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APPROXIMATION PROPERTIES OF COMBINATION OF

MULTIVARIATE AVERAGES ON TRIEBEL–LIZORKIN SPACES

SHAOYONG HE

(Communicated by Y. Sawano)

Abstract. The purpose of this paper is to establish the rate of approximation of the combination
of some generalized multivariate average on Triebel-Lizorkin spaces and obtain its equivalent
relation to the K-functionals. These results significantly generalize some known results in the
literatures.

1. Introduction

Let γ ∈ R and Iγ be the Riesz potential of order γ defined on functions or distri-
butions g via the Fourier transform

Îγ(g)(ξ ) = |ξ |−γ ĝ(ξ ).

The Laplacian Δ = ∂ 2

∂x2
1
+ ∂ 2

∂x2
2
+ · · ·+ ∂ 2

∂x2
n

on the n -dimensional Euclidean space Rn

satisfies Δ = −I−2 .
Fix a Schwartz function ψ satisfying

supp ψ̂ ⊂ {ξ :
1
2

� |ξ | � 2}.

Let ψ j(·) = 2 jnψ(2 j·) and require that ψ̂ satisfies

∑
j∈Z

|ψ̂(2− jξ )|2 = 1, ξ ∈ Rn \ {0}.

Let S (Rn) be the Schwartz space and S ′(Rn) be the space of tempered distributions.
For s ∈ R , 0 < p,q < ∞ , the Triebel-Lizorkin space Ḟs

p,q(Rn) is defined by

Ḟs
p,q(R

n) =
{

f ∈ S ′(Rn)/P(Rn) : ‖ f‖Ḟs
p,q(Rn) =

∥∥(
∑
j
(2s j|ψ j ∗ f |)q) 1

q
∥∥

Lp(Rn) < ∞
}

,
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where P(Rn) denotes the set of all polynomials on Rn . It is well known that the
function ψ in the above definition is flexible and any two different functions ψ give
the equivalent norms. With the rapidly developing wavelet analysis, one important
function space, the Triebel–Lizorkin space Ḟs

p,q(R
n) arises and is well studied (see

[11, 12, 21]). The significance of the space Ḟs
p,q(Rn) is that it provides a uniform

setting of many important function spaces in analysis, such as Lebesgue spaces, Hardy
spaces, Sobolev spaces, BMO spaces, Lipschitz spaces, etc. Particularly, we know that
Ḟ0

p,2(R
n) ≈ Hp(Rn) if 0 < p � 1 and Ḟ0

p,2(R
n) ≈ Lp(Rn) if 1 < p < ∞ . We recall that

the Hardy spaces Hp(Rn),0 < p < ∞ , is the space of all distributions f satisfying

‖ f‖Hp(Rn) =
∥∥sup

t>0
|ϕt ∗ f |∥∥Lp(Rn) < ∞

for some ϕ ∈ S (Rn) with
∫

ϕ �= 0, where ϕt(x) = 1
tn ϕ( x

t ) . The symbol S (Rn)
denotes the set of Schwartz functions in Rn .

Suppose that t > 0, γ > 0, 0 < p < ∞ , 0 < q < ∞ and f ∈ Ḟs
p,q(R

n) . Let
Kγ ( f ,t)Ḟs

p,q(Rn) denote the γ th order K-functional of f , that is

Kγ ( f , t)Ḟ s
p,q(Rn) = inf

g∈Ḟs,γ
p,q(Rn)

{‖ f −g‖Ḟs
p,q(Rn) + tγ‖I−γ(g)‖Ḟs

p,q(Rn)
}
, (1)

where
Ḟs,γ

p,q(R
n) = {g ∈ Ḟs

p,q(R
n) : I−γ(g) ∈ Ḟs

p,q(R
n)}.

The K-functional of f , Kγ ( f ,t)Ḟs
p,q(Rn) is used to measure the smoothness of f in

Ḟs
p,q(Rn) . Similarly, for t > 0, γ > 0 and 0 < p < ∞ , we use the symbol Kγ ( f ,t)Hp(Rn)

to denote γ th order K-functional of f

Kγ ( f , t)Hp(Rn) = inf
g∈Hp,γ (Rn)

{‖ f −g‖Hp(Rn) + tγ‖I−γ(g)‖Hp(Rn)
}
,

where
Hp,γ(Rn) = {g ∈ Hp(Rn) : I−γ(g) ∈ Hp(Rn)}.

If f ∈ Lp(Rn) , 1 � p � ∞ , we can also use the symbol Kγ ( f ,t)Lp(Rn) to denote γ th
order K-functional of f . In fact, it is convenient to use the K-functionals to deal with
the approximation of operators (see [8, 9, 10]).

Belinsky, Dai and Ditzian in [2] considered the average on a sphere with radius t
defined as

At( f )(x) =
∫

Sn−1
f (x− ty′)dσ(y′),n � 2,

where Sn−1 is the unit sphere with the surface Lebesgue measure normalized by∫
Sn−1

dσ(y′) = 1,

and y′ = y/|y| is the unit vector for any y �= 0. They obtained the following equivalent
relation

‖At( f )− f‖Lp(Rn) ≈ K2( f ,t)Lp(Rn)
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for all 1 � p � ∞ .
Later, Dai and Ditzian in [7] studied the combination of multivariate averages

Al,t( f )(x) =
−2(2l

l

) l

∑
j=1

(−1) j
(

2l
l− j

)
Ajt( f )(x),

where l and j are positive integers. And they proved the equivalent relation

‖Al,t( f )− f‖Lp(Rn) ≈ K2l( f ,t)Lp(Rn) (2)

for n � 2 and 1 � p � ∞ .
Recently, Fan and Zhao extended the result in [11] to consider the combination for

a more general operator, i.e.

ℑβ
l,t( f )(x) =

−2(2l
l

) l

∑
j=1

(−1) jSβ
jt( f )(x),

where

Sβ
t ( f )(x) =

Γ(β + n
2 )

π
n
2 Γ(β )

t−n
∫
|y|�t

(
1−|y

t
|2

)β−1
f (x− y)dy.

