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Abstract. A version of Polya–Vinogradov inequality in function fields appeared in [1, 2, 3, 9]
recently. In this paper, we show some new bounds for polynomial character sums by making use
of polynomial Gauss sums (see [4, 12]) and a formula from L. Carlitz (see [5]) on exponential
sums over function fields. The method is elementary. It is worth mentioning that the proofs given
in this paper do not depend on the well-known result form A. Weil on L-function associated to
algebraic curves over finite fields.

1. Introduction

Fq is a finite field with q elements of a finite characteristic p. K = Fq[T ] is the
polynomial ring over Fq and A is the set of monic polynomials in K. k = Fq(T ) is the
rational function field. Given H ∈ K and H �= 0, the absolute value of H is defined
by |H| = qdegH . Let χ be a complex-valued character of the multiplicative group
(K/HK)∗ . χ can be extended to K by setting χ(A) = 0, when (A,H) �= 1. Then χ is
said to be a Dirichlet character modulo H in K . χ0 is said to be a principal character, if
χ0(H ′) = 1 for all (H,H ′) = 1. If χ(a) = 1 for all a∈ F

∗
q , then χ is said to be an even

character. Otherwise, χ is said to be an odd character. In Proposition 2.1 of [9], Hsu
used the well-known result from A. Weil on L-function associated to algebraic curves
over finite fields and he obtained the following inequality

| ∑
h∈A,

degh=d

χ(h)| �
{

2
√

q−2+deg fχ , if χ is even;√
q−2+deg fχ , if χ is odd;

(1.1)

where d � 0 is an integer. fχ is the conductor of χ when χ is regard as a character of
the idele group Jk of k (see [6]).

Jk −→ Gal(k(ΛH)/k) ∼= (K/HK)∗
χ−→ S1. (1.2)
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Local class-field theory gives a detailed description of (1.2). Moreover, (5.6) of
[6] shows that

fχ =
{

H, if χ is even;
∞H, if χ is odd.

(1.3)

Combined with (1.1), indeed, Hsu showed the following Polya–Vingradov inequality
for polynomial character sums over finite fields

| ∑
h∈A

degh=d

χ(h)| �
{

2
q |H| 1

2 , if χ �= χ0 is even;
1√
q |H| 1

2 , if χ �= χ0 is odd.
(1.4)

In lemma 2.1 of [7], a more appealing result is given by (χ �= χ0)

| ∑
h∈A

degh=d

χ(h)| � (degH−1
d

)
q

d
2 . (1.5)

(1.5) is a sharper bound rather than (1.4) when d is a small integer. While (1.4) is
better when d is large. Both (1.4) and (1.5) depend on A. Weil’s well known result on
L-function associated to algebraic curves over finite fields.

In this paper, we will show some new bounds for polynomial character sums by
an elementary method. To illustrate our results, we have to introduce the conductor of
a Dirichlet character modulo H and the primitive Dirichlet character modulo H (see
Definition 3.2 and Definition 3.3 of [12]). Let χ be a Dirichlet character modulo H in
K . A polynomial N ∈ K is called an induced modulus of χ , if N|H and

χ(A) = 1,whenever A ≡ 1 (modN). (1.6)

An induced modulus N of χ is called the conductor of χ , if N is monic and N has
the least degree among all induced moduli of χ . If the degree of the conductor equals
to degree of H , then we say χ is a primitive character modulo H in K . Now we stand
on a position to state our main result.

THEOREM 1.1. Let χ be a Dirichlet character modulo H in K , and χ �= χ0 . Let
N be the conductor of χ , then for all d > 0 , we have

| ∑
h∈K

degh<d

χ(h)| � σ
(

H
N

)
|N| 1

2 (1.7)

and

| ∑
h∈A

degh=d

χ(h)| � σ
(

H
N

)
|N| 1

2 . (1.8)

Moreover, if χ is a primitive character, we have

| ∑
h∈K

degh=d

χ(h)| � c(d)|H| 1
2 . (1.9)
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If χ is an even primitive character, we have (degH > 1 )

∑
h∈A

degh=degH−1

χ(h) = 0, (1.10)

where c(d) = 1 , if d = degH −1 , and c(d) = q−1 if d � degH −2 . σ(H
N ) equals

to the number of monic divisors of H
N .

By (1.5) and (1.10), we have the following consequence.

