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MAPPING PROPERTIES OF MULTILINEAR FRACTIONAL

MAXIMAL OPERATORS IN METRIC MEASURE SPACES

FENG LIU, SEONGTAE JHANG, RUI BU AND ZUNWEI FU ∗

(Communicated by Y. Sawano)

Abstract. In this paper, we introduce two kinds of multilinear fractional maximal operators in
metric measure spaces. We prove that these operators map product Morrey spaces to Morrey
spaces, and map product Lebesgue spaces to the fractional Hajłasz spaces under certain restric-
tions on the underlying metric measure space. We also introduce a kind of discrete multilinear
fractional maximal operator, which is constructed in terms of coverings and partitions of unities
and has better regularity. With the aid of Poincaré inequality, we establish the Sobolev bounds
for the above operators.

1. Introduction

Multilinear maximal operator and its fractional version are crucial tools in the
multilinear Calderón-Zygmund and Potential theory (see [2, 16]). The primary purpose
of this paper is to investigate the smoothing and mapping properties for the multilinear
fractional maximal operators on Morrey spaces, fractional Hajłasz spaces and Sobolev
spaces (called the Newtonian spaces) in metric measure spaces. It should be pointed
out that various Sobolev type spaces on metric measure spaces play a central role in
analysis on metric spaces (see [7, 8, 9, 14, 18, 22, 24, 26, 27] for example).

In what follows, we assume that X = (X ,d,μ) is a metric measure space equipped
with a metric d and a Borel regular outer measure μ , which satisfies 0 < μ(E) < ∞
whenever U is nonempty, open and bounded. The measure μ is doubling, if there
exists a fixed constant c1 > 0, called the doubling constant, such that

μ(B(x,2r)) � c1μ(B(x,r)) (1.1)

for every ball B(x,r) = {y ∈ X : d(y,x) < r} . Note that the doubling condition implies
that

μ(B(y,r))
μ(B(x,R))

� c2

( r
R

)Q

for every r ∈ (0,R] and y ∈ B(x,R) . Here the constants c2 and Q > 1 depend only on
c1 . Actually, we may take Q = log2 c1 .

We now introduce the multilinear fractional maximal operators.
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DEFINITION 1.1. (Multilinear fractional maximal operators). For α � 0, m, κ �
1 and �f = ( f1, . . . , fm) with each f j ∈ L1

loc(X) , the multilinear fractional maximal op-
erators are defined by

Mκ
α(�f )(x) = sup

r>0
rα

m

∏
j=1

1
μ(B(x,κr))

∫
B(x,r)

| f j(y)|dμ(y)

and

M̃κ
α (�f )(x) = sup

r>0
μ(B(x,κr))α

m

∏
j=1

1
μ(B(x,κr))

∫
B(x,r)

| f j(y)|dμ(y).

When m = 1, we denote Mκ
α = M κ

α and M̃κ
α = M̃ κ

α . When α = 0 and κ = 1, the
operator M κ

α or M̃ κ
α reduces to the usual Hardy-Littlewoodmaximal operator M . By

the Hardy-Littlewood maximal function theorem for the doubling measures (see [6]),
we see that M is bounded on Lp(X) for 1 < p � ∞ and maps L1(X) to L1,∞(X) .
These facts together with the similar arguments as in the proof of [10, Theorem 3.2]
yield the following result.

THEOREM 1.1. Let κ � 2 , p > 1 , 0 � α � 1/p and q = p/(1−α p). Then

‖M̃ κ
α f‖Lq(X) �α ,p ‖ f‖Lp(X)

for every f ∈ Lp(X) . For κ = 1 , the same result holds, under the additional restriction
that μ is doubling.

It was pointed out in [21] that Theorem 1.1 is note true, in general, if 1 � κ < 2
and α = 0. If we assume the measure μ satisfies a lower bound condition, that is, there
exists a constant c3 > 0 such that

μ(B(x,r)) � c3r
Q (1.2)

for all x ∈ X and r > 0. Then it holds that

Mκ
α(�f )(x) � c−1

3 M̃κ
α/Q(�f )(x) (1.3)

for all x∈ X and κ � 1. If we assume the measure μ satisfies a upper bound condition,
that is, there exists a constant c4 > 0 such that

μ(B(x,r)) � c4r
Q (1.4)

for all x ∈ X and r > 0. Then we have

M̃κ
α(�f )(x) � cα

4 κQMκ
αQ(�f )(x)

for all x ∈ X and κ � 1.
Applying Theorem 1.1 and (1.3), we can get the following result immediately.
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THEOREM 1.2. Let κ � 2 and �f = ( f1, . . . , fm) with each f j ∈ Lpj(X) for p j >
1 .

(i) If 0 � α � ∑m
i=1 1/pi and 1/q = ∑m

i=1 1/pi−α � 1 . Then

‖M̃κ
α(�f )‖Lq(X) �α ,p1,...,pm

m

∏
j=1

‖ f j‖Lp j (X).

(ii) Assume that the measure μ satisfies the lower bound condition (1.2). If 0 � α �
∑m

i=1 Q/pi and 1/q = ∑m
i=1 1/pi−α/Q � 1 . Then

‖Mκ
α(�f )‖Lq(X) �α ,c3,Q,p1,...,pm

m

∏
j=1

‖ f j‖Lp j (X).

For 1 � κ < 2 , the same result holds, under the additional restriction that μ is dou-
bling.

Observe that part (i) of Theorem 1.2 follows easily from Theorem 1.1 and the
following inequality

M̃κ
α(�f )(x) �

m

∏
j=1

M̃ κ
α j

f j(x)

for all x ∈ X and κ � 1, where α = ∑m
j=1 α j with each α j � 0. Particularly, when

μ is doubling, the case 1 � κ < 2 follows from the results for the case κ = 2 and the
following inequality

M̃κ
α(�f )(x) � M̃1

α(�f )(x) � cm
1 M̃2

α (�f )(x)

for all x ∈ X and 1 � κ < 2. Part (ii) of Theorem 1.2 follows from part (i) of Theorem
1.2 and (1.3).

