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ON AN EQUATION CHARACTERIZING
MULTI-JENSEN-QUARTIC MAPPINGS AND ITS STABILITY

CHOONKIL PARK, ABASALT BODAGHI* AND TIAN-ZHOU XU

(Communicated by J. Pecari¢)

Abstract. In this paper, we introduce a new form of the multi-quartic mappings and then unify
the system of functional equations defining a multi-Jensen-quartic mapping to a single equation.
Applying a fixed point theorem, we study the generalized Hyers-Ulam stability of multi-Jensen-
quartic mappings. We present a few corollaries corresponding to some known stability outcomes
on the multi-quartic and the multi-Jensen-quartic functional equations.

1. Introduction

The first stability problem concerning of group homomorphisms was introduced
by Ulam [35] in 1940. The famous Ulam stability problem was partially solved by
Hyers [22] for linear functional equation of Banach spaces. Hyers’ theorem was gener-
alized in 1950 by Aoki [1] for additive mappings and in 1978 by Th. M. Rassias [32]
for linear mappings by considering an unbounded Cauchy difference. Subsequently, in
1982, J. M. Rassias [29] following the spirit of the approach of [28] and by replacing the
sum of two p-norms with the product of two p-norms obtained a result similar to that
of [32] for the stability of the linear mappings. A generalization of the Rassias theorem
was obtained by Gavruta [21] by replacing the unbounded Cauchy difference by a gen-
eral control function in the spirit of Rassias approach. The terminology Hyers-Ulam-
Rassias stability originates from these historical backgrounds and this terminology is
also applied to the cases of other functional equations.

Let V be a commutative group, W be a linear space, and n > 2 be an integer.
Recall from [16] that a mapping f : V" — W is called multi-additive if it is addi-
tive (satisfies Cauchy’s functional equation A(x+y) = A(x) +A(y)) in each variable.
Furthermore, f is said to be multi-quadratic if it is quadratic (satisfies the quadratic
functional equation Q(x+y)+ Q(x —y) = 20(x) +20(y)) in each variable [15]. In
[38], Zhao et al. showed that such mappings can be unified as an equation. Various
versions of multi-quadratic mappings which are recently studied can be found in [8]
and [33]. In [16] and [15], Ciepliniski studied the generalized Hyers-Ulam stability of
multi-additive and multi-quadratic mappings in Banach spaces, respectively (see also
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[38]). The mentioned mapping f is also called a multi-cubic if it is cubic (satisfies
the equation C(2x+y) +C(2x—y) =2C(x+y) +2C(x —y) + 12C(x)) in each variable
[24]). This notion of mappings was introduced by Bodaghi and Shojaee in [1 1] for the
first time. They also studied Hyers-Ulam stability and hyperstability of such mappings
in that paper. For other forms of multi-cubic mappings and functional equations which
are recently studied, we refer to [19] and [26]. For other forms of cubic functional
equations and their stabilities refer to [5], [9], [23] and [31].
The quartic functional equation

Qx+2y)+Q(x—2y) =4Q(x+y) +4Q(x —y) —6Q(x) +24Q(y).  (1.1)

was introduced for the first time by Rassias [30]. The functional equation (1.1) was
generalized by Bodaghi and Kang in [6] and [25], respectively. Motivated by equation
(1.1), Bodaghi et al. [7] defined the multi-quartic mappings and provided a characteri-
zation of such mappings. In other words, they showed that every multi-quartic mapping
can be shown a single functional equation and vice versa. Moreover, they established
the generalized Hyers-Ulam stability for the multi-quartic functional equations [7].

Prager and Schwaiger [27] introduced the notion of multi-Jensen mappings f :
V" — W (V and W being vector spaces over the rational numbers) with the connec-
tion with generalized polynomials and obtained their general form. The aim of this
note was to study the stability of the multi-Jensen equation. After that, the stability of
multi-Jensen mappings in various normed spaces have been investigated by a number
of mathematicians (see [17], [18], [28], [36] and [37]).

