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THE APPLICATIONS OF SOME BASIC MATHEMATICAL

INEQUALITIES ON THE CONVERGENCE OF THE

PRIMITIVE EQUATIONS OF MOIST ATMOSPHERE

LI YUANFEI ∗ , XIAO SHENGZHONG AND ZENG PENG

(Communicated by J. Pečarić)

Abstract. In this paper, we show the applications of some basic mathematical inequalities in
partial differential equations. By using the differential inequality technique, the convergence of
the primitive equations of moist atmosphere is obtained

1. Introduction

Inequalities played a very important role in various fields and solved many prac-
tical problems. It is well known that the following Sobolev inequality holds. Letting
Ω ⊂ R

3 is a bounded domain with smooth boundary ∂Ω and supposing ω ∈ C1
0(Ω) ,

we have ∫
Ω
|ω |4dx � Λ1

(∫
Ω
|∇ω |2dx

)2
, (1)

where Λ1 is a positive constant. The proof of inequality (1) can be found in [1, 2]).
However, if ω does not vanish on ∂Ω , the inequality (1) can not hold. Lin and Payne
[3] assumed that ω satisfied nonhomogeneous condition on ∂Ω . They obtained a
slightly more complicated result.

LEMMA 1. [3] (B17) Assuming that Ω is a bounded, simply connected domain
with boundary ∂Ω of bounded curvature. Then

(∫
Ω
|ω |4dx

) 1
2 � Λ2

[
(1+

δ
4

)
∫

Ω
|ω |2dx+

3
4

δ− 1
3

∫
Ω
|∇ω |2dx

]
, (2)

where Λ2 is a positive constant and δ > 0 .
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Lemma 1 played a key role in many problems. The purpose of this paper is to
apply some basic mathematical inequalities to the primitive equations of moist atmo-
sphere. Besides lemma 1, we will also use the Young inequality, the Hölder inequality,
the arithmetic geometric mean inequality, the Cauchy-Schwarz inequality and the fol-
lowing well-known inequality.

LEMMA 2. ([4, 5]) If ω(z) ∈C1(0,1) and ω(1) = ω(0) = 0 , then

∫ 1

0
ω2dz � 1

π2

∫ 1

0

(dω
dz

)2
dz. (3)

In the next section, we give a brief introduction and preparation of the primitive
equations of moist atmosphere. In the third section, we show how to use Sobolev
inequalities to prove the convergence of the primitive equations of moist atmosphere.
In section 4, we use Sobolev inequalities to derive a priori bounds of the solutions.
Finally, we make a conclusion in section 5.

2. The primitive equations of large-scale moist atmosphere

The primitive equations are mathematical models which are used to understand the
mechanism of long-term weather prediction and climate changes. It was Lions, Teman
and Wang (see [6, 7, 8, 9]) who first started the mathematical study of the primitive
equations. Then a large number of scholars began to pay attention to the primitive
equations, but their results mostly focused on the well-posedness of the solutions (see
[10, 11, 12, 13, 14, 15]). At that time, the primitive equations were too complicated to
be studied theoretically or to be solved numerically. To overcome this difficulty, one
began to simplify equations by various means. However, errors were inevitable in the
process of simplification. It is necessary to know whether a small change in a coefficient
in an equation, or in the boundary data, or in the equations themselves, will induce a
dramatic change in the solutions. This type of study has earned the name structural
stability, and is different from continuous dependence on the initial data (see [16]).

Recently, we began to study the structural stability of large-scale primitive equa-
tions. [17] obtained the continuous dependence on the viscosity coefficient of the so-
lutions of the three-dimensional viscous primitive equations of the ocean. By using
the energy analysis methods, [18] proved that the primitive equations of the coupled
atmosphere-ocean continuously dependent on the boundary parameters. In the present
paper we consider the following three dimensional viscous primitive equations of large-
scale moist atmosphere in the pressure coordinate system system (see [19, 20])

∂v
∂ t

+(v ·∇2)v+W(v)
∂v
∂ z

+∇2Φs +
∫ 1

z

bP
p(ζ )

∇2[(1+aq)T ]dζ +
1
R0

f v⊥−Δv = 0, (4)

