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A REVERSE BLASCHKE–SANTALÓ INEQUALITY
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(Communicated by M. Krnić)

Abstract. Motivated by works of Lutwak, Yang and Zhang (in [17], [20] and [21]), a new reverse
Blaschke-Santaló inequality that connects the volume of an origin-symmetric convex body K
with the volume of the polar body Γ∗

2K of the L2 centroid body of K is established.

1. Introduction

Throughout this paper a convex body K in Euclidean n -space R
n is a compact

convex subset with non-empty interior. The support function hK : R
n → [0,∞) of K is

defined by
hK(x) = sup{x · y : y ∈ K, x ∈ R

n},
where x · y is the usual inner product of x and y in R

n . The polar body K∗ of K is
defined by

K∗ = {x ∈ R
n : x · y � 1 f or all y ∈ K}.

The Blaschke-Santaló inequality is a well know affine isoperimetric inequality
which connect the volume of a convex body with that of its polar body. The Blaschke-
Santaló inequality states that

V (K)V (K∗) � ω2
n , (1.1)

where V (K) and ωn denote the volume of K and the volume of the unit ball Bn in R
n ,

respectively, and the equality holds if and only if K is an ellipsoid. A classical proof
of this inequality deduced it from the classical affine isoperimetric inequality of affine
differential geometry (cf. [28]).

For a compact star-shaped (about the origin) subset K in R
n , and each p such that

1 � p � ∞ , the Lp centroid body ΓpK of K is defined by

hΓpK(x)p =
1

cn,pV (K)

∫
K
|x · y|pdy, (1.2)
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where cn,p = ωn+p
ω2ωnωp−1

. The normalization is made in such a way that ΓpBn = Bn . The

bodies Γ2K and Γ−2K are all ellipsoids, which are called Legendre ellipsoid and LYZ
ellipsoid of K , respectively (cf. [17], [32]). For the case p = ∞ , this definition is to
be interpreted as the limit as p → ∞ , which exists, and in the case of an o -symmetric
convex body K the polar body of ΓpK coincides with K∗ .

Let Γ∗
pK denote the polar body of ΓpK , in [21] the following centro-affine in-

equality involving the volume of K and the volume of Γ∗
2K was established:

If K is a star-shaped (about the origin) subset of R
n , then for 1 � p � ∞,

V (K)V (Γ∗
pK) � ω2

n , (1.3)

with equality if and only if K is an ellipsoid centered at the origin. If K is an o -
symmetric convex body, for p = ∞ , inequality (1.3) reduces to the classical Blaschke-
Santaló inequality (1.1).

For more information on volume inequalities see, e.g., [4]–[16], [19], [22]–[27],
[29]–[32] and the references therein. The lower bound of the volume product in (1.3) is
of considerable interest. In [21], Lutwak and Zhang provide the following conjecture.

Lutwak-Zhang Problem. For p � 1, is there a constant cp > 0, independent of
n (and perhaps even independent of p), so that for each centered convex body K in
R

n ,

V (K)V (Γ∗
pK) � ω2

n cn
p? (1.4)

For a star body K and p = 2, Γ2K is the Legendre ellipsoid of K , and inequality
(1.4) becomes

V (K)V (Γ∗
2K) � ω2

n cn
2.

This inequality is one of the equivalent forms of the slicing problem: Does there exist
an absolute constant c > 0 such that each centered convex body of unit volume in R

n ,
has an (n−1)-dimensional slice of (n−1)-dimensional volume greater than c?

Motivated by Lutwak-Yang-Zhang [17], [20], [21], in this paper, for the case p =
2, we establish the following reverse Blaschke-Santaló inequality.

THEOREM 1.1. Let K be an origin-symmetric convex body in R
n and Let Γ∗

2K
be the polar body of the L2 centroid body Γ2K , then

V (K)V (Γ∗
2K) � ωn(n+1)(n+1)/2

n!nn/2
. (1.5)

This paper is organized as follows. In Section 2, we collect some basic concepts
and various facts of convex bodies. In Section 3, we present some results of isotropic
measures which will be used. The main theorem is proved in Section 4.
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2. Basic concepts of convex body

A convex body is a nonempty compact, convex subset of R
n . The set of all convex

bodies in R
n contain the origin of in its interior is denoted by K n

o . From the definition
of K∗ it follows that for K ∈ K n

o ,

K∗∗ = K. (2.1)

For φ ∈ GL(n) , we have

(φK)∗ = φ−tK∗, (2.2)

where φ−t denotes the inverse of the transpose of φ .
A set K in R

n is star shaped with respect to a point p ∈ K if the intersection
of every line through p with K is a line segment. Let K be a compact star shaped
set with respect to the origin. Its radial function is defined by The radial function
ρK : R

n{0}→ (0,∞) of K is defined by

ρK(x) = max{λ � 0 : λx ∈ K}.