The rest of this paper is organized as follows. Section 2 is devoted to proving
the boundedness of the multilinear fractional maximal operators on Morrey spaces.
In Section 3, we study the regularity properties of the multilinear fractional maximal
operators. We shall prove that the multilinear fractional maximal function of a vector-
valued function �f = ( f1, . . . , fm) ∈ Lp1(X)× ·· · ×Lpm(X) has a generalized gradient
under an annular decay property. This result can be viewed a generalization of the
main result of [17] to the metric setting and a multilinear case of [12, Theorem 4.2]. In
Section 4 we introduce the discrete multilinear fractional maximal operator, which has
better regularity. In Section 5, we show that the discrete multilinear fractional maximal
operator maps the product Sobolev spaces to Sobolev spaces, which is a generalization
of the main result of [17] to the metric setting and a multilinear case of [10, Theorems
6.1 and 6.3].

Throughout this paper, if there exists a constant c > 0 depending only on ϑ such
that A � cB , we then write A �ϑ B or B �ϑ A ; and if A �ϑ B �ϑ A , we then write
A ∼ϑ B .
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2. Boundedness on Morrey spaces

In this section we study the action of the multilinear fractional maximal operators
on product Morrey spaces. Let us recall the definition of Morrey spaces.

DEFINITION 2.1. (Morrey spaces). Let 1 � p < ∞ , β ∈ R and κ � 1. A locally
integrable function f belongs to the Morrey space Lp,β ,κ(X) , if

‖ f‖Lp,β ,κ (X) = sup
x∈X ,r>0

r−β
( 1

μ(B(x,κr))

∫
B(x,r)

| f (y)|pdμ(y)
)1/p

< ∞.

See [19] for the properties. Another way to define the Morrey spaces is the following

L̃p,β ,κ(X) := { f ∈ L1
loc(X) : ‖ f‖L̃p,β ,κ (X) < ∞},

where

‖ f‖L̃p,β ,κ (X) = sup
x∈X ,r>0

μ(B(x,κr))−β
( 1

μ(B(x,κr))

∫
B(x,r)

| f (y)|pdμ(y)
)1/p

.

Chiarenza and Frasca [5] firstly established the boundedness of the usual Hardy-
Littlewood maximal operator on Morrey spaces in the Euclidean setting. Later on,
the above result was extended to nondoubling metric spaces setting in [19]. Recently,
Heikkinen et al. [10] extended the result of [19] to the fractional case.

THEOREM 2.1. ([10], [19]). Let 0 � α < −β , 1 < p < ∞ and q = pβ/(α + β ) .
Then

‖M 2
α f‖Lq,α+β ,4(X) �α ,β ,p ‖ f‖Lp,β ,2(X),

‖M̃ 2
α f‖L̃q,α+β ,4(X) �α ,β ,p ‖ f‖L̃p,β ,2(X).

In this section we shall extend Theorem 2.1 to the multilinear case.

THEOREM 2.2. Let κ � 2 , α = ∑m
i=1 αi and β = ∑m

i=1 βi with each 0 � αi <−βi

and 1/p = ∑m
i=1 (βi + αi)/(piβi) and pi > 1 . Then

‖Mκ
α(�f )‖Lp,α+β ,4(X) �α1,...,αm,β1,...,βm,p1,...,pm

m

∏
j=1

‖ f j‖Lp j ,β j ,2(X)
, (2.1)

‖M̃κ
α(�f )‖L̃p,α+β ,4(X) �α1,...,αm,β1,...,βm,p1,...,pm

m

∏
j=1

‖ f j‖L̃p j ,β j ,2(X)
. (2.2)

For 1 � κ < 2 , the same results hold, under the additional restriction that μ is dou-
bling.
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Proof. We only prove (2.1) and (2.2) is analogous. One can easily check that

M2
α(�f )(x) �

m

∏
j=1

M 2
α j

f j(x) (2.3)

for all x ∈ X , where α = ∑m
j=1 α j with each α j � 0. Fix x ∈ X and r > 0. Inequality

(2.3) together with Hölder’s inequality yields that

∫
B(x,r)

|M2
α (�f )(y)|pdμ(y) �

m

∏
j=1

(∫
B(x,r)

|M 2
α j

f j(y)|pq j

)1/q j
, (2.4)

where ∑m
j=1 1/q j = 1 and q j > 1. For γ < 0, we write γ = ∑m

j=1 γ j with γ j = α j +β j .
(2.4) together with Theorem 2.1 implies that

r−γ
( 1

μ(B(x,4r))

∫
B(x,r)

|M2
α(�f )(y)|pdμ(y)

)1/p

�
m

∏
j=1

r−γ j

( 1
μ(B(x,4r))

∫
B(x,r)

|M 2
α j

f j(y)|pq jdμ(y)
)1/(pq j)

�
m

∏
j=1

‖M 2
α j

f j‖Lpq j ,γ j ,4(X)

�α1,...,αm,β1,...,βm,p1,...,p j

m

∏
j=1

‖ f j‖Lp j ,β j ,2(X)
,

(2.5)

where we take pq j = p jβ j/(α j + β j) . Then (2.1) with κ = 2 follows from (2.5). Ob-
viously, Mκ

α(�f )(x) � M2
α(�f )(x) for all κ � 2 and x ∈ X . Thus (2.1) holds for κ > 2.

When 1 � κ < 2 and μ satisfies the doubling condition (1.1), we have

Mκ
α(�f )(x) � M1

α(�f )(x) � cm
1 M2

α (�f )(x)

for all x ∈ X . This yields (2.1) for 1 � κ < 2. �

REMARK 2.2. Theorem 2.2 extends Theorem 2.1, which corresponds to the case
m = 1 and κ = 2.