In this paper, we firstly define new multi-quartic mappings and characterize them
as an equation. Then, we introduce the multi-Jensen-quartic mappings which are Jensen
in each of some k variables and is quartic in each of the other variables and then
present a characterization of such mappings. In other words, we reduce the system
of n equations defining the multi-Jensen-quartic mappings to obtain a single functional
equation. We also prove the generalized Hyers-Ulam stability for multi-Jensen-quartic
functional equations by using the fixed point method which was introduced and used
for the first time by Brzdegk in [12] (see also [13]). For more applications of this ap-
proach for the stability of multi-Cauchy-Jensen, multi-additive-quadratic, multi-Jensen-
quadratic and multi-mixed additive-quadratic mappings in Banach spaces, we refer to
[2, 3,4, 10, 20, 34].

2. Characterization of multi-quartic mappings

It is shown in [30] that if the mapping 9 : V — W satisfies (1.1), then it is even
and Q(x) = 27#Q(2x) for all x € V. This result lead us to the following elementary
consequence.

PROPOSITION 2.1. The mapping Q : V — W satisfies (1.1) if and only if it is
Sfulfilling in

16 [a (”;y) +9 (x gzyﬂ =4[Q(x+y) +Q(x—y)]—-69(x)+249(y). (2.1)
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forall x,yeV.

Throughout this paper, N and Q stand for the set of all positive integers and ra-
tional numbers, respectively, and also Ny := NU{0},Ry :=[0,00),n € N. For any
leNo,meN, t=(t1,...,tn) € {—2,2}" and x = (x1,...,Xx,) € V", we write Ix :=
(Ix1,...,0xy) and tx := (1x1,...,lmXm ), where Lx stands, as usual, for the scalar prod-
uct of / on x in the linear space V.

Let n € N with n > 2 and x? = (x;1,%p2,...,%in) € V", where i € {1,2}. We
shall denote x! by x; if there is no risk of ambiguity. For xj,x, € V" and p; € Ny
with 0 < p; < n, put A" = {(Ns+1,Ns+2,...,Nn)| Nj e {xlj iXQj,xlj,XQj}} where
j€{l,...,n} and i € {1,2}. We denote .4;" by JV" Consider the subset .47

(p1:p2)
of A" as follows:
(;17172 —{‘Jt Nl,Nz, .y n)EJV”|Card{Nj:Nj:xij}=pi (iE{l,z})}.

Let V and W be vector spaces over Q. We say the mapping f: V" — W is
n-multi-quartic or multi-quartic if f is quartic in each variable (see equation (2.1)). In
this section, for such mappings, we use the following notations:

(M) = 3 1O, (2.2)

n
RS /V(P1 P2)

f('/V;u?z >::‘J‘tne;(;’ )f(mn,Z) (ZEV).

For each x,x; € V", we consider the equation

n n—p
16" z f (Xl +tx2) 2 224n PI=P2(—6)P124P2 f (J/Z ) ) (2.3)
ZE{ 2 2}” p2=0p1=0

By a mathematical computation, one can check that the mapping f(z1,...,2:)=a Hf;: 1 z;‘-
satisfies (2.3) and so this equation is said to be multi-quartic functional equation. In this
section, we show that the mapping f : V" — W is multi-quartic if and only if it satis-
fying the multi-quartic functional equation (2.3).

In the sequel, (Z) is the binomial coefficient defined for all n,k € N with n > k

by n!/(k!(n—k)!).
We say the mapping f : V" — W satisfies (has) the m-power condition in the
jth variable if

f(Zl7'”7Zj7172Zj7Zj+17"'7Zn) = sz(zl7'”7Zj717zjazj+l7'”7zn)7 (Zla"'vzn) S V.

REMARK 2.2. It is easily verified that if f is a multi-quartic mapping, then it
satisfies 4-power condition in all variables. But the converse is not true. Here, by
means of an example we show that 4-power condition in all variables for a mapping f
does not imply that it is multi-quartic. Let (<7, || - ||) be a Banach algebra. Fix the vector
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ap in &/ (not necessarily unit). Define the mapping & : &/ — & by h(ay,...,a,) =
T} lla ill*ag for (ai,...,a,) € &/". ltis easily verified that the mapping & satisfies
4-power condition in all variables but / is not multi-quartic even for n = 1, thatis h
does not satisfy in equation (2.1).