∂T
∂ t

+ v ·∇2T +W (v)
∂T
∂ z

− bP
p

(1+aq)W(v)−ΔT = Q1, (5)

∂q
∂ t

+ v ·∇2q+W(v)
∂q
∂ z

−Δq = Q2, (6)
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∫ 1

0
∇2 · v(x,y,ζ ,t)dζ = 0, (7)

where the horizontal velocity field v = (v1,v2) , the temperature T , the mixing ratio of
water vapor in the air q , the geopotential Φs and the pressure p are the unknowns. Here
W (v) =

∫ 1
z ∇2 · v(x,y,ζ ,t)dζ , v⊥ = (−v2,v1) , f = 2cosθ0 is the Coriolis parameter,

R0 is the Rossby number, P is an approximate value of pressure at the surface of the
earth, p0 represents the pressure of the upper atmosphere and p0 > 0, the variable z
satisfies p = (P−P0)z+P0(0 < P0 � p � P), Q1,Q2 are given functions, a ≈ 0.618.
∇2 = (∂x,∂y) is the horizontal gradient operator and Δ = ∂ 2

x + ∂ 2
y + ∂ 2

z .
The region of (4)–(7) is defined as

Ω = M× (0,1),

where M is a smooth bounded domain in R
2 with sufficiently smooth boundary ∂M .

The boundary value conditions are

∂v
∂ z

∣∣∣
z=0,1

= 0, v ·−→n
∣∣∣
∂M×(0,1)

=
∂v

∂−→n ×−→n
∣∣∣
∂M×(0,1)

= 0

(∂T
∂ z

+ αT
)∣∣∣

z=1
=

(∂q
∂ z

+ βq
)∣∣∣

z=1
= 0,

∂T
∂ z

∣∣∣
z=0

=
∂q
∂ z

∣∣∣
z=0

= 0,

∂T
∂−→n

∣∣∣
∂M×(0,1)

=
∂q

∂−→n
∣∣∣
∂M×(0,1)

= 0,

(8)

where −→n is the normal vector of ∂M× (0,1) . The initial conditions are

v(x,y,z,0) = v0(x,y,z), T (x,y,z,0) = T0(x,y,z), q(x,y,z,0) = q0(x,y,z). (9)

In order to establish continuous dependence on the given functions Q1 and Q2 ,
we assume that (v∗,T ∗,q∗,Φ∗

s ) are solutions of (4)–(8), but with Q1 = Q2 = 0. If we
let

ṽ = v− v∗, T̃ = T −T ∗, q̃ = q−q∗, πs = Φs −Φ∗
s , (10)

then (ṽ, T̃ , q̃,πs) satisfy

∂ ṽ
∂ t

+(ṽ ·∇2)v+W(ṽ)
∂v
∂ z

+(v∗ ·∇2)ṽ+w(v∗)
∂ ṽ
∂ z

+ ∇πs

+
∫ 1

z

abP
p(ζ )

∇2[q̃(x,y,ζ ,t)T (x,y,ζ ,t)]dζ

+
∫ 1

z

bP
p(ζ )

∇2[(1+aq∗)(x,y,ζ ,t))T̃ (x,y,ζ , t)]dζ + f ṽ⊥−Δṽ = 0,

(11)

∂ T̃
∂ t

+ ṽ ·∇2T +W(ṽ)
∂T
∂ z

+ v∗ ·∇2T̃ +W(v∗)
∂ T̃
∂ z

− bP
p

aq̃W (v)

− bP
p

(1+aq∗)W (ṽ)−ΔT̃ = Q1,

(12)



296 L. YUANFEI, X. SHENGZHONG AND Z. PENG

∂ q̃
∂ t

+ ṽ ·∇2q+W(ṽ)
∂q
∂ z

+ v∗ ·∇2q̃+W (v∗)
∂ q̃
∂ z

−Δq̃ = Q2, (13)

∫ 1

0
∇2 · ṽ(x,y,ζ ,t)dζ = 0. (14)

The boundary conditions can be written as

∂ ṽ
∂ z

∣∣∣
z=0,1

= 0, ṽ ·−→n
∣∣∣
∂M×(0,1)

=
∂ ṽ

∂−→n ×−→n
∣∣∣
∂M×(0,1)