If the radial function is continuous for u , then K is called a star body.
The support function is homogeneous of degree 1 while the radial function is

homogeneous of degree −1. From the definitions of the support and radial functions
and the definition of the polar body, for K ∈ K n

o , it follows that,

hK =
1

ρK∗
and ρK =

1
hK∗

. (2.3)

From the definitions (1.2) and (2.3), the radial function of Γ∗
2K is given by

ρΓ∗
2K

(x)−2 =
1

cn,2V (K)

∫
K
|x · y|2dy

=
n+2
V (K)

∫
Sn−1

∫ ρK

0
|x ·u|2rn+1drdu

=
1

V (K)

∫
Sn−1

|x ·u|2ρn+2
K du. (2.4)

For two star bodies K,L , and ε > 0, the L2 -harmonic radial combination K+̃−2ε ·
L is the star body defined by

ρ−2
K+̃−2ε·L = ρ−2

K + ερ−2
L . (2.5)

The dual mixed volume V−2(K,L) of star bodies K,L can be defined by

n
−2

V−2(K,L) = lim
ε→0+

V (K+̃−2ε ·L)−V(K)
ε

. (2.6)



398 Z. ZHANG

From the definitions (2.5) and (2.6), it follows that for each star body K ,

V (K) = V−2(K,K). (2.7)

Definitions (2.5) and (2.6) and the polar coordinate formula for volume give the
following integral representation of the dual mixed volume V−2(K,L) of the star bodies
K,L :

V−2(K,L) =
1
n

∫
Sn−1

ρn+2
K (u)ρ−2

L (u)du. (2.8)

Note that for φ ∈ GL(n) ,

Γ−2φK = φΓ−2K, φ ∈ GL(n). (2.9)

The following lemma is due to Lutwak-Yang-Zhang in [20].

LEMMA 2.1. (cf. [20]) If ν is a finite positive Borel measure on Sn−1 , and Q is
a convex body that contains the origin in its interior, then∫

Sn−1
(vρQ(v),1)dν(v) ∈ r0Q×{r0} ∈ R

n+1,

where r0 = ν(Sn−1) .

3. Isotropic embedding

A finite nonnegative Borel measure ν on Sn−1 is said to be isotropic if∫
Sn−1

|v ·u|2dν(u) = 1, (3.1)

for all v ∈ Sn−1 . Applying (3.1) to the vectors of an orthonormal basis and subsequent
summation yields

ν(Sn−1) = n. (3.2)

For a finite Borel measure ν on Sn−1 , the bilinear form F =
∫
Sn−1 u⊗ udν(u) is

defined by

F(x,y) =
∫

Sn−1
(u · x)(u · y)dν(u), x, y ∈ R

n.

The Ball-Barthe inequality for isotropic measure is:

Ball-Barth inequality. (cf. [18]) If ν is an isotropic measure on Sn−1 , then for
each continuous l : Sn−1 → (0,∞) is continuous,

det
∫

Sn−1
l(u)u⊗udν(u) � exp

{∫
Sn−1

log l(u)dν(u)
}

, (3.3)
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with equality if and only if l(u1), · · · , l(un) is constants for linearly independent u1, · · · ,un

in supp(ν) .

The concept of an isotropic embedding is critical in establishing Theorem 1.1.

Isotropic embedding. If (Sn−1,ν) is a Borel measure space, then a continuous
map v : Sn−1 → Sn is said to be an isotropic embedding of the Borel measure space
(Sn−1,ν) into Sn if ∫

Sn−1
|ω · v(x)|2dν(x) = 1, f or all ω ∈ Sn. (3.4)

Summing the equation (3.4) with w = e1, . . . ,en+1 shows that if (Sn−1,ν ) is isotropi-
cally embeddable into Sn , then

ν(Sn−1) = n+1. (3.5)

Note that, if suppν = {u1, · · · ,un+1} , then v(u1), · · · ,v(un) are orthogonal and ν({ui})=
1 for all i .