Let 0 <g<n—1. Put ;= {;x:=(0,...,0,x;,0,...,0,x;,,0,...,0) € V"},
where 1 < jj < ... < jq < n. In other words, J7; is the set of all vectors in V" that
exactly their ¢ components are non-zero.

We wish to show that the mapping f : V* — W satisfies equation (2.3) if and
only if it is multi-quartic. In order to do this, we need the next lemma.

LEMMA 2.3. If the mapping [ : V" — W satisfies equation (2.3) and has 4-
power condition in all variables, then f(x) =0 for any x € V" with at least one com-
ponent which is equal to zero.

Proof. We argue by induction on ¢ that for each 4x € 7, f(4x) =0 for 0< ¢ <
n— 1. For ¢ =0, by putting x; =x, = (0,...,0) in (2.3), we have

16" x 2"£(0,...,0)

n n—p;

— 2 2 4n=P1=P2(—6)P124P2 ( n ) <p1+p2) 2PITP2E(0, L 0).
p>=0p;=0 n—pir—p2 P1
2.4)

One can easy to check that

< n—q ><p1+172):<n—6]> ("—q—pz) 2.5)
n—q—pi1—p2 P1 P2 P1
for 0 < g <n—1.Using (2.5) for g = 0, we compute the right side of (2.4) as follows:

n n—pj;

Z Z 41PImP2(_6)P124P2 ( n ) (Pl +p2)2n_p1_p2f(0 ..,0)
n—pi—p2 p1 Y

p2=0p1=0
[ ( ) 43, (n pz)gnm’”(—@’” £(0....,0)
pr=0 \ P2 p=o\ Pl
[ ( )24P2 8—6)"" le £(0,...,0)
P2= 0 p2
= (24+2)"£(0,...,0) =26"f(0,...,0). (2.6)

It follows from relations (2.4) an (2.6) that f(0,...,0) = 0. Assume that for each
g—1X € Hy_1, f(4—1x) = 0. We show that if ,x € %, then f(,x) =0. By some
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suitable replacements in (3.1), we obtain

16" x 2" £(, x)
n—q n—

n— n—q p1+p2 n—pi—
4 PI=P2(_6)P124P2 M=P1=P2 £(9
=2 2 -6 (n—q—pl—pz)< p1 ) /(24%)

p2=0 p;=0

n—q n—
— +p2 o
— % 4n PImP2(—6)P124P2 n—q P1 n=pi—p2
2 2 ) (n—q—pl—pz p1 Sa)

p2=0 p1=0

_om lz (") S () s"wlm<—6>m] £

p2=0 P1=0 P

=27 [f (”p‘z" ) 2472(8 — 6)"“1"’2] £(gx)

p2=0
=279(244+2)"Uf (yx) = 279 x 26" f (4x) (2.7)
Hence, f(,x) = 0. This shows that f(x) =0 for any x € V" with at least one compo-
nent which is equal to zero. [J
We now prove the main result of this section.
THEOREM 2.4. If the mapping f : V" — W is multi-quartic, then f satisfies

equation (2.3). The converse is true provided that f has 4-power condition in each
variable.

Proof. Assume that f is a multi-quartic. We prove that f satisfies equation (2.3)
by induction on n. For n =1, it is trivial that f satisfies equation (2.1). If (2.3) is valid
for some positive integer n > 1, then

16ty f(xTHHan)

te{-2.2}ntl

. Xt 41Xl
=4x16 2 f( L 2 xl7n+l+x2,n+l)

re{-2,2}" 2
x| +1x)
+4x16" Z f( s xl,n+1_x27n+1>
re{—2,2}"
X4 tx 1 +1x)
—6x 16" Z f( s 2axl,nJrl) +24 x 16" Z f <X1 + x27x2,n+1>
re{-2,2}" 2 re{-2.2}" 2
n n—ps

S N T G PR,
P2=0p1=0se{-1,1}

n n—p»

—6 Y 4y 17124172f( o xl,n+1>

p2=0p1=0
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n n—p;
_|_24 2 2 4n7171*172(_ 17124172f< pl pz) x2,n+l>
p2=0p1=0
n+1 n+l—py h h
— n+l—pj— n+
— Z Z 4 PI=P2(_6)P124P2 f <‘/VP1 p2>
p2=0 p;=0

