and ;,Ls’;; were first studied by Sakamoto and Yabuta
[13]. They showed that if Q € Lip, (S"~!) with & € (0, 1), then uQ ¢ and uQ )L are
bounded on LP(R") with p € (1, e). In 2009, Xue and Ding [ 18] obtained a celebrated
result that u& ¢ and ,us’;; are bounded on L (R") with p € (1, ) under weaker
smoothness condition of €2, where w € A, and A, denotes the Muckenhoupt weight
class.

Now let us recall the definitions of corresponding m-order commutators of the
parameterized Littlewood-Paley operators. Let b € L' , m € N, the commutators

loc?

[b™, uf §] and [b™, ug’;] are, respectively, defined by setting, for any x € R",

[, g, s1(f)(x)

> ayar \
(/ /|yx‘<, /Iy < y£Z|nZ2,[b() b(2)]"f(z)dz t"+y27Pt+1>
and
[, 1 31(F) ()
! M Q(y—z) m 2 ayar 11
VS e (51) Vst s o]

In recent years, the theory of function spaces with variable exponents has devel-
oped and applying in fluid dynamics, partial differential equations, variational calculus
and harmonic analysis (see [2, 3, 11, 12]). In 2010, Izuki [7] introduced the Herz-
Morrey spaces with variable exponents and obtained the boundedness of fractional in-
tegrals on those spaces. In 2012, Almeida and Drihem [1] introduced the Herz spaces
with two variable exponents and obtained the boundedness of some sublinear operators
on those spaces. In 2014, Lu et al. [10] introduced the Herz-Morrey spaces with vari-
able exponents and obtained the boundedness of some operators on those spaces. In
2015, Wang et al. [16] established the boundedness of parameterized Littlewood-Paley
operators and their commutators generated by BMO functions on variable Lebesgue
spaces Lp(')(R”). In 2016, Wang et al. [17] obtained the boundedness of parameter-
ized Littlewood-Paley operators and their commutators generated by BMO functions
on variable Herz spaces. For more information about the variable function spaces and
Littlewood-Paley operators, see [3, 4, 8, 9, 14, 15].

Inspired by the previous papers, we would like to declare that the goal of this
paper is to obtain the boundedness of parameterized Littlewood-Paley operators and
their commutators generated by BMO functions on Herz-Morrey spaces with variable
exponents.

Precisely, this article is organized as follows.

In Section 2, we first recall some notations and definitions, the variable Lebesgue

space LP() (R") and the variable Herz-Morrey spaces MK;‘E;U (R") and MKZ(p'zf)y (R™).

Then, motivated by Lu et al. [10] and Wang et al. [16], we obtain the boundedness of
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parametric Littlewood-Paley operators and their commutators generated by BMO func-
tions on Herz-Morrey spaces with variable exponents (see Theorems 2.5-2.7 below for
more details). Section 3 is devoted to proving Theorems 2.5 and 2.7. In the process
of the proof of Theorems 2.5 and 2.7, it is worth pointing out that, establishing a more
subtle pointwise estimate plays an important role (see Theorems 2.5 and 2.7 below for
more details).

Finally, we make some conventions on notation. Let N:={1,2,...} and Z; :=
{0} UN. Throughout the whole paper, we denote by C a positive constant which is
independent of the main parameters, but it may vary from line to line. The symbol
D < F means that DK CF. If D SF and F < D, we then write D ~ F. For any
q € [1,°°], we denote by g its conjugate index, namely, 1/q+1/q =1. If E is
a subset of R”, we denote by xg its characteristic function. If there are no special
instructions, any space 2 (R") is denoted simply by 2. For instance, L*(R") is
simply denoted by L. For any a € R, |a| denotes the maximal integer not larger than
a.