The Ball-Barthe inequality [1, 2, 3] for isotropic embedding is:

LEMMA 3.1. If h : Sn−1 → Sn is an isotropic embedding of the Borel measure
space (Sn−1,ν) into Sn , then for each continuous l : Sn−1 → (0,∞)

det
∫

Sn−1
l(u)h(u)⊗h(u)dν(u) � exp

{∫
Sn−1

log l(u)dν(u)
}

, (3.6)

with equality if and only if l(u1), · · · , l(un+1) is constants for u1, · · · ,un+1 in supp(ν)
such that h(u1), · · · ,h(un+1) are linearly independent.

4. Proof of the main theorem

THEOREM 4.1. Let K be an origin-symmetric convex body in R
n and Let Γ∗

2K
be the polar body of the L2 centroid body Γ2K , then

V (K)V (Γ∗
2K) � ωn(n+1)(n+1)/2

n!nn/2
. (4.1)

Proof. We set

h :=
1√
nρK

= ρ−1√
nK and μ :=

1
V (K)

ρn+2
K du. (4.2)

From (2.2) and (2.9), we assume that the body K has been GL(n)-transformed such
that Γ∗

2K = B . According to (2.4) and (3.1), we infer that

the measure μ is isotropic.
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Since K is origin-symmetric, hence the measure μ is even, i.e.,∫
Sn−1

uh(u)dμ(u) = 0, (4.3)

and from (2.7), (2.8) and (4.2), we have∫
Sn−1

h(u)2dμ(u) = 1. (4.4)

Define q : Sn−1 → R
n+1 by

q(u) = (u,h(u)) (4.5)

for u ∈ Sn−1 , and define q : Sn−1 → Sn by

q =
q
|q| . (4.6)

Suppose y = (z,r) ∈ R
n+1 = R

n ×R . By (3.1), (4.3) and (4.4), we have∫
Sn−1

|y · q(u)|2|q(u)|2dμ(u)

=
∫

Sn−1
|(z,r) · (u,h(u))|2dμ(u)

=
∫

Sn−1
|z ·u+ rh(u))|2dμ(u)

=
∫

Sn−1
|z ·u|2dμ(u)+2rz ·

∫
Sn−1

uh(u)dμ(u)+ r2
∫

Sn−1
h(u)2dμ(u)

= |z|2 + r2

= |y|2.

This means that q : Sn−1 → Sn is an isotropic embedding of the measure space
(Sn−1, |q|2dμ) into Sn . Therefore, there does not exist a non-zero y ∈ R

n+1 that is
orthogonal to every vector in q(supp μ) .

Define the smooth, monotone, strictly increasing function τ : R → (0,∞) by

∫ τ(t)

0
e−ldl =

1√
π

∫ t

−∞
e−l2dl,

which satisfies

− t2 = log
√

π − τ(t)+ logτ ′(t). (4.7)

For y ∈ R
n+1 and u ∈ Sn−1 , (4.7) gives

−|y · q(u)|2 = log
√

π − τ(y · q(u))+ log
τ ′(y · q(u))
en+1 · q(u)

+ log(en+1 · q(u)). (4.8)
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We now integrate (4.8) over all u ∈ Sn−1 with respect to the measure |q|2dμ . Since
q : Sn−1 → Sn is an isotropic embedding of the measure space (Sn−1, |q|2dμ) into Sn ,
hence

−
∫
Sn−1

|y · q(u)|2|q(u)|2dμ(u) = −|y|2. (4.9)

From (3.5), we have ∫
Sn−1

log
√

π|q(u)|2dμ(u) = (n+1) log
√

π. (4.10)

We now estimate the integral of the last term on the right-hand side of (4.8):

I4 :=
∫

Sn−1
log(en+1 · q(u))|q(u)|2dμ(u).