This means that (2.3) holds for n+ 1.
Conversely, suppose that f satisfies equation (2.3). Fix j € {1,...,n}. Set

fr(xj,x2) - :f(xlh'~~7x1j71»x1j+x2j7x1j+17~~»xln)
A f (K11, X 11, X0 — X2, X0 1+, XD 5
and
i) 1= (%11, X1 1, X2, XL 1 -5 K1) -

Putting xp; =0 forall k € {1,...,n}\ {j} in (2.3) and using Lemma 2.3, we get

X +2x i
n n—1 Lj 2j
16" x 2 f<X117...,xlj1, ) ,x1j+17...,x1n>

-1 X1 — 2%
+16"x 2" f <X11,~~~,x1j17 XL X

= 16""! Z ( )4""’1(—6)”12"_”1_1f*(M.hxzj)

r1=0
+16"! 2 (;1 _ 1>4nm(—6)p'2"plf(x11,~~~,xln)
pi1=1
+16"! 2 (;1_1>4"1’1(—6)1"12"1’1f*(x2j)
pi1=1

n—1 _
=4x32"1 Y (npll)4"_1_p1(—3)p1f*(x1j,x2j)

p1=0

n—1 _
—6x32"1'Y (”pl I ) 4IP3 F ()

p1=0
n—1
+24x32" 1Y (” N 1) 4rIPL(=3)PL % (xy5)
—o \ P1
P
=4 x 32" f* (xyjyx0)) — 6% 32" F (g1, ) 24 X 327 (x).
Note that we have used the following relation in the above computations.

n—1

S (") - a3y -

r1=0

Therefore, the above relation implies that f is quartic in the jth variable. Since j
is arbitrary, we obtain the desired result. [
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3. Characterization of multi-Jensen-quartic mappings

Let V and W be linear spaces, n € N and k € {0,...,n}. A mapping f: V" — W
is called k-Jensen and n — k-quartic (briefly, multi-Jensen-quartic) if f is Jensen in
each of some k variables and is quartic in each of the other variables (see equation
(2.1)). In this note, we suppose for simplicity that f is Jensen in each of the first k
variables, but one can obtain analogous results without this assumption. Let us note
that for k =n (k= 0), the above definition leads to the so-called multi-Jensen (multi-
quartic) mappings; some basic facts on Jensen mappings can be found for instance in
[27].

From now on, we assume that V and W are vector spaces over (Q. Moreover, we
identify x = (x1,...,x,) € V" with (xX,x"%) € V¥ x V=% where x* := (x1,...,x;) and
x" K= (xt11,...,%,), and we adopt the convention that (x",x%) := x" := (x°, x"). Put
X = (xi1,...,xp) € VE and XK = (xi401,.. ., x0m) € V'K, where i € {1,2}. Recall
that

JV(;hiz {mn - Nk+17Nk+27 K] n) € ‘/%cn‘ Card{NJ : NJ :)C[j} =Di (l € {1’2})}

We also use the following notation:

f <x J/(I}:l f’z)) = 2 f(xf,‘ﬁn) (ie{l1,2}).
m’leJ‘/(P1 ];’2)

In this section, we wish to show that the mapping f: V" — W is multi-Jensen-quartic
if and only if it satisfies the equation

(xk +xk x| +tx’§_k>

4n—3k
2 Y f 5

te{—2,2}n—k

n—k n—k—py
= 2 2 2 4”*"*171*172(_6)1’1241’2]0 (lel""’xlkk"/VZl §Z)> 3.1
JtsenJk€{1.2} p2=0 p1=0

for all xi-‘ = (Xi1,..., %) € VK and x?*k = (Xift1--->Xin) € vk where i € {1,2}.
Here, we reduce the system of n equations defining the multi Jensen-quartic map-
ping to obtain a single functional equation.

THEOREM 3.1. Let n € N and k € {0,...,n}. If the mapping [ :V" — W
is multi-Jensen-quartic mapping, then it satisfies equation (3.1). The converse holds
provided that f has 4-power condition in the last n — k variables.