Γ(z) denotes the usual gamma function with z ∈ Z and Rez > 0. This family of op-

erators Sβ
t has received extensive study in the history (see e.g. [1, 4, 17, 18, 19]). By

taking Fourier transform, one can embed the operator At in an analytic family Sβ
t with

the complex parameter β , so we get

S0
t ( f )(x) = At( f )(x).

If taking β = 0, then we have

ℑ0
l,t( f )(x) = Al,t( f )(x).

Moreover, Fan and Zhao [11] obtained the following theorem.

THEOREM A. ([11], Theorem 1.1, p. 79) Let l ∈ Z+, β � 0 , n � 2 , p � n−1
n−1+β

and t > 0 . Then for f ∈ Hp(Rn) , we have

‖ℑβ
l,t( f )− f‖Hp(Rn) ≈ K2l( f ,t)Hp(Rn).

Inspired by the above results, it is of interest to know whether we have a uniform
equivalent relation

‖ℑβ
l,t( f )− f‖Ḟs

p,q(Rn) ≈ K2l( f ,t)Ḟ s
p,q(Rn) (3)

holds for n � 2 , s ∈ R and 0 < p,q < ∞, where the notation of K2l( f ,t)Ḟ s
p,q(Rn) is

given by (1).
In this paper, our main purpose is to address this question. The first aim of this

paper is to establish the following theorem for different p and q .
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THEOREM 1. Let l ∈ Z+ , β � 0 , n � 2 and t > 0 . For any 1 < p,q < ∞ or
0 < q � p < 1 , we have

‖ℑβ
l,t( f )− f‖Ḟs

p,q(Rn) ≈ K2l( f ,t)Ḟ s
p,q(Rn)

if p > n−1
n−1+β . Besides, for any 0 < p � 1 < q < ∞ , we have

‖ℑβ
l,t( f )− f‖Ḟs

p,q(Rn) ≈ K2l( f ,t)Ḟ s
p,q(Rn).

if p � n−1
n−1+β .

Note that Theorem 1 returns to Theorem A when taking 0 < p < ∞,q = 2, since
Ḟ0

p,2(R
n) = Hp(Rn) . Moreover, let p � 1,q = 2 and γ = 0, then the result is the same

as (2) obtained in [7].
Let η be a radial C∞ function satisfying η(ξ )≡ 1 if |ξ |� 1 and supp(η)⊂ {ξ :

|ξ |� 2}. And we define ηt f by η̂t f (ξ ) = η(tξ ) f̂ (ξ ). To prove Theorem 1, we begin
by proving the following auxiliary theorem.

THEOREM 2. Let l ∈ Z+,s ∈ R , 0 < p,q < ∞ and t > 0 . Suppose f ∈ Ḟs
p,q(Rn) ,

then we have

‖ηt( f )− f‖Ḟs
p,q(Rn) + t2l‖Δlηt( f )‖Ḟs

p,q(Rn) ≈ K2l( f ,t)Ḟ s
p,q(Rn),

where Δlh = Δ(Δl−1h) .

From Theorem 2, to show Theorem 1, it suffices to prove that

‖ℑβ
l,t( f )− f‖Ḟs

p,q(Rn) ≈ ‖ηt( f )− f‖Ḟs
p,q(Rn) + t2l‖Δlηt( f )‖Ḟs

p,q(Rn)

for different p and q . To this end, we will write the multiplier of (ℑβ
l,t ( f )− f ) as a

sum of two multipliers, where one multiplier is supported in a neighborhood of zero
and the other is supported away from zero. We will check that the first multiplier is a
Triebel-Lizorkin multiplier with the help of a well-known Triebel-Lizorkin multiplier
theorem (see Theorem B below). For the second multiplier, we will reduce it to a
sum of multipliers of wave operators, then invoke the boundedness of wave operator
on Triebel-Lizorkin spaces obtained by Cao, Chen and Fan [3] achieve our target (see
Theorem C in Section 4).

Finally, we also consider the iterates (At)N( f ) on the Triebel-Lizorkin space and
get the following theorem.

THEOREM 3. Let n � 2 and t > 0 , s ∈ R . For any 1 < p � q � 2 or 2 � q �
p < ∞ , we have

‖Δ(AN
t ( f ))‖Ḟ s

p,q(Rn) 
 t−2‖ f‖Ḟs
p,q(Rn)

if | 12 − 1
p | �

N( n−1
2 )−2

n−1 . For any 1 < p,q < ∞ or 0 < q � p � 1 , we have

‖Δ(AN
t ( f ))‖Ḟ s

p,q(Rn) 
 t−2‖ f‖Ḟs
p,q(Rn)
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if | 12 − 1
p | <

N( n−1
2 )−2

n−1 ; And for 0 < p � 1 < q < ∞ , we have

‖Δ(AN
t ( f ))‖Ḟ s

p,q(Rn) 
 t−2‖ f‖Ḟs
p,q(Rn)

if | 12 − 1
p | �

N( n−1
2 )−2

n−1 .

This paper is organized as follows. In the next section, we will introduce some
preliminary knowledge. Section 3 is devoted to the proof of Theorem 2. Finally, in
section 4, we will give the proofs of Theorems 1 and 3.

Throughout this paper, the letter C stands for a positive constant which is inde-
pendent of the essential variables, but whose value may vary from line to line. We use
the notion A 
 B to mean that there exists a positive constant C independent of all es-
sential variables such that A �CB . The notion A ≈ B means that there are two positive
constant C1 and C2 independent of all essential variables such that C1A � B � C2A.

2. Preliminary knowledge

Let Tμ be a convolution operator and T̂μ( f )(ξ ) = μ(ξ ) f̂ (ξ ) , where μ is called
the multiplier of Tμ . If Tμ is a bounded operator on Ḟs

p,q(Rn) , then we say that μ is a
Ḟs

p,q(R
n) multiplier and denote by ‖μ(·)‖Ḟs

p,q(Rn)→Ḟs
p,q(Rn) the operator norm of Tμ .

Let 0 < p < ∞ . Denote by [r] the largest integer less than or equal to the real
number r . The following Ḟs

p,q(R
n) multiplier theorem will be used repeatedly in the

sequel.