3. Boundedness on fractional Hajłasz spaces

In this section we shall prove that the multilinear fractional maximal operators
have certain smoothing properties. More precisely, we shall prove these operators are
bounded from product Lebesgue spaces to certain fractional Hajłasz spaces.

DEFINITION 3.1. (Fractional Hajłasz spaces). Let s � 0. We say that a measur-
able function g � 0 is a s-Hajłasz gradient of a measurable function u , if there exists
E ⊂ X with μ(E) = 0 such that

|u(x)−u(y)|� d(x,y)s(g(x)+g(y)) (3.1)
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for all x, y ∈ X\E . The collection of all s-Hajłasz gradients of u is denoted by D s(u) .
Let 1 � p < ∞ . A homogeneous Hajłasz space Ṁs,p(X) consists of measurable func-
tion u such that

‖u‖Ṁs,p(X) = inf
g∈D s(u)

‖g‖Lp(X) < ∞.

The Sobolev space Ms,p(X) is Ṁs,p(X)∪Lp(X) equipped with the norm

‖u‖Ms,p(X) =
(
‖u‖p

Lp(X) +‖u‖p
Ṁs,p(X)

)1/p
. (3.2)

Note that Ms,p(X) is a Banach space (see [8, Theorem 8.3]). These spaces were
introduced by Hajłasz in [7] for s = 1 and Yang [25] for s > 0.

DEFINITION 3.2. (Annular decay properties). Let 0 < δ � 1. We say that the
metric measure space X satisfies the δ -annular decay property, if there exists a constant
c5 > 0 such that for all x ∈ X , R > 0 and 0 < h < R , it holds that

μ(B(x,R)\B(x,R−h)) � c5

( h
R

)δ
μ(B(x,R)). (3.3)

See for instance [4, 20] and [9, Chapter 9] for examples and for more information on
these and related conditions.

We shall establish the following result.

THEOREM 3.1. Let κ � 1 , X satisfy the δ -annular decay property (3.3) and μ
satisfy the doubling condition (1.1) . Let �f = ( f1, . . . , fm) with each f ∈ Lpj (X) for
p j > 1 . Then

(i) Let δ � α < mQ and 0 < 1/q1 = ∑m
i=1 1/pi−(α − δ )/Q � 1 . Then 2δ mc2m

1 (1+
c5)Mκ

α−δ (�f ) is a generalized δ -gradient of Mκ
α(�f ) . Moreover, if μ satisfies the

lower bound condition (1.2), then

‖Mκ
α(�f )‖Ṁδ ,q1 (X) �α ,m,Q,c1,c3,c5,p1,...,pm

m

∏
j=1

‖ f j‖Lp j (X). (3.4)

(ii) Let β ∈ (0,δ/Q] , 0 � α−β � ∑m
i=1 1/pi and 1/q2 = ∑m

i=1 1/pi−α +β � 1 . As-

sume that μ satisfies the upper bound condition (1.4). Then 2δ κQβ mc2m
1 cβ

4 (c5 +
1)M̃κ

α−β (�f ) is a generalized Qβ -gradient of M̃κ
α(�f ) . Moreover,

‖M̃κ
α(�f )‖ṀQβ ,q2 (X) �α ,β ,κ ,m,Q,c1,c4,c5,p1,...,pm

m

∏
j=1

‖ f j‖Lp j (X). (3.5)

Proof. We first prove (i). It suffices to show that

|Mκ
α(�f )(x)−Mκ

α(�f )(y)| � 2δ mc2m
1 (1+ c5)d(x,y)δ (Mκ

α−δ (�f )(x)+Mκ
α−δ (�f )(y))

(3.6)
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for all x, y ∈ X .
Fix x, y ∈ X , we first assume that Mκ

α (�f )(x) � Mκ
α(�f )(y) . Given ε > 0, there

exists r = r(ε,x) > 0 such that

Mκ
α(�f )(x) � rα

m

∏
l=1

1
μ(B(x,κr))

∫
B(x,r)

| fl(z)|dμ(z)+ ε. (3.7)

Fix l ∈ {1,2, . . . ,m} . By (1.1) and the fact that B(x,r) ⊂ B(y,r+d(x,y)) , it holds that

1
μ(B(x,κr))

∫
B(x,r)

| fl(z)|dμ(z)

� μ(B(y,κ(r+d(x,y))))
μ(B(x,κr))

1
μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)

� μ(B(x,(2κ +1)r))
μ(B(x,κr))

1
μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)

� c2
1

1
μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z).

(3.8)

When r � d(x,y) , (3.7) together with (3.8) implies that

Mκ
α(�f )(x)−Mκ

α(�f )(y)

� rα
m

∏
l=1

1
μ(B(x,κr))

∫
B(x,r)

| fl(z)|dμ(z)+ ε

� c2m
1 (r+d(x,y))α

m

∏
l=1

1
μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)+ ε

� 2δ c2m
1 d(x,y)δ Mκ

α−δ (�f )(y)+ ε.

(3.9)

When r > d(x,y) . (3.7) gives that

Mκ
α(�f )(x)−Mκ

α(�f )(y)

� rα
m

∏
l=1

1
μ(B(x,κr))

∫
B(x,r)

| fl(z)|dμ(z)

−(r+d(x,y))α
m

∏
l=1

1
μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)+ ε

�
m

∑
l=1

l−1

∏
μ=1

( 1
μ(B(x,κr))

∫
B(x,r)

| fμ(z)|dμ(z)
)

×
m

∏
ν=l+1

( 1
μ(B(x,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fν (z)|dμ(z)
)

×
( rα

μ(B(x,κr))

∫
B(x,r)

| fl(z)|dμ(z)

− (r+d(x,y))α

μ(B(y,κ(r+d(x,y))))
∫
B(y,r+d(x,y)) | fl(z)|dμ(z)

)
+ ε.