2. Preliminaries

In this section, we first recall some notations and definitions. Now we recall that a
measurable function p(-) : R" — (0, o) is called a variable exponent. For any variable
exponent p(-), let

p— = essinf p(x) and p, := esssup p(x). (2.1)
xeR” xeR®

Denote by & the set of all variable exponents p(-) satisfying p_ > 1 and p; < .
Let f be a measurable function on R" and p(-) € &2. Then the modular function
(or, for simplicity, the modular) p,.y, associated with p(-), is defined by setting

Pp)(f) = [ 1f@)P

Rr

and the Luxemburg (also called Luxemburg-Nakano) quasi-norm || f||,,.) by
11l ) 2= inf {4 € (0,%0) : pp (f/A) < 1}

Moreover, the variable Lebesgue space LP1) is defined to the set of all measurable
functions f satisfying that p,(.)(f) < e, equipped with the quasi-norm || 1| () -

We recall the definition of Hardy-Littlewood maximal function My (f). For any
feLl. and xeR",

M (f)(x) = sup ﬁ 1@l 22)

XEBCR"

Let A be the set of p(-) € & satisfying the condition that My is bounded on
LPO) 1t’s well known that if p(-) € 2 and satisfies the following globally log-Holder
continuous then p(-) € A.
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DEFINITION 2.1. [1] Let g(-) be a real function on R”.

(1) g(-) is locally log-Holder continuous, if there exists a constant C > 0 such that
Cc
8(x) =8| < T
log(e+1/]x—yl)
forany x,y € R" and |x—y| < 1/2.

(2) g(-) is locally log-Hélder continuous at the origin(or has a log decay at the ori-
gin), if there exists a constant C > 0 such that

c
lg(x) —g(0)] < log(e + 1/[x])

for any x € R".

(3) g(+) is locally log-Holder continuous at the infinity(or has a log decay at the
infinity), if there exist g € R and a constant C > 0 such that
C

%) — g < ———
g (x) — gl ogle 1 1))

for any x € R".

We denote by 2% and 2 the class of all variable exponents p(-) € &, which

are log-Holder continuous at the origin and at the infinity respectively. We call p, (+) the
r()

p()-1>

conjugate exponent to p(-), thatis p'(-) = we know that p(-) € £ is equivalent
to p'(-)eB.
In this paper, we denote R; = By \ B;_1 and denote briefly the characteristic func-

tion XB\By_, by X

DEFINITION 2.2. [10] Let 0 < g < oo, p(-) € &, 0< ¥ <o and of-) € L™.
),

The homogeneous Herz-Morrey space with variable exponents Mf(;p( )y and the non-

)

homogeneous Herz-Morrey space with variable exponents MK;p(f;l are defined respec-
tively by setting,

ML) = { 7 € LD @0 1]y <}

q.p(-)

and
MK = { £ € LR £ 1l <]
q.p(-

where

L q 1/’1
Fll .y = sup2 ™ ‘za(')"fx H
=g | £ fevsndl
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1/q
q
L) }

LEMMA 2.3. [5] Let p(-) € B. Then there exist 0 < 8, 6, < 1 depending only
on p(-) and n such that for all B, S C R" and S C B,

& sl &
[ 25l o0 <C (i) and O e <ﬂ) .
18l r0) |B| sl |B|
Here and hereafter, we always assume that € is homogeneous of degree zero and
satisfies (1.1). To obtain the main results, we need follows condition:

and

L
> ) 290k

k=0

£l oty o= sup 2717
MKZP(-)Y LeZy

Here, there is the usual modification when g = eo.

1
/ w46(5)(1+|10g5‘)0d5<oo, o>2. (2.3)
0

where @,(8) is the integral modulus of continuity of order g of Q defined by setting,
forany 6 € (0, 1],

0y(6) := sup (/Snl 1Q () —Q(x/)|ng(x/)) 1/q

lIvll<é

and y denotes a rotation on §"~! with ||y|| := sup g1 |7y — V).
The main results of this paper are as follows.

