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SHARP INEQUALITIES FOR HERMITIAN TOEPLITZ DETERMINANTS

FOR STRONGLY STARLIKE AND STRONGLY CONVEX FUNCTIONS

BOGUMIŁA KOWALCZYK, ADAM LECKO ∗ AND BARBARA ŚMIAROWSKA

(Communicated by T. Burić)

Abstract. Sharp upper and lower bounds are found of the second and third order Hermitian
Toeplitz determinants for the classes of strongly starlike and strongly convex functions of order
α (α ∈ [0,1) ).

1. Introduction

Let H be the class of analytic functions in D := {z ∈ C : |z| < 1} and A be its
subclass of functions f of the form

f (z) =
∞

∑
n=1

anz
n, a1 = 1, z ∈ D. (1)

Let S be the subclass of A of all univalent functions. Given α ∈ (0,1], let S ∗
α and

S c
α denote the subclasses of A of all functions f satisfying∣∣∣∣Arg

z f ′(z)
f (z)

∣∣∣∣ � α
π
2

, z ∈ D, (2)

and ∣∣∣∣Arg

(
1+

z f ′′(z)
f ′(z)

)∣∣∣∣ � α
π
2

, z ∈ D, (3)

respectively, and the so-called strongly starlike and strongly convex of order α . If
α = 1, then (2) defines the class of starlike functions denoted by S ∗ ([1],[17]), and
(3) specifies the class of convex functions denoted by S c ([19]).

The class of strongly starlike functions was introduced by Stankiewicz [20] and
[21], and independently by Brannan and Kirwan [4] (see also [9, Vol. I, pp. 137-142]).
Stankiewicz [21] presented an external geometrical characterization of strongly starlike
functions. Brannan and Kirwan found a geometrical condition called δ -visibility which
is sufficient for functions to be strongly starlike. In turn, Ma and Minda [15] gave
the internal characterization of functions in S ∗

α basing on the concept of k -starlike
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domains. Further results regarding the geometry of strongly starlike functions were
presented in [13, Chapter IV], [14] and [22].

Given q,n∈ N, the Hermitian Toeplitz matrix Tq,n( f ) of a function f ∈ A of the
form (1) is defined by

Tq,n( f ) :=

⎡
⎢⎢⎢⎣

an an+1 . . . an+q−1

an+1 an . . . an+q−2
...

...
...

...
an+q−1 an+q−2 . . . an

⎤
⎥⎥⎥⎦ ,

where ak := ak. Let detTq,n( f ) denote the determinant of Tq,n( f ). In particular,

detT3,1( f ) =

∣∣∣∣∣∣
1 a2 a3

a2 1 a2

a3 a2 1

∣∣∣∣∣∣ = 1+2Re
(
a2

2a3
)−2|a2|2 −|a3|2. (4)

In recent years many papers have been devoted to the estimation of determinants
whose entries are coefficients of functions in the class A or its subclasses. Hankel ma-
trices i.e., square matrices which have constant entries along the reverse diagonal (see
e.g., [6], [7] and [11], with further references), and the symmetric Toeplitz determinant
(see [2]) are of particular interest.

In [8] and [10], research was instigated into the study of Hermitian Toeplitz deter-
minants which elements are the coefficients of univalent functions, noting that Hermi-
tian Toeplitz matrices play an important role in functional analysis, applied mathematics
as well as in physics and technical sciences.

In this paper we continue this research by finding the sharp upper and lower bounds
of the second and third Hermitian Toeplitz determinants for the classes of strongly
starlike and strongly convex functions of order α.

We note that the problem of finding sharp bounds for the modulus of the coeffi-
cients an of strongly starlike functions is far from easy, with sharp bounds known only
when n = 2 and 3 [4], for n = 4 [16], and a partial solution in the case n = 5 [3]. On
the other hand, a complete solution in the case n = 5 has recently been obtained in [12],
when the coefficients an are real.

Let P be the class of all p ∈ H of the form

p(z) = 1+
∞

∑
n=1

cnz
n, z ∈ D, (5)

which have positive real part.
In the proof of the main result we will use the following lemma which contains the

Carathéodory result for c1 [5], and the well-known formula for c2 (e.g., [18, p. 166]).

LEMMA 1. If p ∈ P is of the form (5), then

c1 = 2ζ1, (6)

and
c2 = 2ζ 2

1 +2(1−|ζ1|2)ζ2 (7)

for some ζ1,ζ2 ∈ D.
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We first recall the following observation ([10]). Given a compact subclass F of
A , let A2(F ) := max{|a2| : f ∈ F}. If f ∈ A , then

detT2,1( f ) = 1−|a2|2,
and the result below is clear. Equality for the lower bound is attained by a function
in F which is extremal for A2(F ) and for the upper bound when f is the identity
function.