Proof. (Necessity) Suppose that f is a multi-Jensen-quartic mapping. Since for
k € {0,n} ourassertion follows from [28, Lemma 1.1] and Theorem 2.4, we can assume
that k € {1,...,n— 1}. For any "% € V"% define the mapping g .« : V¥ — W by
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gk (xF) := f(x*,x"7K) for x¥ € VX, By assumption, g« is k-Jensen, and hence
Lemma 1.1 from [28] implies that

2kg n—k (’X:]f—’—x}é

k
2 ) = 2 gx"’k(lelrszZV"axjkk)y X]{,XIEEV .
Jtsd2seik€{1,2}

It now follows from the above equality that

Kpxk o B
2kf< 1 5 2,)(" k) = 2 f(lel,szz’.“,xjkk’xn k) (32)
Jtjaseik€{1.2}

for all x’f,x’ﬁ € VF and x* % € V"% Similar to the above, for any x* € V¥, consider the
mapping iy : V"F — W defined via h (x" %) := f(x*,x"F), x" 7% € v~k which is
n — k-quartic. It now Theorem 2.4 implies that

—k —k
16" * Z h (xnli—;txg )

te{—2,2}nk
n—k n—k—p>
_ Z Z 4n—k—P1—P2(_6)P124P2h ‘ (J/;l ;2 ) (3.3)
p2=0 p1=0 ’

n

for all x’f‘k 7xz_k € V"~*_ By the definition of h, , relation (3.3) is equivalent to

+txn —k
16"—F K X 2
(A

te{-2,2}n*
n—k n—k—p2

_ Z Z 4n—k—P1—p2(_6)P124P2f< JVZI 22)) (3.4)
p2=0 p1=0
for all ¥~ * x37% € V"% and x* € V¥. Plugging equality (3.2) into (3.4), we get
+xk X —|—tx" —k
dn—3k A 2 4
> (s

te{—2,2}n—k

X} X K
> > f<xj11»szz»-~~»xj'kk7f2>

te{ =22}k j1,ja, e jk€{1,2}
n—k n—k—pz

n—k—pi— D D n—k
4 n pz(_6) 124 2J (x.f117'~~7xjkk7‘/Vp1 P2)>
Jtsik€{1,.2} p2=0 p1=0

for all X = (xi1,...,x) € VX% = (X1 ,x) € V'K and i € {1,2}, which
proves that f satisfies equation (3.1).
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(Sufficiency) Assume that f satisfies equation (3.1). Putting x’%’k =0in(3.1)and
using the assumption, we obtain

k4 xk
pdn=3k y onk g (xl 42‘ 2 ’x;f—k)

n—k —k

— 3 D (” )4nkm X (—6)P1 x 21 k=P
Jniell 2y p=o \ Pl
X 16" K (X1, X525 Xk, 267 F)

= > (8—6)"*x 16" *f(xj,1,X)52, - Xjpts X))
Jisd2seJk€{1,2}

_ 25n—5k n— k) .

F 1,552, - X X
Jisdasek€{1,2}

Thus,

Kk —
2kf (1727)(}; k) = 2 i 2}f(xj117xj22a"'7~xjkkax1 k) (35)
J1sJ25e0s I35

for all XX,x4 € V" and ¥I% € V"7%. In view of [28, Lemma 1.1], we see that f is
Jensen in each of the k first variables. Furthermore, by putting x’f = x’é in (2.3), we

have
0 xRy
24 3k 2 f (xl, )
te{—2,2}n—k
n—k n—k—p>
:2" 2 2 4n7k*171*172( )p124p2f<x1"/1/(1}:1 ;2)>
p2=0 p1=0
and so
x| Xy
6ty f<xf« 7>
te{—2,2}nk
n—k n—k—p>
=3 3 arkren(_gpiognf (Xll(w/‘/(;l ﬁﬁ)
p2=0 p1=0

for all x¥ € VK and ¥/ %,x47% € V"% In light of Theorem 2.4, we see that f is a
multi-Jensen-quartic mapping. [J

4. Stability results of (3.1)

In this section, we prove the generalized Hyers-Ulam stability of equation (3.1)
by a fixed point result (Theorem 4.1) in Banach spaces. Throughout, for two sets X
and Y, the set of all mappings from X to Y is denoted by YX . Here, we introduce the
oncoming three hypotheses:
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(Al) Y is a Banach space, .’ is a nonempty set, j € N, g1,...,8;: . — . and
Ll,...,Lj:Y—>R+,
(A2) .7 : Y — Y is an operator satisfying the inequality

J

1.7 A (x) < X Lix) 1A (gi(x)) — u(gi(x))]

i=1

. Auey’ xe,

(A3) A: Rf — Rf is an operator defined through
J )
AS(x) ==Y Li(x)d(gi(x)), SeR xes.
i=1

In the following, we present a result in fixed point theory [13, Theorem 1] which
plays a key tool in obtaining our aim in this paper.