COROLLARY 1.1. Suppose χ is an even and primitive Dirichlet character mod-
ulo H , degH > 1 , then for any integer 0 � d < degH , we have

| ∑
h∈A

degh=d

χ(H)| � (degH−2
d

)
q

d
2 . (1.11)

Obviously, the left-hand sides of (1.7) and (1.9) vanish, if χ is an odd character;
hence (1.7) and (1.9) are valid when χ is even characters. Inequalities (1.7) and (1.9)
are analogues of Polya-Vinogradov inequality in positive characteristic case, they have
a weaker form appeared in [3], Proposition 1.8. in some special cases, (1.8) gives a
bound sharper than (1.4) and (1.5). For example, we set H is a power of an irreducible
and χ is a non-primitive character modulo H . To prove Theorem 1.1, we will use
the separable Gauss sums and a formula from L. Carlitz on the exponential sums over
function field (see Theorem 1 of [5]). The proof is very familiar with what we did in
[1]. It is worth mentioning that our proof is independent on A. Weil’s result on Riemann
hypothesis over function fields.

2. Exponential sums and Gauss sums in k∞

Let v : k −→Z be the valuation function over k with v( 1
T ) = 1 and v(0) = ∞ . Let

k∞ = Fq(( 1
T )) be the Laurent series field, which is the completion of k at the infinite

place, ∞ , with respect to v . If α ∈ k∞ , we may express α as a Laurent series as

α =
+∞

∑
i=v(α)

ai

(
1
T

)i

,where ai ∈ Fq. (2.1)

Define

[α] =
0

∑
i=v(α)

ai

(
1
T

)i

, if v(α) � 0 (2.2)

and [α] = 0, otherwise. Let 〈α〉 = α − [α] , [α] is called the “integral part” of α and
〈α〉 is called the “fractional part” of α . The absolute value functions |α| and ||α|| are
given by

|α| = q−v(α) and ||α|| = |〈α〉| = |α − [α]|. (2.3)



446 Z. ZHENG AND Z. HONG

It is easy to check that

||α + β ||� max{||α||, ||β ||} and ||α|| = inf
A∈K

|α −A|. (2.4)

Thus, ||α|| is the smallest distance from α to any element of K and [α] is the nearest
polynomial to α .

The valuation ring P0 and the valuation ideal P of k∞ are given by

P0 = {α ∈ k∞ : |α| � 1} and P = {α ∈ k∞ : |α| < 1}. (2.5)

If n is an integer, the fractional ideal Pn is given by

Pn =
(

1
T

)n

P0 = {α ∈ k∞ : |α| � q−n}. (2.6)

Obviously, P1 = P , and

· · · ⊃ P−2 ⊃ P−1 ⊃ P0 ⊃ P1 ⊃ P2 ⊃ ·· · .

Let k+
∞ be the additive group of k∞ . An additive character of k∞ is a group ho-

momorphism ψ : k+
∞ −→ S1 , where S1 is the circle group of complex number. All the

additive characters of k∞ form a group, the product of homomorphisms is defined as
follow: φψ(α) = φ(α)ψ(α) for any additive characters of k∞ and any α ∈ k∞ . We

denote this group by k̂+
∞ and call it the dual group of k+

∞ . As usual, the identity element
of k̂+

∞ is ψ0 which holds that ψ0(α) = 1 for any α ∈ k∞ . If ψ �= ψ0 , there exists an
integer n such that ψ is trivial on Pn , i.e. ψ(Pn) = 1 (see (2.6) of [6]). Let

n(ψ) := min{n : ψ(x) = 1 for all x ∈ Pn}, (2.7)

which is called the conductor of ψ . Suppose α ∈ k∞ and ψ is a non-trivial additive
character, we use ψα to denote the homomorphism ψα(x) = ψ(αx) for all x ∈ k∞ .
Clearly, ψα is again an additive character of k∞ and the conductor of ψα is given by
(see (2.12) of [6])

n(ψα) = n(ψ)− v(α). (2.8)

Next, we will introduce two characters which play an important role in the left part of

this paper. Let α =
+∞
∑

i=v(α)
ai( 1

T )i be arbitrary element in k∞ and m arbitrary integer, we

define an additive character ψ(m) by

ψ(m)(α) = λ tr(am), (2.9)

where “tr” is the usual trace map from Fq to Fp , λ is a fixed primitive p -th root of 1.
By the definition of conductor and the form of ψ(m) , we claim (2.10) without proof:

n(ψ(m)) = m+1. (2.10)
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In particular, when m = 1, we define e(α) = ψ(1)(α) = λ tr(a1) . e(α) is called the
exponent function in k∞ . It’s easy to prove that

e(α +H) = e(α)

and
e(α) = e(〈α〉)

for all α ∈ k∞ and H ∈ K . By definition, we have

n(e) = 2. (2.11)

In somehow, e is an analogue of the exponential function ex . On the one hand,
e gives an explicit example of an additive character of k∞ . On the other hand, starting
from e and the construction of ψα , we obtain an explicit description of the dual group
k̂+

∞ = {ψα : ψ = e,α runs through k∞} . To study more details about conductor and
additive character, readers should consult Chap. I, [11]. With the above notations, a
formula from L. Carlitz on exponential sums may be stated as follow.