= 0

(∂ T̃
∂ z

+ αT̃
)∣∣∣

z=1
=

(∂ q̃
∂ z

+ β q̃
)∣∣∣

z=1
= 0,

∂ T̃
∂ z

∣∣∣
z=0

=
∂ q̃
∂ z

∣∣∣
z=0

= 0,

∂ T̃
∂−→n

∣∣∣
∂M×(0,1)

=
∂ q̃

∂−→n
∣∣∣
∂M×(0,1)

= 0,

(15)

and the initial conditions

ṽ = T̃ = q̃ = 0. (16)

To get the main result, we firstly give a usefull lemma.

LEMMA 3. If ψ1×−→n |∂M = 0, W (ψ2)|z=0,1 = 0 and φ = φ(x,y,t) ∈C∞(M) , then∫
Ω
[ψ2∇2ψ1 +W(ψ2)

ψ1

∂ z
]ψ1dxdydz = 0,

∫
Ω

∇2φψ2dxdydz = 0.

By using the divergence theorem, the lemma 3 can be easily proved.

3. The main result and its proof

Based on previous preparations, we give the main results and the proof in this
section.

THEOREM 1. (Main) Let (u,T,q) be solutions of (4)–(10) and (u∗,T ∗,q∗) be
solutions of (4)–(10) with Q1 = Q2 = 0 . If T0,q0,v0 ∈ L2(Ω) , Q1,Q2 ∈ H1(Ω) , then

(u,T,q) → (u∗,T ∗,q∗),when Q1, Q2 → 0. (17)

The differences of the two solutions satisfy

||ṽ||22 + ||T̃ ||22 + ||q̃||22 � 2a1(t)
∫ t

0
exp

{
2

∫ t

s
a1(η)dη

}∫ s

0
[||Q1||22 + ||Q2||22]dηds

+
∫ t

0
[||Q1||22 + ||Q2||22]dη ,

which demonstrates convergence on the water vapor source and the given heat source.
Here a1(t) is a positive function.
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Proof. We take the inner product of (11) with ṽ in L2(Ω) and use lemma 3 to
obtain

1
2
||ṽ||22 +

∫ t

0
||∇ṽ||22dη

= −
∫ t

0

∫
Ω

[
(ṽ ·∇2)v+W(ṽ)

∂v
∂ z

]
ṽdxdydzdη

−
∫ t

0

∫
Ω

[∫ 1

z

abP
p(ζ )

∇2[q̃T ]dζ
]
ṽdxdydzdη

−
∫ t

0

∫
Ω

[∫ 1

z

bP
p(ζ )

∇2[(1+aq∗)T̃ ]dζ
]
ṽdxdydzdη

.=
3

∑
i=1

Ai.

(18)

We take the inner product of Eq. (12) with T̃ in L2(Ω× (0,t)) and use lemma 3 to find

1
2
||T̃ ||22 +

∫ t

0
||∇T̃ (η)||22dη + α

∫ t

0
||T̃ (z = 1)||2L2(M)dη

=
∫ t

0

∫
Ω

Q1T̃ dxdydzdη

−
∫ t

0

∫
Ω

[
ṽ ·∇2T +W(ṽ)

∂T
∂ z

]
T̃ dxdydzdη

+
∫ t

0

∫
Ω

abP
p

q̃W (v)T̃ dxdydzdη

+
∫ t

0

∫
Ω

bP
p

(1+aq∗)W (ṽ)T̃ dxdydzdη

.=
4

∑
i=1

Bi.

(19)

We take the inner product of Eq. (13) with q̃ in L2(Ω× (0,t)) and use lemma 3 to find

1
2
||q̃||22 +

∫ t

0
||∇q̃(η)||22dη + α

∫ t

0
||q̃(z = 1)||2L2(M)dη =

∫ t

0

∫
Ω

Q2q̃dxdydzdη

−
∫ t

0

∫
Ω

(
ṽ ·∇2q+W(ṽ)

∂q
∂ z

)
q̃dxdydzdη

.= C1 +C2.