THEOREM 2.4. Let o/(-) € L* N P2 NP2, p(-) € PYENPRE, g€ (0, 00),
0<y<n,and p >n/2. Suppose that Q € L*(S"~") satisfies (2.3). If y—nd; < o <
o < ndy, where 01, 6, are the constant in Lemma 2.3, then there exists a positive
constant C independent of f such that

H#s%,s(f)H

oy SCIfIL cat)y
MEg T MR

THEOREM 2.5. Let o(-) € LN 2N PXE, p(-) € ZPEN2LE, g€ (0, 00),
0<y<n, A>2andp >n/2. Suppose that Q € L*(S"") satisfies (2.3). If y—nd; <
o < oy <nby, where 8y, & are the constant in Lemma 2.3, then there exists a positive
constant C independent of f such that

sl

),y < C”fHMI-(a(-)‘V-
()

o),
MK!NJ(-) q
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THEOREM 2.6. Let o(-) € L™ N 2N PXE, p(-) € 28N 2LE, g€ (0, 00),
p >n/2, and m € N. Suppose that b € BMO and Q € L*(S™™") satisfies (2.3). If
Y—nd; < a_ < oy < ndy, where 01, &y are the constant in Lemma 2.3, then there
exists a positive constant C independent of f such that

|07, 48 || s < CUBIEMONS g
4 p() q,p(")

THEOREM 2.7. Let o/(-) € LN 28N P2, p(-) € PYENPRE, g€ (0, 00),
p>n/2, 0<y<n, A>2 and m € N. Suppose that b € BMO and Q € L*(S"})
satisfies (2.3). If y—né; < o < o < n&,, where 81, 6, are the constant in Lemma
2.3, then there exists a positive constant C independent of f such that

6, D, gy < CIBIEMON A1 1
a.p() a.p()

REMARK 2.8. (i) It’s easy to see that, for any x € R", m € N,
1o s(N)) S ug 7 (Hx) and (B, 1 J(F)(x) S B, ug 3 10)().
Therefore, we only need to prove Theorems 2.5 and 2.7.

(i) All these results for non-homogeneous Herz-Morrey spaces with variable expo-
nents can also be proved. The arguments are similar, so the details are omitted
here.

3. Proofs of Theorems 2.5 and 2.7

To prove the main results, we need the following technical lemmas.

LEMMA 3.1. [8] Let p(-)e . If f e LP") and g € Lpl('), then fg is integrable
on R" and

L@l dx < Coll Ao gl

where C, =1+1/p_+1/p.

LEMMA 3.2. [5] Let p(-) € B. Then there exists a positive constant C > 0 such

that for all B C R",
1

H||%BHLP<->||%BHLPI(,) <C.

LEMMA 3.3. [16] Let p(-) € B, p >n/2, A >2 and Q € L*(S"") satisfying
(2.3). Then there exists a positive constant C independent of f such that

|6 50|, <CAllpr and B3|, <Al
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LEMMA 3.4. [6] Let p(-) € B, m be a positive integer and B be a ball in R".
Then we have that for any b € BMO and any i, j € Z with i < j,

”b”BMO Ssup T 16— b8)" x5l o) < ClIbl By

x5 HLp
(B —b8,)" x| ) < CG—= )" 1bIgmoll x5 || o)

where B; = {x € R" : |x| < 2!, i € N}.

LEMMA 3.5. [16] Let b € BMO and m € N. Suppose that p(-) € B, p >n/2,
A >2 and Q € L*(S"") satisfying (2.3). Then there exists a positive constant C
independent of f such that

<N fll ot -

|78 J ], <Al ana |07, w310,

p()

LEMMA 3.6. [1] Let o € L™ and ry > 0. If o(x) is log-Hdlder continuous both
at origin and at infinity, then

" & "
Ty ) O<r2<77

rf‘(")gr;"(”x 1, 3 <ry <2y,

n

P o —
<_1> ) r2>2r17

Sfor any x € B(0,r1)\ B(0, r1/2) and y € B(0, r,) \ B(0, r2/2), with the implicit con-
stant not depending on x,y, r; and r;.

LEMMA 3.7. [10] Let g € (0,), p(-) € £, y€[0,) and a(-) € L. If o(-)
is log-Holder continuous both at origin and at infinity, then

117 oy =Cmax{ sup 27879 % 2RO pr 4
MKZ(,,ii)Y L<0,L€Z kgm

— L
sup lzwq Z 9kge(0) ”kaHZp(d +27Lra 2 kg0 kaHZp(‘)] }

L>0,L€Z [ — pr
Now we prove Theorems 2.5 and 2.7.

