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COMPLETE CONSISTENCY AND CONVERGENCE

RATE OF THE NEAREST NEIGHBOR ESTIMATOR OF

THE DENSITY FUNCTION BASED ON WOD SAMPLES

KAN CHEN ∗ , XUFEI TANG AND JIANGFENG HAO

(Communicated by X. Wang)

Abstract. By using the exponential inequality of widely orthant dependent (WOD, for short)
random variables, we mainly investigate the complete consistency and convergence rate of the
nearest neighbor estimator of the density function based on WOD samples. The results obtained
in the paper generalize and improve some corresponding ones in the literature. In addition, the
restriction on the dominating coefficients g(n) is much weak, even if the geometric growth of
g(n) , the consistency result and convergence rate still hold by using the results that we obtained.

1. Introduction

The estimation of probability density function has important applications in medi-
cine, engineering and economy. Therefore, the estimation of probability density func-
tion is still a hot research topic. There are many methods for its estimation, such as
kernel estimation, wavelet estimation, maximum likelihood estimation, and so on. Sup-
pose that the population X has an unknown density function f (x) , X1,X2, · · · ,Xn are
the samples from the population X . Let {kn,n � 1} be a sequence of positive integers,
such that 1 � kn � n . For fixed x and n , denote

an(x) = min{a : there exist at least k′ni such that Xi ∈ [x−a,x+a]}.
Loftsgarden and Quesenberry [1] proposed the following nearest neighbor estimator of
the density function f (x) :

fn(x) =
kn

2nan(x)
. (1.1)

Since Loftsgarden and Quesenberry [1] put forward the method of nearest neigh-
bor estimation of density function mentioned above, many scholars have studied the
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asymptotic properties for this estimator. Based on independent samples, Loftsgarden
and Quesenberry [1] established the weak consistency; Wagner [2] studied the strong
consistency; Moore and Henrichon [3], and Devroye and Wagner [4] obtained the uni-
form consistency and the uniformly strong consistency, respectively; Chen [5] derived
the convergence rate of the consistency, and so on. Under dependent samples, there
are also many interesting results obtained by many scholars. For example, Boente and
Fraiman [6] established the strong consistency for the nearest neighbor estimator based
on ϕ -mixing and α -mixing samples; Chai [7] obtained the weak consistency, strong
consistency, uniformly strong consistency and the convergence rate under stationary ϕ -
mixing samples; Liu and Zhang [8] established the asymptotic normality for the nearest
neighbor estimator based on ϕ -mixing samples; Yang [9] investigated the weak con-
sistency, strong consistency, uniformly strong consistency and the corresponding con-
vergence rate under negatively associated (NA, for short) samples; Wang and Hu [10]
extended the result of Yang [9] from NA samples to widely orthant dependent (WOD,
for short) samples.

In this paper, we will continue to study the strong consistency, uniformly strong
consistency and the corresponding convergence rate for the nearest neighbor density
estimator based on WOD samples. Let’s first review the concept of WOD random
variables proposed by Wang et al. [11] as follows:

DEFINITION 1.1. A sequence {Xn,n � 1} of random variables is said to be widely
orthant dependent (WOD, for short), if there exist two positive sequences {gU(n),n �
1} and {gL(n),n � 1} , such that for each n � 1 and all real numbers x1,x2, · · · ,xn ,
both

P(X1 > x1,X2 > x2, · · · ,Xn > xn) � gU(n)
n

∏
i=1

P(Xi > xi)

and

P(X1 � x1,X2 � x2, · · · ,Xn � xn) � gL(n)
n

∏
i=1

P(Xi � xi)

hold.
An array {Xni, i � 1,n � 1} of random variables is said to be rowwise WOD,

if for each n � 1, {Xni, i � 1} is WOD. gU(n) , gL(n) , n � 1 are called dominating
coefficients.