(20)

Using the Hölder inequality, the Cauchy-Schwarz inequality, lemma 1, lemma 2
and the Young inequality, we have

A1 �
(∫ t

0
||∇2v||22dη

) 1
2
(∫ t

0
||ṽ||44dη

) 1
2

+
(∫ t

0
||W (ṽ)||22dη

) 1
2
(∫ t

0
||ṽ||44dη

) 1
4
(∫ t

0
||∂v

∂ z
||44dη

) 1
4
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� Λ2

(∫ t

0
||∇2v||22dη

) 1
2
[
(1+

1
4

δ1)
∫ t

0
||ṽ||22dη +

3
4

δ−3
1

∫ t

0
||∇ṽ||22dη

]

+
√

Λ2

π

(∫ t

0
||∂v

∂ z
||44dη

) 1
4
(∫ t

0
||∇2ṽ||22dη

) 1
2

·
[
(1+

1
4

δ1)
∫ t

0
||ṽ||22dη +

3
4

δ−3
1

∫ t

0
||∇ṽ||22dη

] 1
2

(21)

�
[
Λ2

(∫ t

0
||∇2v||22dη

) 1
2 +

2Λ2

π2

(∫ t

0
||∂v

∂ z
||44dη

) 1
2
]

·
[
(1+

1
4

δ1)
∫ t

0
||ṽ||22dη +

3
4

δ−3
1

∫ t

0
||∇ṽ||22dη

]
+

1
8

∫ t

0
||∇2ṽ||22dη ,

B2 � 1
2

Λ2

(∫ t

0
||∇2T ||22dη

) 1
2
[
(1+

1
4

δ2)
∫ t

0
||ṽ||22dη +

3
4

δ−3
2

∫ t

0
||∇ṽ||22dη

]

+
[1
2

Λ2

(∫ t

0
||∇2T ||22dη

) 1
2 +

2Λ2

π2

(∫ t

0
||∂T

∂ z
||44dη

) 1
2
]

(22)

·
[
(1+

1
4

δ3)
∫ t

0
||T̃ ||22dη +

3
4

δ−3
3

∫ t

0
||∇T̃ ||22dη

]
+

1
8

∫ t

0
||∇2ṽ||22dη ,

C2 � 1
2

Λ2

(∫ t

0
||∇2q||22dη

) 1
2
[
(1+

1
4

δ4)
∫ t

0
||ṽ||22dη +

3
4

δ−3
4

∫ t

0
||∇ṽ||22dη

]

+
[1
2

Λ2

(∫ t

0
||∇2q||22dη

) 1
2
+

2Λ2

π2

(∫ t

0
||∂q

∂ z
||44dη

) 1
2
]

(23)

·
[
(1+

1
4

δ5)
∫ t

0
||q̃||22dη +

3
4

δ−3
5

∫ t

0
||∇q̃||22dη

]
+

1
8

∫ t

0
||∇2ṽ||22dη ,

where δi,(i = 1,2, . . . ,5) are positive constants to be determined later.
For A2 and B3 , we integrate by parts and use the Hölder inequality, lemma 1,

lemma 2 and the Young inequality, we have

A2 = −
∫ t

0

∫
Ω

abP
p(ζ )

q̃TW (ṽ)dxdydzdη

� abP
πP0

(∫ t

0
||∇2ṽ||22dη

) 1
2
(∫ t

0
||q̃||44dη

) 1
4
(∫ t

0
||T ||44dη

) 1
4

� (
abP
πP0

)2Λ2

(∫ t

0
||T ||44dη

) 1
2

·
[
(1+

1
4

δ6)
∫ t

0
||q̃||22dη +

3
4

δ−3
6

∫ t

0
||∇q̃||22dη

]
+

1
8

∫ t

0
||∇2ṽ||22dη ,

(24)

B3 � abP
πP0

(∫ t

0
||∇2v||22dη

) 1
2
(∫ t

0
||q̃||44dη

) 1
4
(∫ t

0
||T̃ ||44dη

) 1
4

� abhPΛ2

πP0

(∫ t

0
||∇2v||22dη

) 1
2
[
(1+

1
4

δ7)
∫ t

0
||q̃||22dη +

3
4

δ−3
7

∫ t

0
||∇q̃||22dη

]