THEOREM 4.1. Let hypotheses (A1)-(A3) hold and the function 0 : .¥ — R
and the mapping ¢ : ¥ — Y fulfill the following two conditions:

170(x) = ¢l <O(x), 6°(x):= %AZO(X) <o (xe).

Then, there exists a unique fixed point v of 7 such that
[o(x) -y <67(x) (x€).
Moreover, y(x) = limy .. 7'¢(x) forall x € ..

Here and subsequently, for the mapping f: V" — W, we consider the difference
operator Zy o f V" x V" — W by

n— kxR ek
Dy 31:) =247 3 f(l L

te{-22}nk

n—k n—k—p>
— Z Z z 4r=k=pi=p2(_6)P124P2
J1reeJk€41,23 P2=0 p1=0

n—k
X f (lel, Ce ’xjkk7‘/V(p1,p2)>

for all xf-‘ = (x,-h - ,xik) € VK and x?fk = (xi7k+1, ... ,x,-n) e vk,
‘We have the next stability result for the functional equation (3.1) which is our main
result in this section.

THEOREM 4.2. Let B € {—1,1} be fixed, V be a linear space and W be a Ba-
nach space. Suppose that v : V" x V' — R is a mapping satisfying the equality

. Ly
lim (m) u/(zﬁlxl,Zﬁlxz) =0 (41)

j——
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forall x; = (XX, X775 xp = (X,57%) e v and

1 1 ! B+t
_. E: Bl+55— o 4
o= et (4n=3k) B =5 (2(4n3k)ﬁ) # <2 . 0) < 4.2)

forall x e V". Assume also [ : V" — W is a mapping satisfying the inequality

”@(J,q)f(xlv)Q)H < W(x17x2) 4.3)

Sorall x1,x; € V" and f(x) =0 for any x € V" with at least one component which is
equal to zero, then there exists a unique solution % : V" — W of (3.1) such that

1) = F ()| <¥(x) (4.4)

forall x= (kX1 %) e v,

Proof. Replacing x; = (xk,"7%) and xy = (5,x27%) by 2x; = 2(x, 2" %) and
(0,0) in (4.3) respectively, and using the assumptions, we have

n—k
24 K ) - Y (" o k) 4P (—6)P1 X 2" f(2x) | < i (2x,0),
p1=0 !
4.5)
where x = x| = (x}, ¥/ %) € V" Since
n—k
2 <}’l — k) 8n7k7171 (_6)171 _ (8 _ 6)n7k _ 2n7k,
pi=o \ P!
relation (4.5) shows that
_ 1
170 =274 < Zrw(2x0) (46)
forall x € V"*. Set
1 B+l 1 n
- x g4l L amB %
0(x): oA (2 Ty, o) and T0(x) = s 0(2P) (0w,
Then, relation (4.6) can be modified as
1f(x) = Tf)<0(x)  (xeV"). (4.7)

Define An(x) := 2(4n+3,€)ﬁn(2/3x) for all n € RY",x € V. We now see that A has the
form described in (A3) with . = V", g;(x) =2Bx and L, (x) = 2(4n+3k>ﬁ forall xe V".
Furthermore, for each A, u € WY and x € V", we get

1736) = 7)) = | rtsp [2280) - 1289 | € 119 ten) - ero
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The above relation shows that the hypothesis (A2) holds. By induction on /, one can
check that for any / € Ny and x € V", we have

1 ! 1 1 ! Bi1
! ,_ Bl \ Bl+
AO(x):= (2(4n—3k)/3> 0(2"x) S B (2(4n—3k)/3> 11/(2 2 x,O)