Denote g(n)= max{gU(n),gL(n)} . It is easy to check that gU(n)� 1 and gL(n)�
1, and thus g(n) � 1. If gU(n) = gL(n) = M for all n � 1, where M � 1 is a positive
constant, then WOD random variables are degenerated to extended negatively depen-
dent (END, for short) random variables, which were introduced by Liu [12] in the year
2009; If gU(n) = gL(n) = 1, then WOD random variables are degenerated to nega-
tively orthant dependent (NOD, for short) random variables, which were introduced
by Lehmann [13] in the year 1966, and carefully studied by Joag-Dev and Proschan
[14]. It is well known that NA random variables are NOD, and thus are WOD. Hu [15]
pointed out negatively superadditive dependent (NSD, for short) random variables are
NOD, and thus are WOD. So, WOD is a kind of very broad dependent structure which
includes NA random variables, NSD random variables, NOD random variables, END
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random variables, and some positive dependent structures. The study of its limit prop-
erties is also of great theoretical and practical significance. For more details about the
WOD random variables, one can refer to [16]–[25].

In this work, we will use the exponential inequality of WOD random variables to
study the complete consistency, uniformly complete consistency and the corresponding
convergence rate of the nearest neighbor density estimator under the WOD samples,
and the condition on the dominating coefficients g(n) is very common. In addition, the
convergence rate obtained in the paper also improves the corresponding ones of Yang
[9] and Wang and Hu [10]. Throughout the paper, �x� stands for the integer part of
x , C and c0 represent positive constants whose values may vary in different places.
Denote logx = lnmax(x,e) , where ln represents the natural logarithm. Let I(A) be the
indicator function of the set A . c( f ) denotes all the continuity points of the function
f , and Xn → C a.c. stands for ∑∞

n=1 P(|Xn −C| > ε) < ∞ for any ε > 0, that is, the
sequence {Xn,n � 1} of random variables converges completely to C .

2. Preliminary lemmas

To prove the main results of the paper, we need the following important lemmas.
The first one is a basic property for WOD random variables, which can be found

in Wang et al. [21].

LEMMA 2.1. Let {Xn,n � 1} be a sequence of WOD random variables. If { fn(·),
n � 1} are all nondecreasing (or all nonincreasing), then { fn(Xn),n � 1} are still
WOD.

The next one is the Bernstein type inequality for WOD random variables, which
has been proved by Xia et al. [26].

LEMMA 2.2. Let {Xn,n � 1} be a sequence of WOD random variables with mean
zero and |Xn| � dn a.s. for each n � 1 , where {dn,n � 1} is a sequence of positive

numbers. Denote bn = max1�i�n di and Δ2
n =

n
∑
i=1

EX2
i for each n � 1 . Then for any

ε > 0 ,

P

(∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣� ε

)
� 2g(n)exp

{
− ε2

2(2Δ2
n +bnε)

}
.

LEMMA 2.3. (cf. Yang [9]) Let F(x) be a continuous distribution function. For
n � 3 , assume that xn j

′s satisfy F(xn j) = j/n, j = 1,2, . . . ,n−1 . Then

sup
−∞<x<∞

|Fn(x)−F(x)| � max
1� j�n−1

|Fn(xn j)−F(xn j)|+2/n, (2.1)

where Fn(x)= n−1 ∑n
i=1 I(Xi < x) is the empirical distribution function of X1,X2, · · · ,Xn .
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LEMMA 2.4. Let {Xn,n � 1} be a sequence of WOD random variables with the
dominating coefficients g(n) , unknown distribution function F(x) and bounded density
function f (x) . Let Fn(x) be the empirical distribution function of X1,X2, · · · ,Xn , and
{κn,n � 1} be a sequence of positive numbers such that κn → 0 and liminfn→∞ nκ2

n/
log(ng(n)) � c0 > 0 . Then for any sufficiently large D0 > 0 ,

∞

∑
n=1

P

(
sup

x
|Fn(x)−F(x)| > D0κn

)
< ∞.

In particularly, we have

∞

∑
n=1

P

(
sup

x
|Fn(x)−F(x)| > D0(log(ng(n))/n)1/2

)
< ∞.