+
abPΛ2

πP0

(∫ t

0
||∇2v||22dη

) 1
2
[
(1+

1
4

δ8)
∫ t

0
||T̃ ||22dη +

3
4

δ−3
8

∫ t

0
||∇T̃ ||22dη

]
,

(25)
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where δ6,δ7 and δ8 are positive constants to be determined later.
Using the Hölder inequality and the Young inequality, we have

B1 � 1
2

∫ t

0
||T̃ ||22dη +

1
2

∫ t

0
||Q1||22dη , (26)

C1 � 1
2

∫ t

0
||q̃||22dη +

1
2

∫ t

0
||Q2||22dη . (27)

Based on integration by parts, we can easily obtain A3 +B4 = 0. Choosing suitable δi ,
(i = 1,2, . . . ,8) such that

[
Λ2

(∫ t

0
||∇2v||22dη

) 1
2 +

2Λ2

π2

(∫ t

0
||∂v

∂ z
||44dη

) 1
2
]3
4

δ−3
1 +

1
2

Λ2

(∫ t

0
||∇2T ||22dη

) 1
2 3
4

δ−3
2

+
1
2

Λ2

(∫ t

0
||∇2q||22dη

) 1
2 3
4

δ−3
4 � 1

2
,

[1
2

Λ2

(∫ t

0
||∇2T ||22dη

) 1
2 +

2Λ2

π2

(∫ t

0
||∂v

∂ z
||44dη

) 1
2
]3
4

δ−3
3 +

abPΛ2

πP0

3
4

δ−3
8 � 1,

[1
2

Λ2

(∫ t

0
||∇2q||22dη

) 1
2 +

2Λ2

π2

(∫ t

0
||∂v

∂ z
||44dη

) 1
2
]3
4

δ−3
5

+
(abP

πP0

)2
Λ2

(∫ t

0
||T ||44dη

) 1
2 3
4

δ−3
6 +

abhPΛ2

πP0

(∫ t

0
||∇2v||22dη

) 1
2 3
4

δ−3
7 � 1,

and combining (18)–(27), we have

||ṽ||22 + ||T̃ ||22 + ||q̃||22 � 2a1(t)
∫ t

0
[||ṽ(η)||22 + ||T̃ (η)||22 + ||q̃(η)||22]dη

+
∫ t

0
[||Q1||22 + ||Q2||22]dη ,

(28)

where

a1(t) = max
{[

Λ2

(∫ t

0
||∇2v||22dη

) 1
2 +

2Λ2

π2

(∫ t

0
||∂v

∂ z
||44dη

) 1
2
]
+

(
1+

1
4

δ1

)

+
1
2

Λ2

(∫ t

0
||∇2T ||22dη

) 1
2
(
1+

1
4

δ2

)
+

1
2

Λ2

(∫ t

0
||∇2q||22dη

) 1
2
(
1+

1
4

δ4

)}
,

1
2

+
[1
2

Λ2

(∫ t

0
||∇2T ||22dη

) 1
2 +

2Λ2

π2

(∫ t

0
||∂T

∂ z
||44dη

) 1
2
](

1+
1
4

δ3

)

+
abPΛ2

πP0

(∫ t

0
||∇2v||22dη

) 1
2
(
1+

1
4

δ8

)
,
1
2

+
[1
2

Λ2

(∫ t

0
||∇2q||22dη

) 1
2

+
2Λ2

π2

(∫ t

0
||∂q

∂ z
||44dη

) 1
2
](

1+
1
4

δ5

)
+

(abP
πP0

)2
Λ2

(∫ t

0
||T ||44dη

) 1
2
(
1+

1
4

δ6

)
.

With Gronwall inequality in (28), the proof of Theorem 1 is completed. �
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REMARK 1. Since the definition of a1(t) involves
∫ t
0 ||∇2v||22dη ,

∫ t
0 ||∇2T ||22dη ,∫ t

0 ||∇2q||22dη ,
∫ t
0 ||T ||44dη and

∫ t
0 || ∂v

∂ z ||44dη , to make our result meaningful, we must
derive their explicit upper bounds. This process is somewhat complicated, so we will
give the derivations in the next section.