THEOREM B. ([6], Theorem 5.1, p. 851) Let s ∈ R , 0 < p < ∞ , and 0 < q �
∞ . If for all multi-indices α satisfying |α| � [max{ n

p , n
q}+ n

2 ]+ 1 , μ(ξ ) satisfies the
following condition

sup
ξ∈Rn

|ξ ||α ||Dα μ(ξ )| � A,

then

‖μ(·)‖Ḟs
p,q(Rn)→Ḟs

p,q(Rn) � C,

where C is a positive constant depending only α , the dimension n and the constant A.
Also, if A > 1 , then C is not larger than AN(α ,n) , where N(α,n) is an integer depending
only on α and n.

By an easy scaling argument, it is easy to get the following lemma.

LEMMA 1. Let 0 < p < ∞,0 < q < ∞ and let μ be an Ḟs
p,q(R

n) multiplier. Then
for any t > 0 , μ(t·) is also an Ḟs

p,q(R
n) multiplier. Moreover,

‖μ(·)‖Ḟs
p,q(Rn)→Ḟs

p,q(Rn) = ‖μ(t·)‖Ḟs
p,q(Rn)→Ḟs

p,q(Rn).
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The Bochner-Riesz multiplier Bδ
t,γ is defined by

̂Bδ
t,γ ( f )(ξ ) = (1− (t|ξ |)γ)δ

+ f̂ (ξ ), f ∈ Ḟs
p,q(R

n)∩L2(Rn),

where t , γ and δ are positive.
In fact, if we set Ḟs,γ

p,q,2(R
n)= {g∈ Ḟs

p,q(R
n)∩L2(Rn) : I−γ(g)∈ Ḟs

p,q(R
n)∩L2(Rn)},

then the K-functional Kγ ( f ,t)Ḟ s
p,q(Rn) has the following property:

Kγ ( f , t)Ḟs
p,q(Rn) = inf

g∈Ḟs,γ
p,q,2(R

n)

{‖ f −g‖Ḟs
p,q(Rn) + tγ‖I−γ(g)‖Ḟs

p,q(Rn)
}
.

We only need to prove that for every g ∈ Ḟs,γ
p,q(Rn) and any ε > 0, there exists a g1 ∈

Ḟs,γ
p,q,2(R

n) such that

‖g−g1‖Ḟs
p,q(Rn) +‖I−γ(g)− I−γ(g1)‖Ḟs

p,q(Rn) < ε. (4)

Let py(x) = Cn
y

(y2+x2)(n+1)/2 be the Poisson kernel. It is easy to see that py ∗ g ∈
Ḟs

p,q(Rn)∩L2(Rn) and

̂[I−γ(py ∗ g)](ξ ) = |ξ |γe−2πy|ξ |ĝ(ξ ) = ̂[py ∗ I−γ(g)](ξ ).

Thus, I−γ(py∗g) = py ∗ I−γ(g)∈ Ḟs
p,q(Rn)∩L2(Rn) . From the properties of the Poisson

integral, we get

‖ f − py ∗ g‖Ḟs,γ
p,q(Rn) +‖I−γ(g)− py ∗ I−γ(g)‖Ḟs,γ

p,q(Rn) → 0(y → 0+).

Hence, (4) is proved.
Next, we prove the following lemma. It is an analogue of Theorem 3.1 in [14]

with a slight difference.

LEMMA 2. Let 0 < p < ∞ , 0 < q < ∞ , γ > 0 and t > 0 . If δ > [max{ n
p , n

q}+
n
2 ]+1 , then for f ∈ Ḟs

p,q(R
n) , we have

‖Bδ
t,γ ( f )− f‖Ḟs

p,q(Rn) ≈ Kγ ( f ,t)Ḟ s
p,q(Rn).

Proof. On one hand, let m(ξ ) = (1−|ξ |γ)δ
+ . For every g ∈ Ḟs,γ

p,q,2(R
n) , we have

̂[Bδ
t,γ (g)−g](ξ ) = (m(tξ )−1)ĝ(ξ ) = tγ m(tξ )−1

|tξ |γ Î−γg(ξ ).

Let u(ξ )= (1−|ξ |γ )δ
+−1

|ξ |γ . If |ξ |� 1, for every multi-indices α satisfying |α|� [max{ n
p , n

q}
+ n

2 ]+1 and ξ ∈ Rn \ {0} , we have

Dαu(ξ ) = Dα(|ξ |−γ(m(ξ )−1))

= ∑
β�α

Cβ (Dα−β |ξ |−γ)Dβ (m(ξ )−1)

= (m(ξ )−1)Dα(|ξ |−γ)+ ∑
0 �=β�α

Cβ (Dα−β |ξ |−γ)Dβ m(ξ )
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Since |m(ξ )−1|� C|ξ |γ , there holds

|Dαu(ξ )|
� |ξ |γ |ξ |−γ−|α | + ∑

0 �=β�α
Cβ |ξ |−γ−|α |+|β ||ξ |−|β |+γ

� C|ξ |−|α |.

If |ξ | > 1, then

|Dαu(ξ )| � |ξ |−γ−|α |.

From Theorem B, we know that u is a multiplier on Ḟs
p,q(Rn) . Similarly, we can show

that m is also a multiplier on Ḟs
p,q(R

n) when δ > [max{ n
p , n

q}+ n
2 ]+1. Hence for any

f ∈ Ḟs
p,q(Rn) and g ∈ Ḟs,γ

p,q,2(R
n) , we have

‖Bδ
t,γ ( f )− f‖Ḟs

p,q(Rn)

� C
{‖Bδ

t,γ( f )−Bδ
t,γ (g)‖Ḟs

p,q(Rn) +‖Bδ
t,γ(g)−g‖Ḟs

p,q(Rn) +‖ f −g‖Ḟs
p,q(Rn)

}
� C

{‖Bδ
t,γ( f )−Bδ

t,γ (g)‖Ḟs
p,q(Rn) + tγ‖I−γg‖Ḟs

p,q(Rn) +‖ f −g‖Ḟs
p,q(Rn)

}
� C

{‖ f −g‖Ḟs
p,q(Rn) + tγ‖I−γg‖Ḟs

p,q(Rn)
}

� CKγ ( f , t)Ḟ s
p,q(Rn).