THEOREM 1. Let F be a compact subclass of A . If the identity is an element of
F , then

1−A2
2(F ) � detT2,1( f ) � 1.

Both inequalities are sharp.

2. Strongly starlike functions of order α

We compute the sharp upper and lower bounds of detT2,1( f ) and detT3,1( f ) for
functions in the class S ∗

α .
Let α ∈ (0,1] . Since A2(S ∗

α ) = 2α ([4]) with the extremal function f satisfying

z f ′(z)
f (z)

=
(

1+ z
1− z

)α
, z ∈ D, (8)

and since the identity function belongs to the class S ∗
α , by Theorem 1 we deduce

THEOREM 2. Let α ∈ (0,1] . If f ∈ S ∗
α , then

1−4α2 � detT2,1( f ) � 1.

Both inequalities are sharp.

In particular, for α = 1 i.e., for starlike functions we have the following [8]

COROLLARY 1. If f ∈ S ∗ , then

−3 � detT2,1( f ) � 1.

Both inequalities are sharp.

We next compute the upper and lower bounds of detT3,1( f ).

THEOREM 3. Let α ∈ (0,1] . If f ∈ S ∗
α , then

detT3,1( f ) �
{

1, 0 < α <
√

8/15,

(5α2 −1)(3α2−1),
√

8/15 � α � 1,
(9)

and

detT3,1( f ) �

⎧⎪⎨
⎪⎩

(5α2−1)(3α2−1), 0 < α < (
√

241−1)/30,

− (4α2 + α −1)2

(5α −1)(3α +1)
, (

√
241−1)/30 � α � 1.

(10)

All inequalities are sharp.
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Proof. Fix α ∈ (0,1] and let f ∈ S ∗
α be of the form (1). Then by (2),

z f ′(z)
f (z)

= (p(z))α , z ∈ D, (11)

for a certain p ∈ P of the form (5). Substituting the series (1) and (5) into (11), by
equating coefficients we obtain

a2 = αc1, a3 =
α
2

(
c2 +

3α −1
2

c2
1

)
. (12)

Since the class S ∗
α and detT3,1( f ) are rotationally invariant, by (6) we may assume

that c1 ∈ [0,2], i.e., that ζ1 ∈ [0,1] . Furthermore, (4) with (12), (6) and (7) gives

detT3,1( f ) =1−2α2c2
1 +

1
16

α2(3α −1)(5α +1)c4
1

− 1
4

α2|c2|2 +
1
4

α2(1+ α)c2
1Re(c2)

=15α4ζ 4
1 −8α2ζ 2

1 +1−α2(1− ζ 2
1 )2|ζ2|2 +2α3(1− ζ 2

1 )ζ 2
1 Re(ζ2)

(13)

for some ζ1,ζ2 ∈ D.

We now define

F(x,y, t) := 15α4x2 −8α2x+1+2α3(1− x)xycost −α2(1− x)2y2

for x,y ∈ [0,1] and t ∈ [0,2π ].
If ζ2 �= 0, then ζ2 = |ζ2|eiθ for a unique θ ∈ [0,2π). Thus by (13),

detT3,1( f ) = F(ζ 2
1 , |ζ2|,θ ). (14)

If ζ2 = 0, then by (13),

detT3,1( f ) = F(ζ 2
1 ,0,θ ) = F(ζ 2

1 ,0,0). (15)

We therefore find the maximum and minimum values of F.

A. Clearly

F(x,y, t) � F(x,y,0)

= 15α4x2 −8α2x+1+2α3(1− x)xy−α2(1− x)2y2

=: G(x,y),

(16)

for x,y ∈ [0,1] and t ∈ [0,2π ].
(a) For x = 1,

G(1,y) = 15α4−8α2 +1 = (5α2−1)(3α2−1), y ∈ [0,1].

(b) Let x ∈ [0,1). Set

yw :=
αx

1− x
.

(c) Next note that yw > 1 is valid if, and only if, 1/(α +1) < x < 1. Then

G(x,y) � G(x,1)

= α2(5α +1)(3α −1)x2 +2α(α −3)x+1−α2, y ∈ [0,1].
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(c1) If α = 1/3, then

G(x,1) = −16
27

x+
8
9

� 4
9
, x ∈ [3/4,1).

(c2) For α ∈ (0,1]\ {1/3}, let

xw :=
3−α

(5α +1)(3α −1)
.