(3.10)
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Fix 1 � l � m . By the doubling property and the δ -annular decay property, one has

1
μ(B(x,κr))

− 1
μ(B(y,κ(r+d(x,y))))

�
( μ(B(y,κ(r+d(x,y)))\B(x,κr))

μ(B(x,κr))

) 1
μ(B(y,κ(r+d(x,y))))

�
( μ(B(x,κr+(κ +1)d(x,y))\B(x,κr))

μ(B(x,κr+(κ +1)d(x,y)))

)μ(B(x,κr+(κ +1)d(x,y)))
μ(B(x,κr))

× 1
μ(B(y,κ(r+d(x,y))))

� c5

( (κ +1)d(x,y)
κr+(κ +1)d(x,y)

)δ μ(B(x,4κr))
μ(B(x,κr))

1
μ(B(y,κ(r+d(x,y))))

� 2δ c2
1c5

( d(x,y)
r+d(x,y)

)δ 1
μ(B(y,κ(r+d(x,y))))

.

(3.11)

It follows that

rα

μ(B(x,κr))

∫
B(x,r)

| fl(z)|dμ(z)− (r+d(x,y))α

μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)

� (r+d(x,y))α
( 1

μ(B(x,κr))
− 1

μ(B(y,κ(r+d(x,y))))

)∫
B(y,r+d(x,y))

| fl(z)|dμ(z)

� 2δ c2
1c5d(x,y)δ (r+d(x,y))α−δ 1

μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z).

This together with (3.8) and (3.10) implies that

Mκ
α(�f )(x)−Mκ

α(�f )(y)
� 2δ c2

1c5d(x,y)δ (r+d(x,y))α−δ

×
m

∑
l=1

l−1

∏
μ=1

( c2
1

μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fμ(z)|dμ(z)
)

×
m

∏
ν=l+1

( 1
μ(B(x,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fν(z)|dμ(z)
)

× 1
μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)+ ε

� 2δ mc2m
1 c5d(x,y)δ Mκ

α−δ (�f )(y)+ ε,

(3.12)

Then (3.12) and (3.9) yield that

Mκ
α(�f )(x)−Mκ

α(�f )(y) � 2δ mc2m
1 (1+ c5)d(x,y)δ Mκ

α−δ (�f )(y)+ ε (3.13)

if Mκ
α(�f )(x) � Mκ

α(�f )(y) . Similarly, we can get

Mκ
α(�f )(y)−Mκ

α(�f )(x) � 2δ mc2m
1 (1+ c5)d(x,y)δ Mκ

α−δ (�f )(x)+ ε (3.14)

if Mκ
α(�f )(x) < Mκ

α(�f )(y) . If follows from (3.13) and (3.14) that

|Mκ
α(�f )(x)−Mκ

α (�f )(y)| � 2δ mc2m
1 (1+c5)d(x,y)δ (Mκ

α−δ (�f )(x)+Mκ
α−δ (�f )(y))+ε.

(3.15)
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Letting ε → 0, inequality (3.15) leads to (3.6). From (3.6) we see that 2δ mc2m
1 (1 +

c5)Mκ
α−δ (�f ) is a generalized δ -gradient of Mκ

α(�f ) . This together with (ii) of Theorem
1.2 yields (3.4).

We now prove (ii). The proof is analogous to (i). Let x, y ∈ X and 0 < β � δ/Q .
We want to show that

|M̃κ
α(�f )(x)−M̃κ

α(�f )(y)|
� 2δ κQβ mc2m

1 cβ
4 (c5 +1)d(x,y)Qβ (M̃κ

α−β (�f )(x)+M̃κ
α−β (�f )(y)).

(3.16)

Assume that M̃κ
α(�f )(x) � M̃κ

α(�f )(y) . Given ε > 0, there exists r = r(ε,x) > 0 such
that

M̃κ
α(�f )(x) � (μ(B(x,κr)))α−m

m

∏
l=1

∫
B(x,r)

| fl(z)|dμ(z)+ ε. (3.17)

When r > d(x,y) . We get easily from (3.17) that

M̃κ
α (�f )(x)−M̃κ

α(�f )(y)

� (μ(B(x,κr)))α−m
m

∏
l=1

∫
B(x,r)

| fl(z)|dμ(z)

−(μ(B(y,κ(r+d(x,y)))))α−m
m

∏
l=1

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)+ ε

�
m

∑
l=1

l−1

∏
μ=1

( 1
μ(B(x,κr))

∫
B(x,r)

| fμ(z)|dμ(z)
)

×
m

∏
ν=l+1

( 1
μ(B(x,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fν (z)|dμ(z)
)

×
(
(μ(B(x,κr)))α−1

∫
B(x,r)

| fl(z)|dμ(z)

−(μ(B(y,κ(r+d(x,y)))))α−1
∫

B(y,r+d(x,y))
| fl(z)|dμ(z)

)
+ ε.

(3.18)

Fix l ∈ {1,2, . . . ,m} . (3.11) leads to

(μ(B(x,κr)))α−1
∫

B(x,r)
| fl(z)|dμ(z)− (μ(B(y,κ(r+d(x,y)))))α−1

×
∫

B(y,r+d(x,y))
| fl(z)|dμ(z)

� (μ(B(y,κ(r+d(x,y)))))α
( 1

μ(B(x,κr))
− 1

μ(B(y,κ(r+d(x,y))))

)
×

∫
B(y,r+d(x,y))

fl(z)dμ(z)

� 2δ c2
1c5

( d(x,y)
(r+d(x,y))

δ
(μ(B(y,κ(r+d(x,y)))))α−1

∫
B(y,r+d(x,y))

| fl(z)|dμ(z).

(3.19)
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It follows form (3.8), (3.18) and (3.19) that

M̃κ
α(�f )(x)−M̃κ

α(�f )(y) � 2δ mc2m
1 c5

( d(x,y)
(r+d(x,y))

)δ
(μ(B(y,κ(r+d(x,y)))))α−m

×
m

∏
l=1

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)+ ε.