The last inequality follows from (4).
One the other hand, it is easy to obtain that (Bδ

t,γ ( f )− f ) ∈ Ḟs
p,q(R

n)∩L2(Rn) for
any f ∈ Ḟs

p,q(R
n)∩ L2(Rn) . Thus, when writing v(ξ ) = |ξ |γm(ξ )(1−m(ξ ))−1 , for

f ∈ Ḟs
p,q(R

n)∩L2(Rn) , we have

̂I−γ(Bδ
t,γ f )(ξ ) = |ξ |γm(tξ ) f̂ (ξ )

= t−γv(tξ )(m(tξ )−1) f̂ (ξ )

= t−γv(tξ ) ̂[Bδ
t,γ( f )− f ].

If we can prove v is a multiplier on Ḟs
p,q(R

n) , then

‖I−γ(Bδ
t,γ f )‖Ḟs

p,q(Rn) � Ct−γ‖Bδ
t,γ( f )− f‖Ḟs

p,q(Rn).

Consequently,

Kγ( f , t)Ḟ s
p,q(Rn) � ‖ f −Bδ

t,γ f‖Ḟs
p,q(Rn) + tγ‖I−γ(Bδ

t,γ f )‖Ḟs
p,q(Rn)

� C‖Bδ
t,γ ( f )− f‖Ḟs

p,q(Rn).

for all f ∈ Ḟs
p,q(R

n)∩L2(Rn) and therefore for all f ∈ Ḟs
p,q(R

n) .
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Our remaining task is to show that v satisfies the condition in Theorem B. If |ξ |>
1, then v(ξ ) = 0. When |ξ | � 1, some direct computations show that

|Dβ (m(ξ )−1)−1|

� Cβ

|β |
∑
k=1

|m(ξ )−1|k−1
β j �=0

∑
β 1+β 2+···+β k

|Dβ 1
m(ξ )| · · · |Dβ k

m(ξ )|

As |Dα̃m(ξ )|�C|ξ |γ−|α̃| , if |α̃|� [max{ n
p , n

q}+ n
2 ]+1 and δ > [max{ n

p , n
q}+ n

2 ]+1.
Which implies that

|Dβ (m(ξ )−1)−1| � Cβ

|β |
∑
k=1

|m(ξ )−1|k−1|ξ |kγ−|β |

� C|ξ |γ−|β |.

Combining the above estimates, for every multi-indices α satisfying |α|� [max{ n
p , n

q}+
n
2 ]+1 and ξ ∈ Rn \ {0} , we have

|Dαv(ξ )|
� |m(ξ )(m(ξ )−1)−1| · |Dα |ξ |γ |+ ∑

0<β�α
Cβ |Dα−β |ξ |γ | · |Dβ (m(ξ )−1)−1|

� C|ξ |−|α |.

This completes the proof the Lemma 2. �

We recall the following lifting property on the Triebel-Lizorkin spaces (see [3]).

LEMMA 3. Let −∞ < s < ∞ , −∞ < γ < ∞ , and 0 < p,q � ∞ . The space Ḟs−γ
p,q (Rn)

has the lifting property

‖I−γ f‖Ḟs
p,q(Rn) ≈ ‖ f‖Ḟs+γ

p,q (Rn).

With the help of Lemma 3, we obtain the following Plancherel-Polya-Nikol’skij-
type inequality on the Triebel-Lizorkin spaces.

LEMMA 4. Let l ∈ Z+ , 0 < p < ∞ . Suppose that f ∈ Ḟs
p,q(R

n) and supp f̂ ⊂ {ξ :

|ξ | � 1
t } . Then we obtain that Δl( f ) is in Ḟs

p,q(R
n) and

‖Δl( f )‖Ḟs
p,q(Rn) 
 t−2l‖ f‖Ḟs

p,q(Rn).

Similarly, for any positive integer γ , there holds

‖I−γ( f )‖Ḟs
p,q(Rn) 
 t−γ‖ f‖Ḟs

p,q(Rn).
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Proof. By Lemma 3, we have that

‖Δl( f )‖Ḟs
p,q(Rn) ≈ ‖ f‖Ḟs+2l

p,q (Rn).

Since supp f̂ ⊂ {ξ : |ξ | � 1
t } , and suppψ̂ j ⊂ {ξ : 2 j−1 � |ξ |� 2 j+1} , which yields

‖ f‖Ḟs+2l
p,q (Rn) = ‖(∑

j
2 j(s+2l)q|ψ j ∗ f |q) 1

q ‖p

= ‖( ∑
2 j� 1

t

2 j(s+2l)q|ψ j ∗ f |q) 1
q ‖p

� t−2l‖(∑
j

2 jsq|ψ j ∗ f |q) 1
q ‖p

= t−2l‖ f‖Ḟs
p,q(Rn).

By the similar computations above, we can also get that

‖I−γ( f )‖Ḟs
p,q(Rn) 
 t−γ‖ f‖Ḟs

p,q(Rn).

Thus we complete the proof of Lemma 4. �
From Lemma 2, we can obtain the following result.

LEMMA 5. Let l ∈ Z+ , s ∈ R ,0 < p,q < ∞ and t > 0 . If δ > [max{ n
p , n

q}+ n
2 ]+

1 , then for f ∈ Ḟs
p,q(Rn) , we have

‖Bδ
t,2l( f )− f‖Ḟs

p,q(Rn) + t2l‖ΔlBδ
t,2l( f )‖Ḟ s

p,q(Rn) ≈ K2l( f ,t)Ḟ s
p,q(Rn).

Proof. By Lemma 2, we have

K2l( f , t)Ḟ s
p,q(Rn) 
 ‖Bδ

t,2l( f )− f‖Ḟs
p,q(Rn) + t2l‖ΔlBδ

t,2l( f )‖Ḟ s
p,q(Rn).