Proof. Noting that nκn → ∞ , we have 2/n < D0κn/2 for all sufficient large n and
any positive constant D0 , which together with (2.1) yields that

P

(
sup

x
|Fn(x)−F(x)| > D0κn

)
� P

(
max

1� j�n−1
|Fn(xn j)−F(xn j)| > D0κn/2

)

�
n−1

∑
j=1

P(|Fn(xn j)−F(xn j)| > D0κn/2). (2.2)

Denote Xi(xn j)= I(Xi < xn j)−EI(Xi < xn j) . It follows by Lemma 2.1 that {Xi(xn j), i �
1} is still a sequence of WOD random variables with EXi(xn j) = 0, |Xi(xn j)| � 1 and
E(Xi(xn j))2 � 1. Hence, we have by Lemma 2.2 that for all sufficiently large n ,

P(|Fn(xn j)−F(xn j)| > D0κn/2) = P

(∣∣∣∣∣
n

∑
i=1

Xi(xn j)

∣∣∣∣∣> D0nκn/2

)

� Cg(n)exp

{
− D2

0n
2κ2

n

16Δ2
n +4D0nκn

}

� Cg(n)exp

{
−D2

0

18
nκ2

n

}

� Cg(n)exp

{
−c0D2

0

18
log(ng(n))

}

� Cg(n)1−c0D
2
0/18n−c0D

2
0/18. (2.3)

Take D0 sufficiently large such c0D2
0/18> 2. It follows by g(n)� 1 that g(n)1−c0D

2
0/18

� 1. Thus, we have by (2.2) and (2.3) that

∞

∑
n=1

P

(
sup

x
|Fn(x)−F(x)| > D0κn

)
� C

∞

∑
n=1

n−1

∑
j=1

n−c0D
2
0/18 < ∞.

This completes the proof of the lemma. �
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3. Main results and their proofs

In this section, we will provide the main results and their proofs. At first, we
present the complete consistency and the convergence rate for the nearest neighbor
density estimator fn(x) of f (x) .

THEOREM 3.1. Let {Xn,n � 1} be a sequence of WOD random variables. Sup-
pose that kn/n → 0 and k2

n/[n log(ng(n)] → ∞ as n → ∞ . Then for any x ∈ c( f ) ,

fn(x) → f (x) a.c., n → ∞.

REMARK 3.1. If we take g(n) = O(nδ ) in Theorem 3.1, where δ is an arbitrary
nonnegative constant, then Theorem 3.1 is equivalent to Corollary 2.1 of Wang and Hu
[10]. Noticing that when g(n) grows geometrically, such as g(n) = O(ent

) for some
0 < t < 1, the result of Theorem 3.1 still holds.

Proof. For any ε > 0, without loss of generality, assume that f (x) > ε . For any
x ∈ c( f ) , denote

bn(x) =
kn

2n( f (x)+ ε)
, and cn(x) =

kn

2n( f (x)− ε/2)
.

It follows by (1.1) that

Ax =: {| fn(x)− f (x)| > ε}
= { fn(x) > f (x)+ ε}

⋃
{ fn(x) < f (x)− ε, f (x) > ε}

⊂ { fn(x) > f (x)+ ε}
⋃
{ fn(x) < f (x)− ε/2, f (x) > ε}

= {an(x) < bn(x)}
⋃
{an(x) > cn(x), f (x) > ε}

⊂
{

Fn(x+bn(x))−Fn(x−bn(x)) � kn

n

}
⋃{

Fn(x+ cn(x))−Fn(x− cn(x)) � kn

n
, f (x) > ε

}
=: A1x

⋃
A2x. (3.1)

Noting that F
′
(x) = f (x) , limn→∞ bn = 0 and limn→∞ cn = 0, we obtain

lim
n→∞

F(x+bn(x))−F(x−bn(x))
2bn(x)

= f (x), lim
n→∞

F(x+ cn(x))−F(x− cn(x))
2cn(x)

= f (x),

which imply that for all sufficiently large n ,

F(x+bn(x))−F(x−bn(x)) < 2bn(x)( f (x)+ ε/2) =
kn

n
f (x)+ ε/2
f (x)+ ε

(3.2)

and

F(x+ cn(x))−F(x− cn(x)) > 2cn(x)( f (x)+ ε/4) =
kn

n
f (x)− ε/4
f (x)− ε/2

. (3.3)



410 K. CHEN, X. TANG AND J. HAO

Let δ (x) = ε
8( f (x)+ε) � 1

8 . We have by (3.1) and (3.3) that

A1x =
{

Fn(x+bn(x))−Fn(x−bn(x)) � kn

n

}

⊂
{

Fn(x+bn(x))−Fn(x−bn(x))−F(x+bn(x))+F(x−bn(x))