Proof of Theorem 2.5. Let f € MK (), )y We write

f=2 00 =X fix+ X fil)+ Z i)

JEL Jj=—o0 Jj=k—1 J=k+2
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By Definition 2.2, we obtain

Huﬁ’i(f)H;Ka% sup2 L1 Z H2k°‘ ”Q:;(f)%k
q.p(-

’ LEZ Lrt)
q
< Csup2~tr 2 k() 2 u
Lez k=—co J=—ee Lp(-)
L k+1 4
+Csup2 10 Y 2R Nl ()
Lez k=—co j=k=1 70
q
+Csup2 17 Z 2ke() Z ug
LeZ k=—co J=k+2 Lp(*)

=:C(Lh+hL+5h).

For I;, we need to estimate 2% uQ A(ff)( x) with j <k—2 and x € R;. By
Minkowski’s inequality, we get

2ROl (f7)(x)
o An
_pkal) // (%)
0 JrREH N2+ |x—y]
1/2
W M QU —2)]> dyd:
<2ka(x)/ , / ( _) / dz
~ %; /5 (2)] o \i+|x—y] =zt |y — z[2(1=p) gn+2p+1 <

w N\ 1/2
+2ka()€)/R.‘fj(Z)| (/M ) dz.

If x€Ry, zERj and j+2 <k, we have

1/2
2 dydt
tn+2p+1

/ Q023 b de

y—z|<t |y — 2P

1
tx=ylZy—2+x—y[ =[x -z = E\X\-

By Lemmas 3.1, 3.6, the fact that p > % and Q € L?(S"~!), we conclude that

e | f,-<z>|[/ R ]%Z G
R; 0o \7+[x—y| vezl<t |y — 2P g 2p T
x M1 Q-2 dyar "7
<ppate /ijxz»( | W [ _<yz|2 ) ,,,+2py+1 M) i
2 [ 15601 (| ] Pt )
Ry o A Js-1 Jo n+2p+1-An

<Aka(x) Ml di v
SRl [ 1661 [ /d az
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Mo ar YV
~ka(x) , %
2 Aj ‘f,(Z)| <‘/0 ‘xVLn t2n+1—7Ln) dz

<plk=jas L / 9Jo(2) \fi(2)| dz

x|

<_ - 1 o (k=j)out
|

2208|| Wl

By the fact that p > 7, Lemma 3.6 and a similar proof of the above inequality, we get

Sl CoV o Ie0-9P dvar |7
', Vu (r+|x—y|) fysa iy t"+2p+1] G2
Szka(x)/ £5) (/ / |2 dydt )1/2 i

Rj | Jly—l<t Iy—zl2 p) gnt2ptl
52ka(}f)/»|fj(z)| (/w %)1/2 dz

1
< _—_plk=jlat ||pjel f H HXB,’”U,()

N‘ ‘n

By (3.1), (3.2), Lemmas 3.2 and 2.3, we get

1 . —
POuls (| L, S 52 e 2905 sl s
1 s - | By
< __plk=joy ||pje() H o, ok
S L Py e

< 2li-Rndy-ats)

lzja(')fj Hm )

To estimate I, below we consider two cases: 0 < g <1 and 1 < g < oo.
Case 1. If 0 < g < 1, by the fact that nd, — o > 0, we see that

L k=2
- . q
I < sup2Lw Y szo‘()ugfﬂf;’)%k .
LeZ k=—oo ,'7700 ’ Lr
q
<sup2~tv zq k) (n&—ar) ’2106

<sup2” Lyq z Hz]d fj z 2a(j—k)(né—ax)
LeZ j=—o0 k 42

5 Hf”ZlKa(z)y
q,p(
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Case 2. If 1 < g < oo, by Holder’s inequality and the fact that n&, — ay > 0, we
obtain

I Ssup2~ i ( 2_' sza ”Q)L (fi) Xk” )

LeZ

!