To show the reverse inequality, by Lemma 2 again, it only needs to prove

t2l‖ΔlBδ
t,2l( f )‖Ḟs

p,q(Rn) 
 K2l( f ,t)Ḟs
p,q(Rn).

In fact, by the definition of Bδ
t,2l( f ) , it is easy to check that

t2lΔlBδ
t,2l( f ) ≈ Bδ

t,2l( f )−Bδ+1
t,2l ( f )

Hence,

‖Bδ
t,2l( f )−Bδ+1

t,2l ( f )‖Ḟs
p,q(Rn) 
 ‖Bδ+1

t,2l ( f )− f‖Ḟs
p,q(Rn) +‖Bδ

t,2l( f )− f‖Ḟs
p,q(Rn)


 K2l( f ,t)Ḟs
p,q(Rn).

This finishes the proof of Lemma 5. �
We can proceed similarly to the proof of Lemma 5, and formulate the general

result.



366 S. HE

LEMMA 6. Let 0 < γ < ∞ , s ∈ R , 0 < p,q < ∞ and t > 0 . If δ > [max{ n
p , n

q}+
n
2 ]+1 , then for f ∈ Ḟs

p,q(R
n) , we have

‖Bδ
t,γ ( f )− f‖Ḟs

p,q(Rn) + tγ‖I−γBδ
t,γ ( f )‖Ḟs

p,q(Rn) ≈ Kγ ( f ,t)Ḟ s
p,q(Rn).

3. Proof of Theorem 2

The inequality

K2l( f ,t)Ḟs
p,q(Rn) � ‖ηt f − f‖Ḟs

p,q(Rn) + t2l‖Δlηt f‖Ḟs
p,q(Rn)

follows from the definition directly. To show the reverse inequality, by taking Fourier
transform, we get

ηt(Bδ
t,γ ( f ))(x) = Bδ

t,γ ( f )(x),x ∈ Rn.

From Lemma 2, we have

‖ηt f − f‖Ḟs
p,q(Rn) = ‖Bδ

t,γ( f )− f + ηt( f )−ηt(Bδ
t,γ ( f ))‖Ḟs

p,q(Rn)


 ‖Bδ
t,γ( f )− f‖Ḟs

p,q(Rn) +‖ηt( f −Bδ
t,γ( f ))‖Ḟ s

p,q(Rn)


 ‖Bδ
t,γ( f )− f‖Ḟs

p,q(Rn)


 K2l( f ,t)Ḟ s
p,q(Rn).

It remains to prove
t2l‖Δlηt f‖Ḟs

p,q(Rn) 
 K2l( f ,t)Ḟ s
p,q(Rn).

By Lemma 5, we have that

t2l‖Δlηt f‖Ḟs
p,q(Rn) 
 t2l‖ΔlBδ

t,2l( f )‖Ḟ s
p,q(Rn) + t2l‖Δl(Bδ

t,2l( f )−ηt( f ))‖Ḟ s
p,q(Rn)


 K2l( f ,t)Ḟ s
p,q(Rn) + t2l‖Δl(Bδ

t,2l( f )−ηt( f ))‖Ḟ s
p,q(Rn)

The second part can be estimated as the following

t2l‖Δl(Bδ
t,2l( f )−ηt( f ))‖Ḟs

p,q(Rn) 
 ‖Bδ
t,2l( f )−ηt( f )‖Ḟs

p,q(Rn)


 ‖Bδ
t,2l( f )− f‖Ḟs

p,q(Rn) +‖ηt( f )− f‖Ḟs
p,q(Rn)


 K2l( f ,t)Ḟ s
p,q(Rn)

Using the same argument, we can obtain the general inequality

‖ηt( f )− f‖Ḟs
p,q(Rn) + tγ‖I−γηt( f )‖Ḟs

p,q(Rn) ≈ Kγ ( f ,t)Ḟ s
p,q(Rn).

Thus we have completed the proof.
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4. Proof of Theorems 1 and 3

For convenience, we let Vσ (u) = Jσ (u)
|u|σ , where Jσ is the Bessel function of order

σ , σ > − 1
2 and u ∈ C . Recall that in [7, 19]

̂At( f )(ξ ) = m(2πt|ξ |) f̂ (ξ ),

where m(u) = 2(n−2)/2Γ(n/2)Vn−2
2

(u) . By checking the Fourier transform of the oper-

ator Sβ
t defined in , we get that

Ŝβ
t f (ξ ) = μβ (2πt|ξ |) f̂ (ξ ).

By using the formula in ([20], pp. 153-154) and the identity in ([13], p. 427) , we
have

μβ (u) = Cn,β (2π)
n
2 2β−1Γ(β )Vn−2

2 +β (u). (5)

Hence, the multiplier of ℑβ
l,t is

μβ
l (2πt|ξ |) =

−2(2l
l

) l

∑
j=1

(−1) j
(

2l
l− j

)
μβ (2πt j|ξ |),

namely,
̂ℑβ
l,t( f )(ξ ) = μβ

l (2πt|ξ |) f̂ (ξ ).

By a similar calculation of (9) and Lemma 3.2 in [7] , we get

1− μβ
l (u) =

2Γ(β +n/2)
Γ(1/2)Γ(β +n/2−1/2)

× 4l(2l
l

)
×

∫ 1

0
(1− s2)

n+β−3
2

(
sin

( |u|s
2

))2l
ds. (6)

At first, we prove the following conclusion about the multiplier μβ defined in (5)
for different p and q .

LEMMA 7. Let β � 0 , s ∈ R . For any 1 < p,q < ∞ , μβ is a multiplier of
Ḟs

p,q(Rn); For any 0 < q � p � 1 , μβ is a multiplier of Ḟs
p,q(Rn) if p > n−1

β+n−1 ; For

any 0 < p � 1 < q < ∞ , μβ is a multiplier of Ḟs
p,q(Rn) if p � n−1

β+n−1 .