� kn

n
− f (x)+ ε/2

f (x)+ ε

}
⊂
{
|Fn(x+bn(x))−F(x+bn(x))|+ |Fn(x−bn(x))−F(x−bn(x))|

� 4
kn

n
δ (x)

}
⊂
{
|Fn(x+bn(x))−F(x+bn(x))| � kn

n
δ (x)

}
⋃{

|Fn(x−bn(x))−F(x−bn(x))| � kn

n
δ (x)

}
=: A11x

⋃
A12x. (3.4)

Similarly, we have by (3.1) and (3.4) that

A2x =
{

Fn(x+ cn(x))−Fn(x− cn(x)) � kn

n
, f (x) > ε

}
⊂ {Fn(x+ cn(x))−Fn(x− cn(x))−F(x+ cn(x))+F(x− cn(x))

� kn

n
− kn

n
f (x)− ε/4
f (x)− ε/2

, f (x) > ε}

⊂
{
|Fn(x+ cn(x))−F(x+ cn(x))|+ |Fn(x− cn(x))−F(x− cn(x))|

� kn

4n
ε

f (x)− ε/2
, f (x) > ε

}
⊂
{
|Fn(x+ cn(x))−F(x+ cn(x))|+ |Fn(x− cn(x))−F(x− cn(x))|

� kn

4n
ε

f (x)+ ε/2

}

⊂
{
|Fn(x+ cn(x))−F(x+ cn(x))| � kn

n
δ (x)

}
⋃{

|Fn(x− cn(x))−F(x− cn(x))| � kn

n
δ (x)

}
=: A21x

⋃
A22x. (3.5)

Hence, by (3.1), (3.4) and (3.5), we can get that

Ax ⊂ A11x

⋃
A12x

⋃
A21x

⋃
A22x. (3.6)

For fixed x , denote for 1 � i � n and n � 1 that

Xni = I(Xi < x+bn(x))−EI(Xi < x+bn(x)).
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It follows by Lemma 2.1 again that Xn1,Xn2, · · · ,Xnn are still WOD random variables,
with EXni = 0 and |Xni| � 1. Noting that kn/n → 0, δ (x) � 1

8 , and applying Lemma
2.2 with bn = 1 and Δ2

n = ∑n
i=1 EX2

ni � n , we obtain that

P(A11x) = P

(
|Fn(x+bn(x))−F(x+bn(x))| � kn

n
δ (x)

)

= P

(∣∣∣∣∣
n

∑
i=1

Xni

∣∣∣∣∣> knδ (x)

)

� Cg(n)exp

{
− k2

nδ 2(x)
4Δ2

n +2knδ (x)

}

� Cg(n)exp

{
−k2

nδ 2(x)
5n

}
� Cg(n)exp{−2log(ng(n))} � Cn−2. (3.7)

Similarly, we can verify that (3.7) still holds for A12x , A21x and A22x . Hence, we
have by (3.6) and (3.7) that

∞

∑
n=1

P(| fn(x)− f (x)| > ε) =
∞

∑
n=1

P(Ax)

�
∞

∑
n=1

[P(A11x)+P(A12x)+P(A21x)+P(A22x)]

� 4C
∞

∑
n=1

n−2 < ∞.

This completes the proof of the theorem. �

THEOREM 3.2. Let {Xn,n � 1} be a sequence of WOD random variables, and
f (x) satisfy the local Lipschitz condition at x and f (x)> 0 . If kn = O(n3/4 log1/4(ng(n)))
and τn =:

√
n log(ng(n))/kn → 0 as n → ∞ , then for any sufficiently large D > 0 ,

∞

∑
n=1

P(| fn(x)− f (x)| > Dτn) < ∞,

and thus,

| fn(x)− f (x)| � Dτn a.s., n → ∞.