(3.20)
Note that δ −Qβ � 0. Then by (1.4) we get( d(x,y)

(r+d(x,y))

)δ
(μ(B(y,κ(r+d(x,y)))))β

� d(x,y)Qβ d(x,y)δ−Qβ (μ(B(y,κ(r+d(x,y)))))β

(r+d(x,y))δ

� cβ
4 κQβ d(x,y)Qβ

( d(x,y)
r+d(x,y)

)δ−Qβ
� cβ

4 κQβ d(x,y)Qβ .

(3.21)

Then (3.20) and (3.21) may yield that

M̃κ
α(�f )(x)−M̃κ

α(�f )(y) � 2δ κQβ mc2m
1 cβ

4 c5d(x,y)Qβ M̃κ
α−β (�f )(y)+ ε (3.22)

when r > d(x,y) . If r � d(x,y) , if follows from (3.8), (1.4) and (3.17) that

M̃κ
α(�f )(x)−M̃κ

α(�f )(y)

� (μ(B(x,κr)))α
m

∏
l=1

1
μ(B(x,κr))

∫
B(x,r)

| fl(z)|dμ(z)+ ε

� c2m
1 (μ(B(x,κ(r+d(x,y)))))α

m

∏
l=1

1
μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)+ ε

� c2m
1 cβ

4 (κ(r+d(x,y)))Qβ (μ(B(x,κ(r+d(x,y)))))α−β

×
m

∏
l=1

1
μ(B(y,κ(r+d(x,y))))

∫
B(y,r+d(x,y))

| fl(z)|dμ(z)+ ε

� 2Qβ κQβ c2m
1 cβ

4 d(x,y)Qβ M̃κ
α−β (�f )(y)+ ε.

This combines with (3.21) implies that

M̃κ
α(�f )(x)−M̃κ

α(�f )(y) � 2δ κQβ mc2m
1 cβ

4 c5d(x,y)Qβ M̃κ
α−β (�f )(y)+ ε. (3.23)

Similarly, when M̃κ
α(�f )(x) < M̃κ

α(�f )(y) , we can conclude that

M̃κ
α(�f )(y)−M̃κ

α(�f )(x) � 2δ κQβ mc2m
1 cβ

4 (c5 +1)d(x,y)Qβ M̃κ
α−β (�f )(x)+ ε. (3.24)

We get from (3.23) and (3.24) that

|M̃κ
α(�f )(x)−M̃κ

α(�f )(y)|
� 2δ κQβ mc2m

1 cβ
4 (c5 +1)d(x,y)Qβ (M̃κ

α−β (�f )(x)+M̃κ
α−β (�f )(y))+ ε.

(3.25)

Letting ε → 0, (3.25) leads to (3.16). Hence, the function 2δ κQβ mc2m
1 cβ

4 (c5+1)M̃κ
α−β (�f )

is a generalized Qβ -gradient of M̃κ
α(�f ) . This together with part (i) of Theorem 1.2

yields (3.5). �
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REMARK 3.3. Theorem 3.1 can be seen as a generalization of the main result of
[17] to the metric setting. Part (i) of Theorem 3.1 extends [12, Theorem 4.2], which
corresponds to the case m = κ = 1. It should be pointed out that part (ii) of Theorem
3.1 is new even in the special case m = 1, κ = 1 and α = 0.

REMARK 3.4. Under the assumptions of Theorem 3.1, we see that Mκ
α(�f ) ∈

Mδ ,q1
loc (X) and M̃κ

α(�f )∈Mδ ,q2
loc (X) , where 1/q∗1 = ∑m

i=1 1/pi−α/Q and 1/q∗2 = ∑m
i=1 1/pi

−α . Moreover, for all open sets A ⊂ X with μ(A) < ∞ , the following inequalities are
valid.

‖Mκ
α(�f )‖Mδ ,q(A) �α ,Q,c3,p1,...,pm

(
μ(A)1/q1−1/q∗1 +1

) m

∏
l=1

‖ fl‖Lpl (A),

‖M̃κ
α(�f )‖MQβ ,q(A) �α ,p1,...,pm

(
μ(A)1/q2−1/q∗2 +1

) m

∏
l=1

‖ fl‖Lpl (A).

4. The discrete multilinear fractional maximal operator

Let us begin with the construction of the discrete multilinear fractional maximal
operator. Let r > 0. Since the measure μ is doubling, there are balls B(xi,6r), i =
1,2, . . . , such that

X =
∞⋃

i=1

B(xi,r) and
∞

∑
i=1

χB(xi,6r) � N < ∞,

where χB(xi,6r) is the characteristic function of the ball B(xi,6r) and the constant N
depends only on the doubling constant. This means that the dilated balls B(xi,6r), i =
1,2, . . . , are of bounded overlap. We construct a partition of unity subordinate to the
covering B(xi,6r), i = 1,2, . . . , of X . Indeed, there is a family of functions ϕi, i =
1,2, . . . , such that 0 � ϕi � 1, ϕi = 0 in X \B(xi,6r) , ϕ � ν > 0 in B(xi,3r) , ϕi is
Lipschitz with constant L/r with ν and L depending only on the doubling constant,
and

∞

∑
i=1

ϕi(x) = 1

for every x ∈ X .
In what follows, we denote by AB( f ) = 1

μ(B)
∫
B f (x)dμ(x) the integrable average

of f over the set B . We now introduce the discrete multilinear fractional maximal
operator.

DEFINITION 4.1. (Discrete multilinear fractional maximal operator). The dis-
crete convolution of a locally integrable function f at the scale 3r is

Dr( f )(x) =
∞

∑
i=1

ϕi(x)AB(xi,3r)(| f |)
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for every x ∈ X . Let r j, j = 1,2, . . . be an enumeration of the positive rationals and
let balls B(xi,r j), i = 1,2, . . . be a covering of X as above. The discrete multilinear
fractional maximal operator of �f = ( f1, . . . , fm) in X is

M∗
α(�f )(x) = sup

j�1
rα

j

m

∏
l=1

Drj( fl)(x)

for every x ∈ X .