Proof. Let η(ξ ) be the same as the above, and set ψ(ξ ) = 1−η(ξ ) . Since μβ

is a radial function, we can write

μβ (|ξ |) = Cn,β (2π)
n
2 2β−1Γ(β )Vn−2

2 +β (|ξ |)
= Cn,β (2π)

n
2 2β−1Γ(β )(Vn−2

2 +β (|ξ |)η(ξ )+Vn−2
2 +β (|ξ |)Ψ(ξ ))
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By Leibniz’ rule of differentiation, for any multi-indices α , ∂ α(
Vn−2

2 +β (|ξ |)η(ξ )
)

can

be written as a finite linear combination of the following functions:

∂ α ′
Vn−2

2 +β (|ξ |)∂ β ′
η(ξ )

where α ′ and β ′ are multi-indices with α ′ + β ′ = α. Using the derivative formula for
Bessel function

dVγ(t)
dt

= −tVγ+1(t),

Vγ(|ξ |) = O(1) if |ξ | � 2, (7)

and noting that suppη ⊂ {ξ : |ξ | � 2} , we have

|∂ αVn−2
2 +β (|ξ |)η(ξ )| = | ∑

α=α ′+β ′
∂ α ′

Vn−2
2 +β (|ξ |)∂ β ′

η(ξ )|

� C ∑
|β ′|�|α |

|∂ β ′
(|ξ |)|.

Since η is a smooth function, we get that

sup
ξ∈Rn

|ξ ||α |∣∣∂ α(
Vn−2

2 +β (|ξ |)η(ξ )
)∣∣ � A

for any multi-indices α . By Theorem B , we know that Vn−2
2 +β (|ξ |)η(ξ ) is a Ḟs

p,q(Rn)
multiplier for any 0 < p,q < ∞. By Proposition 5.1 in [11], we can write the second
multiplier

Vn−2
2 +β (|ξ |)Ψ(ξ )

=
L

∑
j=0

a jΨ(ξ )eiξ |ξ |− n−1
2 −β− j +

L

∑
0

b jΨ(ξ )e−iξ |ξ |− n−1
2 −β− j +E(ξ )Ψ(ξ ),

where E(ξ ) is a C∞ function satisfying

|∂ αE(ξ )| 
 |ξ |− n−1
2 −β− j, |ξ | > 1

for any multi-index α . Noting Ψ(ξ ) = 0 if |ξ | � 1, we may choose a suitably large
L such that E(ξ )Ψ(ξ ) is a Ḟs

p,q(Rn) for different p,q. Moreover, we know that , for
each j ,

m+
j (ξ ) = Ψ(ξ )eiξ |ξ |− n−1

2 −β− j or m−
j (ξ ) = Ψ(ξ )eiξ |ξ |− n−1

2 −β− j

is the multiplier of the wave operator Wν with ν = − n−1
2 −β − j (see [3, 5, 15, 16]).

For the terms m+
j and m−

j , we need the following result about oscillating multi-
pliers on Triebel-Lizorkin spaces in [3].
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THEOREM C. Suppose that Wν is the wave operator with Fourier multiplier
Ψ(ξ )eic|ξ ||ξ |−ν , where Ψ(ξ ) ∈ C∞(Rn) and equals to zero near zero and one for
|ξ | � 2 , c is a non-zero real number and ν > 0 . Let s ∈ R . For any 1 < p �
q � 2 or 2 � q � p < ∞ , the operator Wν is bounded on the space Ḟs

p,q(R
n) if

ν � (n−1)| 12 − 1
p |;

For any 1 < p,q < ∞ or 0 < q � p � 1 , the operator Wν is bounded on the space
Ḟs

p,q(Rn) if ν > (n−1)| 12 − 1
p |;

For any 0 < p � 1 < q < ∞ , the operator Wν is bounded on the space Ḟs
p,q(Rn) if

ν � (n−1)| 12 − 1
p | .

Taking ν = n−1
2 + β in Theorem C, for any 1 < p,q < ∞ , we have

−1
2

<
1
p
− 1

2
<

1
2

+
β

n−1
=

n−1
2 + β
n−1

,

which satisfies the conditions of Theorem C.
For any 0 < q � p � 1, from Theorem C, we know that Ψ(ξ )e∓iξ |ξ |−ν is a

multiplier of Ḟs
p,q(R

n) if ∣∣∣1
p
− 1

2

∣∣∣ <
n−1
2 + β
n−1

.

This inequality is equivalent to p∈ ( n−1
β+n−1 ,1] . Similarly, we can get that Ψ(ξ )e∓iξ |ξ |−ν

is a multiplier of Ḟs
p,q(Rn) if p � n−1

β+n−1 for any 0 < p � 1 < q < ∞ . It is an easy fact

that if Ψ(ξ )e∓iξ |ξ |−ν is a Hp multiplier, then Ψ(ξ )e∓iξ |ξ |−ν−ε is, for any positive
ε . Hence, Lemma 7 is proved. �

We now are ready to show Theorem 3.

Proof of Theorem 3. With loss of generality, we will only prove 0 < p � 1 < q <
∞ . The other cases of p and q are similar but easier. By an easy scaling argument, it
suffices to show that

F
(
N,

n−2
2

, |ξ |
)

= |ξ |2VN
n−2
2

(|ξ |)

is a Ḟs
p,q(Rn) multiplier if ∣∣∣1

2
− 1

p

∣∣∣ �
N( n−1

2 )−2

n−1
.

As we did in the proof of Lemma 7, we may write

F
(
N,

n−2
2

, |ξ |
)

= |ξ |2(Vn−2
2

(|ξ |)η(ξ )+Vn−2
2

(|ξ |)Ψ(ξ ))N

= |ξ |2(Vn−2
2

(|ξ |)η(ξ ))N + |ξ |2(Vn−2
2

(|ξ |)Ψ(ξ ))N

Applying the same argument in the proof of Lemma 7, the first part is a Ḟs
p,q(R

n) mul-
tiplier for any 0 < p,q < ∞ . Hence, we consider the multiplier |ξ |2(Vn−2

2
(|ξ |)Ψ(ξ ))N .
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Using the Proposition 5.1 in [11] again, we write

F
(
N,

n−2
2

, |ξ |
)

= |ξ |2
(

ei|ξ |
j=L

∑
j=0

a jψ(ξ )|ξ |− n−1
2 − j + e−i|ξ |

L

∑
j=0

b jψξ |ξ |−
n−1
2 − j +E(ξ )ψ(ξ )