Proof. Noting that f (x) > 0 and τn → 0, we have f (x) > Dτn for all sufficiently
large n . Denote

μn(x) =
kn

2n( f (x)+Dτn)
, and νn(x) =

kn

2n( f (x)−Dτn/2)
.
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Similar to the proof of (3.1), we obtain

Bx =: {| fn(x)− f (x)| > Dτn}
= { fn(x) > f (x)+Dτn}

⋃
{ fn(x) < f (x)−Dτn, f (x) > Dτn}

⊂ { fn(x) > f (x)+Dτn}
⋃
{ fn(x) < f (x)−Dτn/2, f (x) > Dτn}

= {an(x) < μn(x)}
⋃
{an(x) > νn(x), f (x) > Dτn}

⊂
{

Fn(x+ μn(x))−Fn(x− μn(x)) � kn

n

}
⋃{

Fn(x+ νn(x))−Fn(x−νn(x)) � kn

n
, f (x) > Dτn

}
=: B1x

⋃
B2x. (3.8)

By Differential Mean Value Theorem, we can see that there exist some ξ1n ∈
(x− μn(x),x+ μn(x)) and ξ2n ∈ (x−νn(x),x+ νn(x)) such that

F(x+ μn(x))−F(x− μn(x)) = 2μn(x) f (ξ1n), (3.9)

and

F(x+ νn(x))−F(x−νn(x)) = 2νn(x) f (ξ2n), (3.10)

and thus,

Fn(x+ μn(x))−Fn(x− μn(x))−F(x+ μn(x))+F(x− μn(x))

� kn

n
−2μn(x) f (ξ1n) =

kn

n
· f (x)− f (ξ1n)+Dτn

f (x)+Dτn
(3.11)

and

Fn(x+ νn(x))−Fn(x−νn(x))−F(x+ νn(x))+F(x−νn(x))

� kn

n
−2νn(x) f (ξ2n) =

kn

n
· f (x)− f (ξ2n)−Dτn/2

f (x)−Dτn/2
. (3.12)

Noting that kn = O(n3/4 log1/4(ng(n))) , we can see that there exists a positive constant
c1 such that kn � c1n3/4 log1/4(ng(n)) . Since f (x) satisfies the local Lipschitz condi-
tion at x and f (x) > 0, τn =

√
n log(ng(n))/kn → 0 as n → ∞ , we can get that there

exists a positive constant L(x) depending only on x such that for all sufficiently large
n ,

| f (x)− f (ξ1n)| � L(x)|x− ξ1n| � L(x)μn(x)

� L(x)kn

2n f (x)
=

L(x)
2 f (x)

· τn · k2
n

n3/2 log1/2(ng(n))
� c2

1L(x)
2 f (x)

τn (3.13)
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and

| f (x)− f (ξ2n)| � L(x)|x− ξ2n| � L(x)νn(x)

=
L(x)kn

2n( f (x)−Dτn/2)
� L(x)kn

n f (x)
� c2

1L(x)
4 f (x)

τn. (3.14)

Noting that f (x) is bounded, we define supx f (x) = M < ∞ . Take D >
c2
1L(x)
f (x) . It follows

by (3.11)–(3.14) that

kn

n
· f (x)− f (ξ1n)+Dτn

f (x)+Dτn
� kn

n
·
− c2

1L(x)
2 f (x) τn +Dτn

f (x)+Dτn
� knτn

n
· D
4M

(3.15)

and

kn

n
· f (x)− f (ξ2n)−Dτn/2

f (x)−Dτn/2
� kn

n
·

c2
1L(x)
4 f (x) τn −Dτn/2

f (x)−Dτn/2
� −knτn

n
· D
4M

. (3.16)

Hence, we have by (3.11) and (3.15) that for all sufficiently large n ,

B1x ⊂
{

Fn(x+ μn(x))−Fn(x− μn(x))−F(x+ μn(x))+F(x− μn(x)) � knτn

n
· D
4M

}

⊂
{
|Fn(x+ μn(x))−F(x+ μn(x))| � knτn

n
· D
8M

}
⋃{

|Fn(x− μn(x))−F(x− μn(x))| � knτn

n
· D
8M

}
=: B11x

⋃
B12x. (3.17)

Similarly, we have by (3.12) and (3.16) that for all sufficiently large n ,

B2x ⊂
{
|Fn(x+ νn(x))−F(x+ νn(x))| � knτn

n
· D
8M

}
⋃{

|Fn(x−νn(x))−F(x−νn(x))| � knτn

n
· D
8M

}
=: B21x

⋃
B22x. (3.18)

Therefore, we can get by (3.8), (3.17) and (3.18) that

Bx ⊂ B11x

⋃
B12x

⋃
B21x

⋃
B22x. (3.19)

For fixed x , denote for 1 � i � n and n � 1 that

X
′
ni = I(Xi < x+ μn(x))−EI(Xi < x+ μn(x)).