L q k=2 , a/a
Ssup2t Y ( Y 2ali-Hndy o /2H2N m») (2 2=k <n62—a+>/2>
J=—e0 Jj=—00

LeZ f=—oco

Z 24(j—k)(n&—01)/2

<Sup2 Lyq Z sza f,
k=j+2

LeZ

Lr()

Ssup2-t 3|00 S
up Z_ o

For I, by Lemmas 3.7 and 3.3, we have

L K+l a
I, ~max{ sup 2% D 2ke(0) > ug (i) )
L<0,LeZ j— j=k—1 p0)
vr D e K . a
sup  [27779 Y |12 (0) D Hg:l(fj)lk
L>0,LEZ k=—oo Jj=k—1 r()

_|_2*LY‘1 i
k=0

. k+1 »
26 Xy ()
j=k—1

q ] }
r()

L
q
Smaxd sup 271 Y ||k |

L<0,LEZ [ et

L>0,LET

,S ||in/[Koc() Y

q.p(-)

—Lyq ka(0) | £, q Lyg H ko 1. Hq
sup lZ ksz2 |fJ‘XkHLP(‘)+2 kg(') 2% | £ vk o

For Iz, by Lemma 3.7, we get

q

oo

KONl ()

j=k+2

)

k=—co ()

L
I =Cmaxq sup 2707 Y
L<0,LEZ

—1 oo 4
sup |27tn D 2ke(0) D #gi;(f;)lk
L>0,L€Z —=—o0 j=k+2 1720)
q
_|_2 LVqE 2kaoc 2 u ‘|}
J=k+2 LP(-)

=: Cmax (131, 132).
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If x €Ry, z€R; and j > k+2, we have

1
=y Zy—2+x—y[ > x—z > [z — x| > EIZI-

By Minkowski’s inequality, Lemmas 2.3, 3.1 and a similar proof of I;, we conclude
that, for any x € Ry,

An

//R"“ <t+|x y|>

sfuol) (i) s "

N/Rj /it o \7+[x—y y—zl<t |y — z|2(n=p) gr+2p+1 ¢
NS
+/_f.f(1)l</,~~~) d:

S3n / 151z % gl 2 -

'uQ)L

1/2
2 dydt /
tn+2p+1

/‘ Q072 rya

v—d<t [y —z|"7P

From this, Lemmas 3.2 and 2.3, we deduce that

D g (i

j=k+2

H.u (fi) Xk

() J =k+2

SEDY 2,n||fJHLp sl ol oo

Jj=k+2
B,
S 150 o 1284 o
1%22/" st et ||xBjHLP(‘)
2 2(k7j)n61 Hf/ HLP(‘) .
j=k+2

To estimate I3, below we consider two cases: 0 < g <1 and 1 < g < oo.
Case 3. If 0<g<1, combmmg the above inequality, we have

131 < C Sup 27L)/q 2 qua 2 2 51”61 Hf/”Lp
L<0,LeZ k=—c0 j=k+2

L L1
—L kqoi(0 k—j)qnd
=C sup 27 Z kg (0) Z o (k=Jj)gn 1Hfj||zp(.)
L<0,LeZ k=—o0 j=k+2

L o
+C sup 2—Lyg Z 2kqo(0) 2(k_j)qn61||fjHZp()
L<0,LeZ k=—oo j=L

= C(I31 +I31).
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For I;l , by the fact that nd; + o(0) > nd; + a_ > 0, we get

!
s sp 2M Y 2RO 2 2k alndr+a(0)
L<0,LeZ j=—o0

< sup 27 274%0)| f; 170 < 1A
L<0,LEZ j;oo ! MK

Next, to deal with I31 , noticing that y—né; — o/(0) < y—nd; — o~ < 0, hence we have

oo

L
1;’1 < sup 270 Y kqer(0) Z q(k—j)nd1p—je(0)an jvan—jva Z sa(0 qusH
L<0,LeZ k=—o0 j=L Ss=—o00

L
—L kq(0:(0)+nd iq(y—nd;—o(0
5 sup 2—Lyq 2 > q(0(0)+ndy) 22]‘1(7 né—o ))”qu )y
L<0,L€Z f=—oco j=L q.p(-)

5 Hf”ZlKa( Y
q.

Case 4. If ¢ > 1, we have

. - q
Li<C sup 271 22"‘10‘@)( S 2(’“~’>”5'||ijp<->>

L<0,LeZ k—oo j=k+2

q
=C sup 277 2 2kae(0) ( D 2 qmsl”ijp(‘))