(c3) Next suppose that α ∈ (0,1/3). Then xw < 0 and therefore

G(x,1) � G

(
1

α +1
,1

)
=

(4α2 −α −1)2

(α +1)2 , x ∈ [0,1). (17)

(c4) Finally suppose that α ∈ (1/3,1]. Then xw > 0, and xw > 1 if, and only if,
α ∈ (0,α1), where α1 := (1+

√
241)/30 ≈ 0.551. Consequently, for α ∈ (1/3,α1),

(17) holds.
Next we check when the condition 1/(α + 1) � xw � 1 holds. The inequality

xw � 1 is true if, and only if, α ∈ [α1,1]. In turn, the inequality

3−α
(5α +1)(3α −1)

� 1
α +1

which is equivalent to 4α2−α −1 � 0 holds if and only if α ∈ (1/3,α2], where α2 :=
(1+

√
17)/8 ≈ 0.6404. Therefore 1/(α +1) � xw � 1 is true only when α ∈ [α1,α2].

Thus for x ∈ [0,1),

G(x,1) � max

{
G

(
1

α +1
,1

)
,G(1,1)

}

= max

{
(4α2 −α −1)2

(α +1)2 ,(5α2 −1)(3α2−1)
}

.

Since the inequality

(4α2−α −1)2

(α +1)2 � (5α2−1)(3α2−1)

is equivalent to
15α3 +30α2−9α −8 � 0,

which holds if, and only if, α ∈ (1/3,α3], where α3 ≈ 0.585, we obtain for x ∈ [0,1),

G(x,1) �

⎧⎨
⎩

(4α2 −α −1)2

(α +1)2 , α ∈ [α1,α3],

(5α2 −1)(3α2−1), α ∈ (α3,α2].

For α ∈ (α2,1] we have xw < 1/(α +1), and it follows that

G(x,1) � G(1,1) = (5α2−1)(3α2−1), x ∈ [0,1).

(d) It remains to consider the case yw � 1 which holds only when 0 � x � 1/(α +
1). Thus

G(x,y) � G(x,yw) = (4α2x−1)2 � 1, y ∈ [0,1],
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since, as easy to check the last inequality, i.e., the inequality |4α2x−1| � 1 is true for
0 � x � 1/(α +1).

B. Clearly

F(x,y, t) � F(x,y,π)

= 15α4x2 −8α2x+1−2α3(1− x)xy−α2(1− x)2y2

=: H(x,y),

(18)

for x,y ∈ [0,1] and t ∈ [0,2π ].
(a) For x = 1,

H(1,y) = 15α4−8α2 +1 = (5α2−1)(3α2−1), y ∈ [0,1].

(b) Let x ∈ [0,1) and set

y′w := − αx
1− x

.

(c) Since y′w < 0,

H(x,y) � H(x,1)

= α(5α −1)(3α +1)x2−2α2(α +3)x+1−α2, x ∈ [0,1).

(c1) When α = 1/5,

H(x,1) = − 32
125

x+
4
25

� 88
125

, x ∈ [0,1).

(c2) For α ∈ (0,1]\ {1/5}, let

x′w :=
α +3

(5α −1)(3α +1)
.

(c3) Suppose that α ∈ (0,1/5). Then x′w < 0 and therefore

H(x,1) � H(1,1) = (5α2 −1)(3α2−1), x ∈ [0,1). (19)

(c4) Suppose that α ∈ (1/5,1]. Then x′w > 0, and x′w > 1 if and only if 15α2 +
α −4 < 0, i.e., for α ∈ (1/5,α4), where α4 := (

√
241−1)/30≈ 0.484. Consequently,

for α ∈ (1/5,α4), (19) holds.
For α ∈ [α4,1], we have 0 < x′w � 1, and therefore

H(x,1) � H(x′w,1) = − (4α2 + α −1)2

(5α −1)(3α +1)
.

C. Note that for ζ2 = 0, by (15),

detT3,1( f ) = F(ζ 2
1 ,0,0) = G(ζ 2

1 ,0) = H(ζ 2
1 ,0). (20)

Thus summarizing we obtain (9) from (14), (20) and (16), and from (14), (20) and
(18) we obtain inequality (10), which establish Theorem 3.

D. It therefore remains to show that the inequalities are sharp. Clearly, the identity
function is extremal for the first inequality in (9). The function f given by (8) for which
a2 = 2α and a3 = 3α2 is extremal for the second inequality in (9) and for the first one
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in (10). Let now (
√

241−1)/30 � α � 1. Set

τ :=

√
α +3

(5α −1)(3α +1)
.

Since τ � 1, the function

p̃(z) :=
1− z2

1−2τz+ z2 = 1+2τz+(4τ2−2)z2 + · · · , z ∈ D,

belongs to P. Thus the function f given by (11), where p is replaced by p̃, being of
the form (1) with

a2 = 2ατ, a3 = α
(
(3α +1)τ2−1

)
,

belongs to S ∗
α and is extremal for the second inequality in (10). Thus the proof of

Theorem 3 is complete. �

In particular, for α = 1 i.e., for starlike functions we deduce the following [8]

COROLLARY 2. If f ∈ S ∗ , then

−1 � detT3,1( f ) � 8.