It follows by Lemma 2.1 again that X
′
n1,X

′
n2, · · · ,X

′
nn are still WOD random variables

with EX
′
ni = 0, and |X ′

ni|� 1. Applying Lemma 2.2 with bn = 1, Δ2
n = ∑n

i=1 E(X
′
ni)

2 �
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n , and noting that kn/n→ 0, τn → 0 as n→ ∞ , we have for all sufficiently large n that

P(B11x) = P

(
|Fn(x+ μn(x))−F(x+ μn(x))| � knτn

n
· D
8M

)

= P

(∣∣∣∣∣
n

∑
i=1

X
′
ni

∣∣∣∣∣> knτn · D
8M

)

� Cg(n)exp

{
−k2

nτ2
nD2/(64M2)

4Δ2
n + D

4M knτn

}

� Cg(n)exp

{
−k2

nτ2
n

n
· D2

320M2

}

= Cg(n)exp

{
− D2

320M2 log(ng(n))
}

� Cg(n)1− D2

320M2 n
− D2

320M2 . (3.20)

Similarly, we can obtain that (3.20) holds for B12x , B21x and B22x . Taking D >
c2
1L(x)
f (x) sufficiently large such that D2

320M2 > 1, we have by (3.19) that

∞

∑
n=1

P(| fn(x)− f (x)| > Dτn) �
∞

∑
n=1

[P(B11x)+P(B12x)+P(B21x)+P(B22x)]

� 4C
∞

∑
n=1

n−
D2

320M2 < ∞.

The proof is completed. �

Taking kn = �n3/4 log1/4(ng(n))� in Theorem 3.2, we can get the following corol-
lary.

COROLLARY 3.1. Let {Xn,n � 1} be a sequence of WOD random variables, and
f (x) satisfy the local Lipschitz condition at x and f (x)> 0 . If kn = �n3/4 log1/4(ng(n))� ,
then for all sufficiently large D > 0 ,

∞

∑
n=1

P
(
| fn(x)− f (x)| > Dn−1/4 log1/4(ng(n))

)
< ∞,

and thus,

| fn(x)− f (x)| � Dn−1/4 log1/4(ng(n)) a.s., n → ∞.

REMARK 3.2. Yang [9] and Wang and Hu [10] established the convergence rate
of o(n−1/4 log1/4 n loglogn) a.s. for the nearest neighbor estimator based on NA sam-
ples and WOD samples, respectively. If we take g(n) = O(nδ ) , where δ is an arbitrary
nonnegative constant, then the convergence rate is of O(n−1/4 log1/4 n) a.s. in Corol-
lary 3.1, which still improves the corresponding ones of Yang [9] and Wang and Hu
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[10]. In addition, if g(n) grows geometrically, then the result of Wang and Hu [10] is
invalid; However, we can still obtain a certain rate of convergence by Corollary 3.1 in
this case. Hence, the result of Corollary 3.1 extends and improves the corresponding
ones of Yang [9] and Wang and Hu [10].

In the following, we will present the uniformly complete consistency and its con-
vergence rate for the nearest neighbor estimator.

THEOREM 3.3. Let {Xn,n � 1} be a sequence of WOD random variables, and
f (x) be uniformly continuous. If kn/n→ 0 and k2

n/[n log(ng(n))]→ ∞ as n→ ∞ , then
for any ε > 0 ,

∞

∑
n=1

P

(
sup

x
| fn(x)− f (x)| > ε

)
< ∞,

and thus,

sup
x
| fn(x)− f (x)| → 0 a.s., n → ∞.