4. Bounds for
∫ t
0 ||∇2v||22dη ,

∫ t
0 ||∇2T ||22dη ,

∫ t
0 ||∇2q||22dη ,

∫ t
0 ||T ||44dη and∫ t

0 || ∂v
∂ z ||44dη

In this section, we use the Sobolev inequalities to derive the bounds for
∫ t
0 ||∇2v||22dη ,∫ t

0 ||∇2T ||22dη ,
∫ t
0 ||∇2q||22dη ,

∫ t
0 ||T ||44dη and

∫ t
0 || ∂v

∂ z ||44dη .

1. Bounds for
∫ t
0 ||∇2v||22dη and

∫ t
0 ||∇2T ||22dη

Taking the inner product of Eq. (6) with q in L2(Ω) , by lemma 3 we obtain

1
2

d
dt
||q||22 + ||∇q||22 + β ||q(z = 1)||2L2(M) =

∫
Ω

Q2qdxdydz. (29)

By the Young inequality we have

d
dt
||q||22 +2||∇q||22 +2β ||q(z = 1)||2L2(M) � ||Q2||22 + ||q||22. (30)

Integrating (30) from 0 to t , we have

||q||22 +2
∫ t

0
||∇q||22dη +2β

∫ t

0
||q(z = 1)||2L2(M)dη

�
∫ t

0
et−η ||Q2||22dη + ||q0||22 .= F1(t).

(31)

Taking the inner product of Eq. (4) with v in L2(Ω) , by lemma 3 we obtain

1
2

d
dt
||v||22 + ||∇v||22 = −

∫
Ω

(∫ 1

z

bP
p(ζ )

∇2[(1+aq)T ]dζ
)
· vdxdydz. (32)

Taking the inner product of Eq. (5) with T in L2(Ω) , by lemma 3 we obtain

1
2

d
dt
||T ||22 + ||∇T ||22 + α||T (z = 1)||2L2(M) =

∫
Ω

bP
p

(1+aq)W(v)Tdxdydz

+
∫

Ω
Q1Tdxdydz,

(33)

By integrating by parts, we have

∫
Ω

bP
p

(1+aq)W(v)Tdxdydz−
∫

Ω

(∫ 1

z

bP
p(ζ )

∇2[(1+aq)T ]dζ
)
· vdxdydz = 0.



THE APPLICATIONS OF SOME BASIC MATHEMATICAL INEQUALITIES 301

From (32) and (33), by the Young inequality we have

d
dt

[||v||22 + ||T ||22]+2[||∇v||22 + ||∇T ||22]+2α||T(z = 1)||2L2(M) � ||T ||22 + ||Q1||22 (34)

Integrating (34) from 0 to t , we have

||v||22 + ||T ||22 +2
∫ t

0
[||∇v||22 + ||∇T ||22]dη +2α

∫ t

0
||T (z = 1)||2L2(M)dη

�
∫ t

0
et−η ||Q1||22dη + ||v0||22 + ||T0||22 .= F2(t).

(35)

Noting that
∫ t
0 ||∇2v||22dη �

∫ t
0 ||∇v||22dη and

∫ t
0 ||∇2T ||22dη �

∫ t
0 ||∇T ||22dη , from (31)

and (35) we can conclude that
∫ t
0 ||∇2v||22dη and

∫ t
0 ||∇2T ||22dη can be bounded by

known data.

2. Bound for
∫ t
0 ||T ||44dη

Using lemma 1(with δ = 1), (35) and (31), we obtain∫ t

0
||T ||44dη � Λ2

[5
4

∫ t

0
||T ||22dη +

3
4

∫ t

0
||∇T ||22dη

]2

� Λ2

[5
4

∫ t

0
F2(η)dη +

3
8
F2(t)

]2 .= F3(t),
(36)

and ∫ t

0
||q||44dη � Λ2

[5
4

∫ t

0
F1(η)dη +

3
8
F1(t)

]2 .= F4(t), (37)

3. Bound for
∫ t
0 || ∂v

∂ z ||44dη

We began from

∫ t

0

∫
Ω

∂
∂ z

{ ∂v
∂η

+(v ·∇2)v+W(v)
∂v
∂ z

+ ∇2Φs +
1
Ro

f v⊥

+
∫ 1

z

bP
p(ζ )

∇2[(1+aq)T ]dζ −Δv
}∂v

∂ z
dxdydzdη = 0.