By (3.5), the measure 1
n+1 |q|2dμ is a probability measure and since, on a probability

space, the L0 -mean of a function never exceeds its L2 -mean,

exp

(
1

n+1
I4

)
�

(
1

n+1

∫
Sn−1

|en+1 · q(u)|2|q(u)|2dμ(u)
) 1

2

. (4.11)

Since q : Sn−1 → Sn is an isotropic embedding of the measure space (Sn−1, |q|2dμ)
into Sn , we have∫

Sn−1
|en+1 · q(u)|2|q(u)|2dμ(u) =

∫
Rn

h(u)2dμ(u) = 1

and hence

I4 � − log(n+1)
n+1
2 . (4.12)

From (4.9), (4.10) and (4.12), we see that

−|y|2 � log
( π

n+1

) n+1
2 − en+1 ·

∫
Sn−1

q(u)
τ(y · q(u))
en+1 · q(u)

|q(u)|2dμ(u)

+
∫

Sn−1
log

τ ′(y · q(u))
en+1 · q(u)

|q(u)|2dμ(u). (4.13)

Define T : R
n+1 → R

n+1 by

Ty =
∫

Sn−1
q(u)

τ(y · q(u))
en+1 · q(u)

|q(u)|2dμ(u), (4.14)

for y ∈ R
n+1 . Hence,

dTy =
∫

Sn−1
q(u)⊗ q(u)

τ ′(y · q(u))
en+1 · q(u)

|q(u)|2dμ(u). (4.15)
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It is clear that for z ∈ R
n+1

z ·dTyz =
∫

Sn−1
|z · q(u)|2τ ′(y · q(u))

√
1+h(u)2

h(u)
dμ(u).

Since there exists no nonzero z∈R
n+1 such that z ·q(u)= 0 for every u∈ supp μ . This

together with the fact that τ ′(y · q(u))
√

1+h(u)2/h(u) > 0 shows that z ·dTyz > 0 for
all z �= 0. Therefore, the mean value theorem shows that T : R

n+1 → R
n+1 is globally

injective.
From Lemma 3.1 and (4.15), we infer that

|dTy| � exp

{∫
Sn−1

log
τ ′(y · q(u))
en+1 · q(u)

|q(u)|2dμ(u)
}

. (4.16)

Moreover, substituting (4.14) and (4.16) into (4.13), we have

e−|y|2 �
(

π
n+1

) n+1
2

e−en+1·Ty|dTy|. (4.17)

Integrating (4.17) over all y ∈ R
n+1 gives

(n+1)
n+1
2 �

∫
Rn+1

e−en+1·Ty|dTy|dy =
∫

T (Rn+1)
e−en+1·zdz. (4.18)

From the definitions of Ty and q , we have

Ty =
∫

Sn−1
q(u)

τ(y · q(u))
en+1 · q(u)

|q(u)|2dμ(u)

=
∫

Sn−1
q(u)

τ(y · q(u))
en+1 ·q(u)

|q(u)|2dμ(u)

=
∫

Sn−1
(ρ√

nK(u)u,1)τ(y · q(u))|q(u)|2dμ(u),

hence Lemma 2.1 shows that

Ty ∈
⋃
r>0

r
√

nK×{r}=: C ⊆ R
n×R.

Take z = (x,r) ∈ R
n ×R , we have

(n+1)
n+1
2 �

∫
T (Rn+1)

e−en+1·zdz

�
∫
C

e−en+1·zdz

=
∫ ∞

0

∫
r
√

nK
e−rdxdr

=
∫ ∞

0
|r√nK|e−rdr

= n!nn/2V (K).
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We establish inequality (4.1) for Γ∗
2K = B. Inequality (4.1) for origin-symmetric

bodies can be obtained by (2.2) and (2.9). �

REMARK 4.1. Inequality (4.1) is strict for each origin-symmetric convex bodies
in R

n . In fact, the equality of inequality (4.11) in the proof holds if and only if en+1 ·
q(u) is a constant for u ∈ supp μ , that is, h(u) is a constant for u ∈ supp μ . From the
definition of h(u) and μ , we have ρK(u) is a constant for u ∈ supp μ , and ρK(u) = 0
for u ∈ Sn−1/supp μ . Then followed by the continuity of ρK , this means that

supp μ = Sn−1.

Therefore, if the equality in inequality (4.1) holds, K must be a ball. But since inequal-
ity (4.1) is strict for the ball, then inequality (4.1) is strict for each origin-symmetric
convex bodies.
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this paper.
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