Proof. We use the same notations as those in Theorem 3.1. Since the density
function f (x) is uniformly continuous, for any ε > 0, there exist a positive constant δ0

such that

| f (x)− f (y)| < ε
4
, (3.21)

when |x− y| < δ0 . Noting that kn/n → 0 as n → ∞ , we can get that for any x and all
sufficiently large n ,

bn(x) =
kn

2n( f (x)+ ε)
< δ0, and cn(x) =

kn

2n( f (x)− ε/2)
< δ0. (3.22)

By Differential Mean Value Theorem, we can see that there exist η1n ∈ (x−bn(x),x+
bn(x)) and η2n ∈ (x− cn(x),x+ cn(x)) such that

F(x+bn(x))−F(x−bn(x)) = 2bn(x) f (η1n), (3.23)

and

F(x+ cn(x))−F(x− cn(x)) = 2cn(x) f (η2n). (3.24)

Hence, it follows by (3.22) that |x−η1n| < δ0 and |x−η2n| < δ0 , which together with
(3.21) yields that

| f (x)− f (η1n)| < ε
4
, and | f (x)− f (η2n)| < ε

4
. (3.25)
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Denote supx f (x) = M < ∞ , δ (M) = ε
8(M+ε) and A = {supx |Fn(x) − F(x)| �

δ (M) kn
n } . By (3.23) and (3.25), we obtain

A1x =
{

Fn(x+bn(x))−Fn(x−bn(x))−F(x+bn(x))+F(x−bn(x))

� kn

n
−2bn(x) f (η1n)

}
=
{

Fn(x+bn(x))−Fn(x−bn(x))−F(x+bn(x))+F(x−bn(x))

� kn

n
· f (x)− f (η1n)+ ε

f (x)+ ε

}

⊂
{

Fn(x+bn(x))−Fn(x−bn(x))−F(x+bn(x))+F(x−bn(x)) � kn

n
· −ε/4+ ε

f (x)+ ε

}

⊂
{

Fn(x+bn(x))−Fn(x−bn(x))−F(x+bn(x))+F(x−bn(x)) � kn

n
·2δ (M)

}

⊂
{
|Fn(x+bn(x))−F(x+bn(x))| � kn

n
δ (M)

}
⋃{

|Fn(x−bn(x))−F(x−bn(x))| � kn

n
δ (M)

}
⊂ A. (3.26)

Similarly, we have by (3.24) and (3.25) that

A2x =
{

Fn(x+ cn(x))−Fn(x− cn(x))−F(x+ cn(x))+F(x− cn(x))

� kn

n
· f (x)− f (η2n)− ε/2

f (x)− ε/2
, f (x) > ε

}
⊂
{

Fn(x+ cn(x))−Fn(x− cn(x))−F(x+ cn(x))+F(x− cn(x))

� kn

n
· ε/4− ε/2

f (x)+ ε

}
⊂
{
|Fn(x+ cn(x))−F(x+ cn(x))|+ |Fn(x− cn(x))−F(x− cn(x))|

� −kn

n
·2δ (M)

}
⊂
{
|Fn(x+ cn(x))−F(x+ cn(x))| � kn

n
δ (M)

}
⋃{

|Fn(x− cn(x))−F(x− cn(x))| � kn

n
δ (M)

}
⊂ A. (3.27)

Noting that k2
n/(n log(ng(n))) → ∞ as n → ∞ , we can obtained that for all suffi-

ciently large n , kn
n δ (M) � D0(log(ng(n))/n)1/2 . On the other hand, it follows from

(3.1), (3.26) and (3.27) that Ax ⊂ A for any x . Hence, applying Lemma 2.4 with
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κn = (log(ng(n))/n)1/2 , we can get

∞

∑
n=1

P

(
sup

x
| fn(x)− f (x)| > ε

)
=

∞

∑
n=1

P

(⋃
x

Ax

)

�
∞

∑
n=1

P

(
sup

x
|Fn(x)−F(x)| � kn

n
δ (M)

)

�
∞

∑
n=1

P

(
sup

x
|Fn(x)−F(x)| � D0(log(ng(n))/n)1/2

)
< ∞.

This completes the proof of the theorem. �

THEOREM 3.4. Let {Xn,n � 1} be a sequence of WOD random variables, and
f (x) satisfy the Lipschitz condition on R . If kn = O(n2/3 log1/3(ng(n))) and τn =:√

n log(ng(n))/kn → 0 as n → ∞ , then for all sufficiently large D > 0 ,

∞

∑
n=1

P

(
sup

x
| fn(x)− f (x)| > Dτn

)
< ∞,

and thus,

sup
x
| fn(x)− f (x)| � Dτn a.s., n → ∞.