Integrating by parts and using lemma 3 we have

1
2
||∂v

∂ z
||22 +

∫ t

0
||∇∂v

∂ z
||22dη − 1

2
||∂v0

∂ z
||22

=
∫ t

0

∫
Ω

bP
p(z)

T∇2
∂v
∂ z

dxdydzdη +
∫ t

0

∫
Ω

abP
p(z)

qT∇2
∂v
∂ z

dxdydzdη

−
∫ t

0

∫
Ω

[(∂v
∂ z

·∇2

)
v− (∇2 · v)∂v

∂ z

]
· ∂v

∂ z
dxdydzdη .

(38)
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Using the Hölder inequality, the Young inequality and (35), we have∫ t

0

∫
Ω

bP
p(z)

T∇2
∂v
∂ z

dxdydzdη

� bP
p0

(∫ t

0
||T ||22dη

) 1
2
(∫ t

0
||∇2

∂v
∂ z

||22dη
) 1

2

� 2
(bP

p0

)2 ∫ t

0
F2(η)dη +

1
8

∫ t

0
||∇2

∂v
∂ z

||22dη .

(39)

Using the Hölder inequality, the Young inequality, (36) and (37), we have∫ t

0

∫
Ω

abP
p(z)

qT∇2
∂v
∂ z

dxdydzdη

� abP
p0

(∫ t

0
||q||44dη

) 1
4
(∫ t

0
||T ||44dη

) 1
4
(∫ t

0
||∇2

∂v
∂ z

||22dη
) 1

2

� 2
(abP

p0

)2√
F3(t)F4(t)+

1
8

∫ t

0
||∇2

∂v
∂ z

||22dη .

(40)

Using the Hölder inequality, the Young inequality, (35) and lemma 3, we have

−
∫ t

0

∫
Ω

[(∂v
∂ z

·∇2

)
v− (∇2 · v)∂v

∂ z

]
· ∂v

∂ z
dxdydzdη

�
(∫ t

0
||∇2v||22dη

) 1
2
(∫ t

0
||∂v

∂ z
||44dη

) 1
2

�
√

F2(t)
2

[(
1+

1
4

δ
)∫ t

0
||∂v

∂ z
||22dη +

3
4

δ−3
∫ t

0
||∇∂v

∂ z
||22dη

]

�
√

F2(t)
2

[(
1+

1
4

δ
)F2(t)

2
+

3
4

δ−3
∫ t

0
||∇∂v

∂ z
||22dη

]
,

(41)

where δ > 0. Choosing δ such that
√

F2(t)
2

3
4 δ−3 = 1

4 , and then inserting (39)–(41)
into (38), we have

||∂v
∂ z

||22 +
∫ t

0
||∇∂v

∂ z
||22dη

� 2
[√F2(t)

2

]3(
1+

1
4

δ
)

+ ||∂v0

∂ z
||22

+4
(abP

p0

)2√
F3(t)F4(t)+4

(abP
p0

)2√
F3(t)F4(t)

.= F5(t)

(42)

Finally, using lemma 3(with δ = 1) again and (42) we have(∫ t

0
||∂v

∂ z
||44dη

) 1
2 � Λ2

[5
4

∫ t

0
||∂v

∂ z
||22dη +

3
4

∫ t

0
||∇∂v

∂ z
||22dη

]
� Λ2

[5
4

∫ t

0
F5(η)dη +

3
4
F5(t)

]
.

(43)
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Using a similar method, we also can bound
∫ t
0 || ∂T

∂ z ||44dη and
∫ t
0 || ∂q

∂ z ||44dη

5. Conclusion

Obviously, lemma 1 plays a key role in this paper. If Ω ⊂R
2 , Payne [1] and Serrin

[2] have also proved the following result. For Dirichlet integrable function ω ∈C1
0(Ω) ,

the Poincaré inequality holds, namely

∫
Ω

ω4dA � 1
2

∫
Ω

ω2dA
∫

Ω
|∇2ω |2dA. (44)

Also, if ω does not vanish on the boundary of Ω , (44) can not hold. But it may be
interesting and meaningful. We will study this problem and its applications in another
paper.
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