When m = 1, the operator M∗
α reduces to the discrete fractional maximal function

M ∗
α studied in [11]. Specially, the Hardy-Littlewood type discrete maximal function

corresponds to the special case α = 0 of M ∗
α , which was investigated by many authors

(see [1, 14, 15] for example).
The following result shows that the discrete multilinear fractional maximal func-

tion is equivalent with two-sided estimates to the standard multisublinear fractional
maximal function.

THEOREM 4.1. Let �f = ( f1, . . . , fm) with each f j ∈ L1
loc(X) . Assume that the

measure μ satisfies the doubling condition (1.1). Then

M∗
α(�f )(x) ∼c1 M1

α(�f )(x)

for every x ∈ X .

Proof. Observing that for each x ∈ X , there exists i = i(x) such that x ∈ B(xi,r j) .
It follows that B(x,r j) ⊂ B(xi,2r j) . This together with the fact that ϕi � ν on B(xi,r j)
yields that

rα
j

m

∏
l=1

AB(x,r j)(| fl |)�c1 rα
j

m

∏
l=1

AB(xi,3r j)(| fl |)�c1 rα
j

m

∏
l=1

ϕi(x)AB(xi,3r j)(| fl |)�c1 M∗
α(�f )(x)

(4.1)
for all x ∈ X . Taking the supremum on the left side of (4.1), one has

M1
α(�f )(x) �c1 M∗

α(�f )(x) (4.2)

for all x ∈ X . On the other hand, fix x ∈ X and a positive rational number r j . Since
ϕi = 0 on X \ B(xi,6r j) and B(xi,3r j) ⊂ B(x,9r j) for every x ∈ B(xi,6r j) , by the
doubling condition (1.1), it holds that

rα
j

m

∏
l=1

Drj ( fl)(x) = rα
j

m

∏
l=1

( ∞

∑
i=1

ϕi(x)AB(xi,3r j)(| fl |)
)

� rα
j

m

∏
l=1

( ∞

∑
i=1

ϕi(x)
μ(B(x,9r j))
μ(B(xi,3r j))

AB(x,9r j)(| fl |)
)

�c1 rα
j

m

∏
l=1

AB(x,9r j)(| fl |)
�c1 M1

α (�f )(x).



MULTILINEAR FRACTIONAL MAXIMAL OPERATORS 387

It follows that
M∗

α(�f )(x) �c1 M1
α(�f )(x)

for every x ∈ X . This together with (4.2) yields our claim. �

Applying Theorems 4.1 and 1.2, we obtain

THEOREM 4.2. Assume that the measure μ satisfies the doubling condition (1.1)
and the lower bound condition (1.2). Let �f = ( f1, . . . , fm) with each f j ∈ Lpj (X) for
p j > 1 , 0 � α � ∑m

i=1 Q/pi and 1
q = ∑m

i=1 1/pi−α/Q � 1 . Then

‖M∗
α(�f )‖Lq(X) �α ,Q,c1,c3,p1,...,pm

m

∏
j=1

‖ f j‖Lp j (X).

5. Boundedness on Sobolev spaces

A nonnegative Borel function g on X is an upper gradient of a function u on an
open set Ω ⊂ X , if for all rectifiable paths γ : [0,1]→ X , we have

|u(γ(0))−u(γ(1))|�
∫

γ
gdx, (5.1)

whenever both u(γ(0)) and u(γ(1)) are finite, and
∫

γ gds = ∞ otherwise. The assump-
tion that g is a Borel function is needed in the definition of the path integral. If g is
merely a μ -measurable function and inequality (5.1) holds for p -almost every path,
then g is said to be a p -weak upper gradient of u . By saying that (5.1) holds for p -
almost every path we mean that it fails only for a path family with zero p -modulus. A
family Γ of curves is of zero p -modulus if there is a non-negative Borel measurable
function ρ ∈ Lp(X) such that for all curves γ ∈ Γ , the path integral

∫
γ ρdx = ∞ . If we

redefine a p -weak upper gradient on a set of measure zero we obtain an upper gradient
of the same function. If g is a p -weak upper gradient of u , then there is a sequence gi ,
i = 1, . . . , of upper gradients of u such that

∫
X |gi−g|pdμ → 0 as i→ ∞ . Hence every

p -weak upper gradient can be approximated by upper gradients in the Lp(X)-norm.
If u has an upper gradient that belongs to Lp(X) with p � 1, then it has a minimal
p -weak upper gradient gu in the sense that for every p -weak upper gradient g of u ,
gu � g almost everywhere.

We now recall the Sobolev space in metric space, which is called Newtonian space
usually.

DEFINITION 5.1. (Sobolev spaces in metric space). We define the first order
Sobolev spaces on the metric space X using the p -weak upper gradients. These spaces
are called Newtonian spaces. For 1 � p < ∞ and u ∈ Lp(X) , let

‖u‖N1,p(X) =
(∫

X
|u|pdμ + inf

g

∫
X

gpdμ
)1/p

,
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where the infimum is taken over all p -weak upper gradients of u . Then Newtonian
space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/ ∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0. The same definition applies to subsets
of X as well.

The notion of a p -weak upper gradient is used to prove that N1,p(X) is a Banach
space. We refer to [3, 22, 23] for the properties of Newtonian spaces

Before showing our main results of this section, we shall present the following
useful proposition, which followed from [3].

PROPOSITION 5.1. ([3]). Let u = supi ui and g = supi gi , where gi is a p-weak
upper gradients of ui . If u is finite almost everywhere, then g is a p-weak upper
gradient of u .

We shall establish the following result.