Proof. We use the same notations as those in Theorem 3.2. Noting that kn =
O(n2/3 log1/3(ng(n))) , there exists a positive constant c2 such that

kn � c2n
2/3 log1/3(ng(n)).

Since the density function f (x) satisfies the Lipschitz condition on R , and

τn =
√

n log(ng(n))/kn → 0 as n → ∞,

there exists a positive constant L depending not on x such that for all sufficiently large
n ,

| f (x)− f (ξ1n)| � L|x− ξ1n| � Lμn(x) � Lkn

2Dnτn

=
L

2D
·
√

n log(ng(n))
kn

· k3
n

n2 log(ng(n))
� c3

2L

2D
τn (3.28)

and

| f (x)− f (ξ2n)| � L|x− ξ2n| � Lνn(x)

� Lkn

2n(Dτn−Dτn/2)
� Lkn

Dnτn
� c3

2L
D

τn. (3.29)



418 K. CHEN, X. TANG AND J. HAO

Denote supx f (x) = M < ∞ . Taking sufficiently large D such that D >
4c3

2L
D , we

have by (3.11), (3.12), (3.28) and (3.29) that

kn

n
· f (x)− f (ξ1n)+Dτn

f (x)+Dτn
� kn

n
· −

c3
2L
2D τn +Dτn

f (x)+Dτn
� knτn

n
· D
4M

(3.30)

and

kn

n
· f (x)− f (ξ2n)−Dτn/2

f (x)−Dτn/2
� kn

n
·

c3
2L
D τn −Dτn/2

f (x)−Dτn/2
� −knτn

n
· D
4M

. (3.31)

Denote B = {supx |Fn(x)− F(x)| � knτn
n · D

8M } . It is easily checked that for all
sufficiently large n ,

B1x ⊂
{
|Fn(x+ μn(x))−F(x+ μn(x))| � knτn

n
· D
8M

}
⋃{

|Fn(x− μn(x))−F(x− μn(x))| � knτn

n
· D
8M

}
⊂ B. (3.32)

Similarly, we can also obtain that for all sufficiently large n ,

B2x ⊂
{
|Fn(x+ νn(x))−F(x+ νn(x))| � knτn

n
· D
8M

}
⋃{

|Fn(x−νn(x))−F(x−νn(x))| � knτn

n
· D
8M

}
⊂ B. (3.33)

Hence, it follows from (3.8), (3.32) and (3.33) that Bx ⊂ B for any x . Taking κn =
knτn

n = (log(ng(n))/n)1/2 in Lemma 2.4, and for all sufficiently large D such that D
8M �

D0 , we get

∞

∑
n=1

P

(
sup

x
| fn(x)− f (x)| > Dτn

)
=

∞

∑
n=1

P

(⋃
x

Bx

)

�
∞

∑
n=1

P

(
sup

x
|Fn(x)−F(x)| � knτn

n
· D
8M

)

�
∞

∑
n=1

P

(
sup

x
|Fn(x)−F(x)| � D0(logn/n)1/2

)
< ∞,

which implies the desired result immediately. The proof is completed. �

Taking kn = �n2/3 log1/3(ng(n))� in Theorem 3.4, we can get the following result.

COROLLARY 3.2.. Let {Xn,n � 1} be a sequence of WOD random variables, and
density function f (x) satisfy the Lipschitz condition on R . If kn = �n2/3 log1/3(ng(n))� ,
then for any sufficiently large D > 0 ,

∞

∑
n=1

P

(
sup

x
| fn(x)− f (x)| > Dn−1/6 log1/6(ng(n))

)
< ∞,
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and thus,

sup
x
| fn(x)− f (x)| � Dn−1/6 log1/6(ng(n)) a.s., n → ∞.

REMARK 3.3. Yang [9] and Wang and Hu [10] established the uniformly strong
convergence rate of o(n−1/6 log1/6 n loglogn) a.s. for the nearest neighbor estimator
based on NA and WOD samples, respectively. When g(n) grows polynomially, the
convergence rate obtained in Corollary 3.2 is slightly faster than their results; when g(n)
grows geometrically, our result is still valid. Hence, our result extends and improves
the corresponding ones of Yang [9] and Wang and Hu [10].
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