L<0,L€Z k=—co0 Jj=k+2

q
+C sup 27 Lra Z 2kqe(0) ( Z 20k jqnéleJ”LP )

L<0,LEZ j—. J=L+1
= C(I3 +13)).
For I}, , by the fact that n8; + a(0) > 0 and Holder’s inequality, we obtain

BS sup 2H0S S MO o kgt o)
L<0,LEZ k—oo j=k+2
ald
z 2 (k=) g (nd1+0(0))/2
Jj=k+2
§ sup 2~ Lyq 2 2/qoc ||f ”q 2 2 q(nd+0(0))/2
L<0,LeZ Jj=—oo k_—oo
< q
~ ||fHMKa() Y
q,p(")

For I2,, by Holder’s inequality and a similar proof of Igl , we obtain

B S o
MK;X
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Combining the estimates of Iy, I5,, 13, and I3, , we have
q
I3 SJ ||fHMKa() y
a,r(-)
By a similar estimate of /3y, it’s easy to obtain

Ly <
2SI
ql)()

Thus, we have

H“gz:;(f) y Sh+L+B S |fI,ee0.r

g
MK, »0)
This finishes the proof of Theorem 2.5. [

Proof of Theorem 2.7. Let f € MK ol z )y b€ BMO. We write

f=2 )y Efj + X +Zf/

JEL Jj=—o0 j=k—1 Jj=k+2
By Definition 2.2, we obtain

[0 k831D e, = sup2 z TR YA

{ON
Mqu(-) LeZ
o & o K2 . q
<Csup2™1 2 kel 2 [bm,uéjﬁ(fj)xk
LeZ k=—o00 Jj=—00 r()
L ktl a
+Csup2 v 2 kel 2 [b’”7u§ii](f/)xk
LEZ k=—o0 Jj=k—1 ' r()
. ~ q
+Csup2~tv D 2ke ) D [bm7l-lg AU
LeZ k=—o0 j=k+2 r()

=:C(J1 +2+J3).

Now, we begin with estimating Jy, if z € R; and j+2 < k, by Lemma 3.1 and the
estimate of ugj; (fj)(x) in the proof of Theorem 2.5, then for any x € Ry, we have

250", W23 10| = [24O 1(bx) — b)) 1)) (3.3)
S 24 (b() = b))
S 2 () b s+ ey = )il
sahmpbac O )| (1b(x) — b, sl + 1, = 68, ) -

From this, the fact that y—nd; < o < or < nd,, Lemmas 3.2, 2.3 and 3.6, we con-
clude that
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< knplk=j)es Zja(')fj

22O, w3100,

r()

[ 128,11+ 1B, = B8, |yt 12l

X || —b j)m%k

<2 k"z(k*J)Ow zja(')fj o

X || ()= b8)" x| 00 s 1 + 10l Bmoll s, 1 H%k||Lp(->}

<gkmplk=as ||pjaC) £, oo 1ll5s0

x5l

x [ = 3y zm o Il s + W 1y 12k
k=)o | pjrt fj o 1B 1Ba0 (k= 7)™ 8, 1 ) 2kl oo
SaURnd-a) |l9jaC) H 10 (k= )"

Thus, combining the above estimate and a similar proof of I, we have

1 S0l f1l et -
q.p(-)
For J,, by Lemma 3.2 and a similar proof of I, we see that

VRS HfIIM,-(a«z.)w
q.p(-

Finally, we deal with J3, if x € R;, z € R and j > k+2, by a similar proof of
(3.3), we get

1, 13000 @)| S 27 (186 = b " e, + 1B = 5", 1))
From this, Lemmas 3.4, 3.2, 2.3 and a similar estimate of I3, we further conclude that

16, 18300y S 25183 o N0 (G — )™

Combining the above inequality and a similar estimate of /3 in the proof of Theorem
2.5, we further conclude that

5 S 16 uoll £, e -
4.p(")
From the estimates of J;, J, and J3, we deduce that
[0, B0 s S 1402452 S Ul
4.p(")
This finishes the proof of Theorem 2.7. (]
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