THEOREM 5.2. Assume that the measure μ satisfies the lower bound condition
(1.4) and that μ is doubling. Let �f = ( f1, . . . , fm) with each f j ∈ Lpj (X) for p j > 1 ,
1� α � ∑m

i=1 Q/pi and 1/q= ∑m
i=1 1/pi−(α −1)/Q� 1 . Then, there exists a constant

C = C(L,m,c1) > 0 such that CM∗
α−1(�f ) is a weak upper gradient of M∗

α(�f ) .

Proof. Fix r > 0, we first consider the weak upper gradient of rα ∏m
l=1 Dr( fl) .

One can easily check that

∣∣∣rα
m

∏
l=1

Dr( fl)(x)− rα
m

∏
l=1

Dr( fl)(y)
∣∣∣

� rα
m

∑
l=1

l−1

∏
μ=1

Dr( fμ)(y)
m

∏
ν=l+1

Dr( fl)(x)|Dr( fl)(x)−Dr( fl)(y)|.
(5.2)

Since each ϕi is L
r -Lipschitz continuous and has a supported in B(xi,6r) , then

|Dr( fl)(x)−Dr( fl)(y)| =
∣∣∣ ∞

∑
i=1

ϕi(x)AB(xi,3r)(| fl |)−
∞

∑
i=1

ϕi(y)AB(xi,3r)(| fl |)
∣∣∣

�
∞

∑
i=1

|ϕi(x)−ϕi(y)|AB(xi,3r)(| fl |)

� Lr−1d(x,y)
∞

∑
i=1

AB(xi,3r)(| fl |).

(5.3)

If x ∈ B(xi,r) , then B(xi,3r) ⊂ B(x,9r) ⊂ B(xi,15r) and

AB(xi,3r)(| fl |) � c3
1AB(x,9r)(| fl |). (5.4)
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By the bounded overlap property of the balls B(xi,6r) , i = 1, . . . , and (5.4), one finds
that

Dr( fl)(x) =
∞

∑
i=1

ϕi(x)AB(xi,3r)(| fl |)χB(xi,6r)(x) � Nc3
1AB(x,9r)(| fl |). (5.5)

Similarly, it holds that

Dr( fl)(y) � Nc3
1AB(x,9r)(| fl |). (5.6)

Then by (5.3), (5.4) and the bounded overlap property of the balls B(xi,6r) , i = 1, . . . ,
we have

|Dr( fl)(x)−Dr( fl)(y)|

� Lr−1d(x,y)
∞

∑
i=1

AB(xi,3r)(| fl |)χB(xi,r)(x)

� Lr−1d(x,y)
∞

∑
i=1

AB(xi,3r)(| fl |)χB(xi,6r)(x) � LNc3
1r

−1d(x,y)AB(x,9r)(| fl |).

(5.7)

It follows from (5.2) and (5.5)-(5.7) that

∣∣∣rα
m

∏
l=1

Dr( fl)(x)− rα
m

∏
l=1

Dr( fl)(y)
∣∣∣

� d(x,y)Lm(Nc3
1)

mrα−1
m

∏
l=1

AB(x,9r)(| fl |)
� d(x,y)91−αLm(Nc3

1)
mM1

α−1(�f )(x).

Therefore, the function 91−αLm(Nc3
1)

mM1
α−1(�f ) is a weak upper gradient of

rα ∏m
l=1 Dr( fl) . This together with Theorem 4.1 implies that there exists a constant

C = C(L,m,c1) > 0 such that CM∗
α−1(�f ) is a weak upper gradient of rα ∏m

l=1 Dr( fl) .
By Theorem 4.2, we see that M∗

α−1(�f ) ∈ Lq(X) . Hence, the function M∗
α−1(�f ) is

finite almost everywhere. Applying Proposition 5.1, we can get our desired conclu-
sion. �

REMARK 5.2. The following Sobolev type theorem is a generalization of the
main result of [17, Theorem 2.3] to the metric setting. Theorem 5.2 implies [10, The-
orem 6.1] when m = 1. With the assumptions of Theorem 5.2, we see that M∗

α(�f ) ∈
N1,q∗

loc (X) and

‖M∗
α(�f )‖N1,q∗ (A) �α ,Q,L,m,c1,c3,p1,...,pm

(
μ(A)1/q∗−1/q +1

) m

∏
j=1

‖ f j‖Lp j (A)

for all open sets A ⊂ X with μ(A) < ∞ . Here 1/q∗ = ∑m
i=1 1/pi−α/Q � 1.

In order to establish next result, we need the following definition.
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DEFINITION 5.3. ((1, p)-Poincaré inequality). We say that X supports a (weak)
(1, p)-Poincaré inequality if there exist constant c6 > 0 and λ � 1 such that for all
balls B(x,r) ⊂ X , for all locally integrable functions u on X and for all p -weak upper
gradients g of u ,

1
μ(B(x,r))

∫
B(x,r)

|u−AB(x,r)(u)|dμ � c6r
( 1

μ(B(x,λ r))

∫
B(x,λ r)

gpdμ
)1/p

.

Note that since p -weak upper gradients can be approximated by upper gradients
in the Lp(X)-norm, it would be enough to require the Poincaré inequality for upper
gradients only. By Hölder’s inequality we see that if X supports a (1, p)-Poincaré
inequality, then it supports a (1,q)-Poincaré inequality for every q > p . It was shown in
[13] that if X is complete and μ is doubling, then a (1, p)-Poincaré inequality implies
a (1,r)-Poincaré inequality for some r < p . Hence the (1, p)-Poincaré inequality is a
self improving condition.

We now establish the boundedness of the discrete multisublinear fractional maxi-
mal function in Sobolev spaces.