)N

= aN
0 eiN|ξ |ψN(ξ )|ξ |− N(n−1)

2 +2 +bN
0 e−iN|ξ |ψN(ξ )|ξ |− N(n−1)

2 +2 + ε(ξ ),

where ε(ξ ) is a function satisfying that if aN
0 eiN|ξ |ψN(ξ )|ξ |− N(n−1)

2 +2 and bN
0 e−iN|ξ |ψN(ξ )

×|ξ |− N(n−1)
2 +2 are Ḟs

p,q(R
n) multiplier for 0 < p � 1 < q < ∞ . From Theorem C, we

know that aN
0 eiN|ξ |ψN(ξ )|ξ |− N(n−1)

2 +2 and bN
0 e−iN|ξ |ψN(ξ ) are Ḟs

p,q(R
n) multiplier for

0 < p � 1 < q < ∞ if ∣∣∣1
2
− 1

p

∣∣∣ �
N( n−1

2 )−2

n−1
.

This concludes the proof of Theorem 3. �

Finally, we end this paper with the

Proof of Theorem 1. First we shall prove the following result.

LEMMA 8. Let l ∈ Z , β � 0 and t > 0 . If γ � 2l and I−γ(g) ∈ Ḟs
p,q(R

n) , for any
0 < q � p � 1 or 1 < p,q < ∞, we have

‖t−γ(ℑβ
l,t (g)−g)‖Ḟs

p,q(Rn) 
 ‖I−γ(g)‖Ḟs
p,q(Rn)

if p > n−1
n−1+β+γ . Besides, for any 0 < p � 1 < q < ∞ , we have

‖t−γ(ℑβ
l,t (g)−g)‖Ḟs

p,q(Rn) 
 ‖I−γ(g)‖Ḟs
p,q(Rn)

if p � n−1
n−1+β+γ .

Proof. Note that t−γ(ℑβ
l,t(g)−g) has the Fourier transform

μβ
l (tξ )−1

|tξ |γ ĝ(ξ ) =
μβ

l (tξ )−1

|tξ |γ Î−γ(g)(ξ ).

By Lemma 1, to prove Lemma 8, we only need to show that
μβ

l (ξ )−1
|ξ |γ is a Ḟs

p,q(R
n)

multiplier. Write

μβ
l (ξ )−1

|ξ |γ =
(μβ

l (ξ )−1)η(ξ )
|ξ |γ +

(μβ
l (ξ )−1)Ψ(ξ )

|ξ |γ .
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Since supp η ⊂ {ξ ∈ Rn : |ξ | < 2}, then we have

sin2l
( s|ξ |

2

)
=

(s|ξ |
2

)2l
+ Φ(s|ξ |), for |ξ | < 2,

where Φ(u) is a C∞ function satisfying | dk

duk Φ(u)| 
 min{1,u2l+2−k} for all 0 < u < 2
and all integers k . Using (6) and Theorem B, it is easy to show that the first part is a
Ḟs

p,q(R
n) multiplier for any 0 < p,q < ∞ .

Next we turn to study the multiplier
(μβ

l (ξ )−1)Ψ(ξ )
|ξ |γ . As

1− μβ
l (2πt|ξ |) = 1+

2(2l
l

) l

∑
j=1

(−1) j
(

2l
l− j

)
μβ (2πt j|ξ |),

which implies that we only need to consider the multiplier μβ (2πt j|ξ |)Ψ(ξ )|ξ |−γ .
But it can be done by following the same argument as Lemma 7. Hence, Lemma 8 is
proved. �

Now we start to proveTheorem 1. Without loss of generality, we will only consider
0 < p � 1 < q < ∞ . The other cases are similar and easier. First, from the definition of
the γ th order K-functional K2l( f ,t)Ḟs

p,q(Rn) , there exists a function g such that

‖ f −g‖Ḟs
p,q(Rn) + t2l‖Δl(g)‖Ḟs

p,q(Rn) � 2K2l( f ,t)Ḟs
p,q(Rn).

By Lemma 7, we have

‖ℑβ
l,t( f )− f‖Ḟs

p,q(Rn) 
 ‖ℑβ
l,t( f −g)+ (g− f )‖Ḟs

p,q(Rn) +‖ℑβ
l,t(g)−g‖Ḟs

p,q(Rn)


 ‖g− f‖Ḟs
p,q(Rn) +‖ℑβ

l,t(g)−g‖Ḟs
p,q(Rn).

From Lemma 8 , we get

‖ℑβ
l,t(g)−g‖Ḟs

p,q(Rn) = t2l‖t−2l(ℑβ
l,t (g)−g)‖Ḟs

p,q(Rn) 
 t2l‖Δl(g)‖Ḟs
p,q(Rn),

which implies that

‖ℑβ
l,t( f )− f‖Ḟs

p,q(Rn) 
 ‖g− f‖Ḟs
p,q(Rn) + t2l‖Δl(g)‖Ḟs

p,q(Rn)


 2K2l( f ,t)Ḟ s
p,q(Rn).

It remains to show
K2l( f ,t)Ḟ s

p,q(Rn) 
 ‖ℑβ
l,t( f )− f‖Ḟs

p,q(Rn).

To this end, by Theorem 2, it suffices to prove

‖ηt( f )− f‖Ḟs
p,q(Rn) + t2l‖Δlηt( f )‖Ḟs

p,q(Rn) 
 ‖ℑβ
l,t( f )− f‖Ḟs

p,q(Rn).
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By Lemma 1, we need to show that the following two multipliers

1−η(ξ )
1− μ l

β (ξ )
,

|ξ |2lη(ξ )

1− μβ
l (ξ )

are Ḟs
p,q(R

n) multipliers for p � n−1
n−1+β .