Both inequalities are sharp.

3. Convex functions of order α

We compute the upper and lower sharp bounds for detT2,1( f ) and detT3,1( f ) in
the class of strongly convex functions of order α .

Let α ∈ (0,1] . Since by (24) below, A2(S c
α) = α with extreme function f satis-

fying

1+
z f ′′(z)
f ′(z)

=
(

1+ z
1− z

)α
, z ∈ D, (21)

and since the identity function belongs to the class S c
α , Theorem 1 gives

THEOREM 4. Let α ∈ (0,1] . If f ∈ S c
α , then

1−α2 � detT2,1( f ) � 1.

Both inequalities are sharp.

In particular, for α = 0 i.e., for convex functions we deduce [8]

COROLLARY 3. If f ∈ S c , then

0 � detT2,1( f ) � 1.

Both inequalities are sharp.

We next consider detT3,1( f ) and prove the following
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THEOREM 5. Let α ∈ (0,1] . If f ∈ S c
α , then

(1−α2)2 � detT3,1( f ) � 1. (22)

Both inequalities are sharp.

Proof. Fix α ∈ (0,1] and let f ∈ S c(α) be of the form (1). Then by (3),

(1−α) f ′(z)+ z f ′′(z) = (1−α)p(z) f ′(z), z ∈ D, (23)

for a certain p ∈ P of the form (5). Substituting (1) and (5) into (23), and equating
coefficients we obtain

a2 =
1
2

αc1, a3 =
1
6

α
(

c2 +
3α −1

2
c2
1

)
. (24)

Since the class S c
α and detT3,1( f ) are rotationally invariant, we may assume that c :=

c1 ∈ [0,2], i.e., that ζ1 ∈ [0,1]. Furthermore, (4) with (24), (6) and (7) gives

detT3,1( f ) =
1

144

(
144−72α2c2 + α2(9α2−1)c4−4α2|c2|2 +4α2c2 Re(c2)

)
=1−2α2ζ 2

1 + α4ζ 4
1 − α2

9
(1− ζ 2

1 )2|ζ2|2

=(1−α2ζ 2
1 )2 − α2

9
(1− ζ 2

1 )2|ζ2|2

�(1−α2ζ 2
1 )2 � 1,

which gives the upper bound in (22).
To prove the lower bound in (22) we observe that

detT3,1( f ) = (1−α2ζ 2
1 )2 − α2

9
(1− ζ 2

1 )2|ζ2|2

� (1−α2ζ 2
1 )2 − α2

9
(1− ζ 2

1 )2 � (1−α2)2.

(25)

Now note that the last inequality, written as

(1−α2ζ 2
1 )2− (1−α2)2 � α2

9
(1− ζ 2

1 )2,

is equivalent to
α2(1− ζ 2

1 )
(
17−9α2− (9α2−1)ζ 2

1

)
� 0,

which is true since
17−9α2 � (9α2−1)ζ 2

1 .

The above inequality is clearly true for α ∈ (0,1/3], and it is also true for α ∈ (1/3,1]
since

17−9α2 � 9α2 −1 � (9α2−1)ζ 2
1 .

Thus (25), i.e., the left inequality in (22) is established.
Equality for the upper bound in (22) holds for the identity, and for the lower bound

for the function f given by (21) for which a2 = α and a3 = α2. �



SHARP INEQUALITIES FOR HERMITIAN TOEPLITZ DETERMINANTS 331

In paricular, for the class of convex functions we deduce [8]

COROLLARY 4. If f ∈ S c , then

0 � detT3,1( f ) � 1.

Both inequalities are sharp.

We end by noting that Theorems 4 and 5 suggest the following conjecture.

CONJECTURE 1. Let α ∈ (0,1] and q ∈ N\ {1}. If f ∈ S c
α , then

(1−α2)q−1 � detTq,1( f ) � 1.

Both inequalities are sharp.
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étoilées, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 20, (1966), 59–75.

[21] J. STANKIEWICZ, On a family of starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A,
22–24, (1968–1970), 175–181.

[22] T. SUGAWA, A self-duality of strong starlikeness, Kodai Math. J., 28, (2005), 382–389.

(Received March 14, 2020) Bogumiła Kowalczyk
Department of Complex Analysis

Faculty of Mathematics and Computer Science
University of Warmia and Mazury in Olsztyn

ul. Słoneczna 54, 10-710 Olsztyn, Poland
e-mail: b.kowalczyk@matman.uwm.edu.pl

Adam Lecko
Department of Complex Analysis

Faculty of Mathematics and Computer Science
University of Warmia and Mazury in Olsztyn

ul. Słoneczna 54, 10-710 Olsztyn, Poland
e-mail: alecko@matman.uwm.edu.pl

Barbara Śmiarowska
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