THEOREM 5.3. Assume that the measure μ satisfies the doubling condition (1.1)
and the lower bound condition (1.2). Let �f = ( f1, . . . , fm) with each f j ∈ N1,p j(X)
for 1 < p j < ∞ , 1 � α � ∑m

i=1 Q/pi and 1/q = ∑m
i=1 1/pi −α/Q � 1 . Assume that

X is a complete metric space which supports a (1, p)-Poincaré inequality with p =
min1�i�m pi . Then M∗

α(�f ) ∈ N1,q(X) . Moreover,

‖M∗
α(�f )‖N1,q(X) �α ,Q,c1,c3,c6,p1,...,pm

m

∏
l=1

‖ fl‖N1,pl (X).

Proof. Let fl ∈ N1,pl (X) and gl ∈ Lpl (X) be a weak upper gradient of fl . Fix
j � 1 and r > 0, let x, y ∈ B(x j,r) and I j = {i : B(xi,6r)∩B(x j,r) 
= /0} . On the basis
of the bounded overlap of the balls B(xi,6r) , the set I j is finite and the cardinality does
not depend on j . One can easily check that∣∣∣rα

m

∏
l=1

Dr( fl)(x)− rα
m

∏
l=1

Dr( fl)(y)
∣∣∣

= rα
∣∣∣ m

∏
l=1

∞

∑
i=1

ϕi(x)AB(xi,3r)(| fl |)−
m

∏
l=1

∞

∑
i=1

ϕi(y)AB(xi,3r)(| fl |)
∣∣∣

� rα
m

∑
l=1

l−1

∏
μ=1

∞

∑
i=1

ϕi(y)AB(xi,3r)(| fμ |)
m

∏
ν=l+1

∞

∑
i=1

ϕi(x)AB(xi,3r)(| fν |)

×
∣∣∣ ∞

∑
i=1

(ϕi(x)−ϕi(y))(AB(xi,3r)(| fl |)−AB(x j,3r)(| fl |))
∣∣∣.

(5.8)

It was shown in [10] that∣∣∣ ∞

∑
i=1

(ϕi(x)−ϕi(y))(AB(xi,3r)(| fl |)−AB(x j,3r)(| fl |))
∣∣∣

�c6 d(x,y)
(

1
μ(B(x j ,10λ r))

∫
B(x j ,10λ r) g

rl
l dμ

)1/rl
(5.9)



MULTILINEAR FRACTIONAL MAXIMAL OPERATORS 391

for some rl ∈ (1, pl) and λ � 1. Let α = ∑m
i=1 αi with αi � 0. Then (5.4) leads to

rαl
∞

∑
i=1

ϕi(x)AB(xi,3r)(| fl |) � c3
1r

αl AB(x,9r)(| fl |)
∞

∑
i=1

ϕi(x) � c3
1M

1
αμ ( fl)(x). (5.10)

Note that B(x,9r) ⊂ B(y,11r) ⊂ B(x,13r) . This together with (5.4) and (1.1) implies
that

rαl
∞

∑
i=1

ϕi(y)AB(xi,3r)(| fl |)

� c3
1r

αl AB(x,9r)(| fl |)
∞

∑
i=1

ϕi(x)

� c3
1r

αl AB(x,9r)(| fl |) = c3
1r

αl
μ(B(y,11r))
μ(B(x,9r))

AB(y,11r)(| fl |) � c4
1M

1
αl

( fl)(x).

(5.11)

It follows from (5.8)-(5.11) that

∣∣∣rα
m

∏
l=1

Dr( fl)(x)− rα
m

∏
l=1

Dr( fl)(y)
∣∣∣

�c1,c6 d(x,y)
m

∑
l=1

∏
1�μ�m

μ 
=l

M 1
αμ ( fμ)(x)rαl

( 1
μ(B(x j,10λ r))

∫
B(x j ,10λ r)

grl
l dμ

)1/rl
.

Since the pointwise Lipschitz constant of a function is a weak upper gradient, we set
that

gr(x)=C
m

∑
l=1

∏
1�μ�m

μ 
=l

M 1
αμ ( fμ)(x)rαl

m

∑
j=1

( 1
μ(B(x j,10λ r))

∫
B(x j ,10λ r)

grl
l dμ

)1/rl
χB(x j ,6r)(x)

is a weak upper gradient of rα ∏m
l=1 Dr( fl) . By the bounded overlap of the balls, there

exists a constant C = C(c1,c6) > 0 such that

gr(x) � C(c1,c6)
m

∑
l=1

(M ∗
αl rl (g

rl
l )(x))1/rl ∏

1�μ�m
μ 
=l

M 1
αμ ( fμ)(x) =: C(c1,c6)G(�f )(x).

By Theorems 1.2 and 4.1 with m = 1, the Hölder’s inequality and the Minkowski’s
inequality, it holds that

‖G(�f )‖Lq(X) �
m

∏
l=1

‖(M 1
αl rl (g

rl
l ))1/rl‖Lql (X) ∏

1�μ�m
μ 
=l

‖M 1
αμ ( fμ)‖Lqμ (X)

�α ,Q,c1,c3,p1,...,pm

m

∏
l=1

‖gl‖Lpl (X) ∏
1�μ�m

μ 
=l

‖ fμ‖Lpμ (X).
(5.12)

Here 1/q = ∑m
i=1 1/qi and qi = Qpi/(Q−αi pi) . Then G(�f ) is finite almost every-

where. Applying Proposition 5.1, we obtain that C(c1,c6)G(�f ) is a q -weak upper
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gradient of M∗
α(�f ) . Note that grl

l ∈ Lpl/rl (X) and pl/rl > 1. By Theorem 4.2 we can
get

‖M∗
α(�f )‖Lq(X) �α ,Q,c1,c3,p1,...,pm

m

∏
j=1

‖ f j‖Lp j (X).

This together with (5.12) yields that

‖M∗
α(�f )‖N1,q(X) �α ,Q,c1,c3,c6,p1,...,pm

m

∏
j=1

‖ f j‖N1,p j (X).

Then Theorem 5.3 is proved. �
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