Note that |1− μβ
l (ξ )| � C|ξ |2l if |ξ | � 2. So, with the same idea as we did

in Lemma 8, we can use Theorem B to check that |ξ |2lη(ξ )

1−μβ
l (ξ )

is a Ḟs
p,q(R

n) multipliers

for any 0 < p,q < ∞ . Let φ(ξ ) be a C∞ radial function supported in {|ξ | < 2M}
and φ(ξ ) = 1 on the set {|ξ | < M} , where M is a sufficiently large number to be
determined. Let ψ = 1−ϕ . We can write

1−η(ξ )

1− μβ
l (ξ )

=
(1−η(ξ ))φ(ξ )

1− μβ
l (ξ )

+
(1−η(ξ ))ψ(ξ )

1− μβ
l (ξ )

.

With the help of
1− μβ

l (ξ ) � c for |ξ | � 1,

where c is positive constant depending only n,β and l (see [11], Lemma 4.1, p. 90).
Since (1−η(ξ ))φ(ξ )

1−μβ
l (ξ )

is supported in {1 � |ξ | � 2M} , by Theorem B, it is easy to verify

that (1−η(ξ ))φ(ξ )

1−μβ
l (ξ )

is a Ḟs
p,q(Rn) multiplier for any 0 < p,q < ∞ . Recall that

μβ
l (2πt|ξ |) = Cn,β (2π)

n
2 2β−1Γ(β )

−2(2l
l

) l

∑
j=1

(−1) j
(

2l
l− j

)
Vn−2

2 +β ( j|ξ |),

and we have the following asymptotic development,

Vn−2
2 +β ( j|ξ |) = O(

1

(2π j|ξ |) n−1
2 +β

), as |ξ | → ∞.

We can choose a sufficiently large M > 0 and an integer N such that

|μβ
l (|ξ |)| � 1

4
.

Applying the estimates in (7), for all multi-indices α satisfying |α| � [max{ n
p ,

n
q}+

n
2 ]+1, we obtain

|∂ α
ξ (2μβ

l (ξ ))k| � C(2k)|α ||ξ |−|α |−1 (8)

whenever |ξ | > M and k � N , where C is independent of ξ and k .

Since |μβ
l (|ξ |)| � 1

4 , we can write

(1−η(ξ ))ψ(ξ )

1− μβ
l (ξ )

= (1−η(ξ ))ψ(ξ )
∞

∑
k=0

2−k(2μβ
l (ξ ))k.
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We define T by T̂ f (ξ ) = (1−η(ξ ))ψ(ξ )

1−μβ
l (ξ )

f̂ (ξ ), which can be decomposed as

T =
N−1

∑
k=0

2−kTk +
∞

∑
k=N

2−kTk,

where Tk is associated to the multiplier (2μβ
l (ξ ))k(1−η(ξ ))ψ(ξ ) . By Lemma 7, the

finite sum
N−1

∑
k=0

2−kTk is bounded operator on Ḟs
p,q(R

n) for p � n−1
n−1+β . For the infinite

sum, by the lifting property, it it suffices to show its boundedness on Ḟ0
p,q(R

n) . More
precisely, once we prove

‖
∞

∑
k=N

2−kTk( f )‖Ḟ0
p,q(Rn) 
 ‖ f‖Ḟ0

p,q(Rn), (9)

then

‖
∞

∑
k=N

2−kTk( f )‖Ḟs
p,q(Rn) ≈ ‖I−s

( ∞

∑
k=N

2−kTk( f )
)‖Ḟ0

p,q(Rn) = ‖
∞

∑
k=N

2−kTk(I−s f )‖Ḟ0
p,q(Rn)


 ‖I−s f‖Ḟ0
p,q(Rn) ≈ ‖ f‖Ḟs

p,q(Rn).

To finish the proof of Theorem 1, it suffices to verify (9). If 0 < p � 1 < q < ∞ , using
Minkowski inequality, we have

‖
∞

∑
k=N

2−kTk f‖p
Ḟ0

p,q(Rn) =
∫ {

∑
j
|ψ j ∗

∞

∑
k=N

2−kTk f (x)|q} p
q dx

�
∫ { ∞

∑
k=N

2−k(∑
j
|ψ j ∗Tk f (x)|q) 1

q
}p

dx

�
∫ ∞

∑
k=N

2−kp{∑
j
|ψ j ∗Tk f (x)|q} p

q dx

�
∞

∑
k=N

2−kp‖Tk f‖p
Ḟ0

p,q(Rn).

Applying the estimate of (8) and Theorem B, we have

‖
∞

∑
k=N

2−kTk f‖p
Ḟ0

p,q(Rn) �
∞

∑
k=N

2−kp‖Tk f‖p
Ḟ0

p,q(Rn)



∞

∑
k=N

2−kpkN(α ,n)‖ f‖Ḟ0
p,q(Rn) 
 ‖ f‖Ḟ0

p,q(Rn),

This confirms (9) and hence Theorem 1 follows. �
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[14] Z. LIU AND S. LU, Applications of Hörmander multiplier theorem to approximation in real Hardy
space, Lecture Notes in Math., 1494, (1991), 119–129.

[15] A. MIYACHI, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28,
(1981) 267–315.

[16] J. PERAL, Lp estimates for the wave equation, J. Funct. Anal., 36, 1 (1980), 114–145.
[17] J. L. RUBIO DE FRANCIA, Weighted norm intequalitities for homogeneous families of operators,

Trans. Amer. Math. Soc., 275, 2 (1976), 2174–2175.
[18] E. M. STEIN, Maximal functions: Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73, (1976), 2174–

2175.
[19] E. M. STEIN, Harmonic Analysis: Real-Variable Meheods, Orthogonality, and Oscillatory Integrals,

Princeton Univ. Press, Princeton, N. J., 1973.
[20] E. M. STEIN AND G. WEISS, Intoduction to Fourier Analysis on Euclidean Spaces, Princeton Univ.

Press, Princeton, N. J., 1971.
[21] D. YANG, YUAN, WEN AND C. ZHUO, Fourier multipliers on Triebel-Lizorkin-type spaces, J. Funct.

Spaces Appl., 2012, Art. ID 431016, 37 pp.

(Received May 16, 2020) Shaoyong He
Department of Mathematics
Zhejiang Normal University
Jinhua, 321004, P.R. China

e-mail: hsyongmath@sina.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