(4.8)

for all x € V"*. The relations (4.2) and (4.8) necessitate that all assumptions of Theorem
4.1 are satisfied. Hence, there exists a unique mapping .% : V" — W such that

1

__~_z»0B n
S 3k)ﬁJ(Z X) (xevh),

F(x) = hm(ﬂlf)( )=
and (4.4) holds. We shall to show that

1 [
||@(J7q)(§lf)(x17xz)|| < <m> u/(zﬁlxl,zﬁlxz) 4.9)

forall x;,x, € V" and [ € Ny. We argue by induction on /. The inequality (4.9) is valid
for [ =0 by (4.3). Assume that (4.9) is true for an [ € Ny. Then
12,4 (T ) (x1,x2)|

ko &k n—k —k
=23y L1 (X1 X X4
—HZ 7(9 f)< 2 2

te{-2,2}n—k

n—k n—k—p2

-y y ¥ grk=pi=pa(_g)P1o4P2 (71 f) (lehmyxlkkﬂ/’/n k )H

(p1.p2)
Jreejk€{1,2} p2=0 p1=0

_ # 4n—3k I ﬁx]f +X§ ﬁxif_k +txg_k
= s | ? 2 (TP
te{-2,2}nk

n—k n—k—p2

_2 z z 4”71‘71”7172(—6)”'24P2(§lf) (2 Xjlse zﬁxlkk72 '/V; f))) H
Jlsjk€{1,2} p2=0 p1=0 1,02

1 I+1
_ W |20 NP0, 2x) | < (m> (2B, 2B, )

forall x;,x, € V". Letting [ — e in (4.9) and applying (4 1), we arrive at ;)7 (x1,%2)
=0 for all x;,x, € V". This means that the mapping .# satisfies (3.1), and hence the
proof is now complete. []

Let A be a nonempty set, (X,d) a metric space, y € R4", and .%|,.%, operators
mapping a nonempty set D C X4 into X A" We say that operator equation

F19(ar,....an) = F2¢(ay,...,an) (4.10)
is y-hyperstable provided every ¢ € D satisfying inequality

d(F1po(ay,...,an), Fr@o(ai,...,an)) < Wlay,...,ay), ai,...,ap €A,
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fulfils (4.10); this definition is introduced in [14]. In other words, a functional equation
Z is hyperstable if any mapping f satisfying the equation .% approximately is a true
solution of .% . Under some conditions the functional equation (3.1) can be hyperstable
as follows.

COROLLARY 4.3. Let 6 > 0. Suppose that p;; >0 for i€ {1,2} and je{1,...,n}
Sfulfill 21-2:1 Z;f: | Dij #4n—3k. Let V be a normed space and W be a Banach space. If
f: V" — W is a mapping satisfying the inequality

1 2s.g)f (x1,%2)| 5HH||qup”

i=1j=

Sorall x1,x; € V" and f(x) =0 for any x € V" with at least one component which is
equal to zero, then f is a unique solution of (3.1).

In the following corollary, we show that the functional equation (3.1) is stable.
Since the proof is routine, we include it without proof.

COROLLARY 4.4. Let 8§ >0 and o € R with o # 4n—3k. Let also V be a
normed space and W be a Banach space. If f:V" — W is a mapping satisfying the
inequality

HMN

n
Z [l 1

Sorall x1,x; € V" and f(x) =0 for any x € V" with at least one component which is
equal to zero, then there exists a unique solution F : V" — W of (3.1) such that

20( n
[f(x) = F @) < W6 2,1 HXIJ'”a
j=

|2 (1.q).f (x1,%2)]

forall x e V".

Putting k£ = 0 in Theorem 4.2, we obtain the upcoming result on the stability of
multi-quartic mappings.

COROLLARY 4.5. Let § > 0. Let also V be a normed space and W be a Banach
space. If f: V" — W is a mapping satisfying the inequality

n n—p
16" Y f<xl4;x2) -y 224'1 PI=P2(_G\P14P2 f (‘/Vz}; pz))

te{-2.2}" p2=0p1=0

<5

Sorall x1,x; € V" and f(x) =0 for any x € V" with at least one component which is
equal to zero, then there exists a unique solution 2 : V" — W of (2.3) such that

0
[f(x) = 2(x) < m

forall xe V",
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