LEMMA 2.1. Let θ ∈ k∞ and M ∈ K , M �= 0 . Then we have

S(θ ,M) = ∑
h∈K

|h|<|M|

e(θh) =
{

0, if |M| � ||θ ||−1;
|M|, if |M| < ||θ ||−1.

(2.12)

This formula firstly appeared in Carlitz [5], Theorem 1.1. He gave this for formula
without a proof. Now, we will give a proof by conductors.

Proof. First,we have S(θ ,M) = S(〈θ 〉,M) , where 〈θ 〉 is the fractional part of θ .
Then, we note that all polynomial h with |h| < |M| form a subgroup G of k+

∞ . Hence,
if we write ψ〈θ〉(α) = e(〈θ 〉α) , by orthogonality of characters, it is sufficient to show
that ψ〈θ〉 is a trivial character of G when |M| < ||θ ||−1 and ψ〈θ〉 is non-trivial on G
when |M| � ||θ ||−1 . By (2.10), we have

n(ψ〈θ〉) = 2− v(〈θ 〉).

If h ∈ K and |h| < |M| < ||θ ||−1 , then h ∈ P2−v(〈θ〉) and we have ψ〈θ〉(h) = 1.
If |M| � ||θ ||−1 , then degM−1 � v(〈θ 〉)−1. Taking h ∈ K with degh = degM−1,
then we have degh > v(〈θ 〉)− 2 and h /∈ P2−v(〈θ〉) . Therefore, by the definition of
conductor, there exists at least one such h with ψ〈θ〉(h) �= 1. It follows that ψ〈θ〉 is
non-trivial on G and we thus have

S(〈θ 〉,M) = 0, if |M| � ||θ ||−1.

We completed the proof of lemma 2.1. �
Before proving Theorem1.1, we need to introduce some lemmas about polynomial

Gauss sums. The polynomial Gauss sums was first defined by L. Carlitz in [4] and
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Hayes in [8]. Let H ∈ K and H �= 0. χ is a Dirichlet character modulo H . We define
a polynomial Gauss sum G(A,χ) by

G(A,χ) = ∑
hmodH

χ(h)e
(

Ah
H

)
= ∑

h∈K
|h|<|H|

χ(h)e
(

Ah
H

)
, (2.13)

where A ∈ K and h runs through a complete residue system modulo H in K . If
(A,H) = 1, it is easy to see that

G(A,χ) = χ(A)G(1,χ). (2.14)

If G(A,χ) = χ(A)G(1,χ) for all A ∈ K , then G(A,χ) is called a separable Gauss sum
(see Definition 3.1 of [12]).

The proof of our main theorem is based on some lemmas of polynomial Gauss
sums. The following lemma is a summary of three statements in [12].

LEMMA 2.2. Let χ be a Dirichlet character modulo H , then

1. χ is primitive if and only if G(A,χ) is a separable Gauss sum;

2. Suppose that χ is a primitive character modulo H , then we have

|G(1,χ)|2 = |H|; (2.15)

3. Let N be the conductor of χ , then χ can be expressed as a product

χ = χ0δ , (2.16)

where χ0 is the principal Dirichlet character modulo H and δ is a primitive
Dirichlet character modulo N .

Proof. The statement (a) is lemma 3.8 of [12]. (b) and (c) are lemma 3.1 and
lemma 3.5 of [12], respectively. �

3. Proof of Theorem 1.1

First, we assume χ is a primitive character modulo H . In this case, σ(H
N ) = 1

and |N| = |H| . Thus we only prove

| ∑
h∈K

degh<d

χ(h)| � |H| 1
2 , (3.1)

| ∑
h∈K

degh=d

χ(h)| � c(d)|H| 1
2 (3.2)
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and
| ∑

h∈A
degh=d

χ(h)| � |H| 1
2 . (3.3)

Moreover,

∑
h∈A

degh=degH−1

χ(h) = 0 , if χ is even. (3.4)

Without loss of generality, we may suppose that d < degH , since if d = degH , we see
that

∑
h∈K

degh<degH

χ(h) = ∑
hmodH

χ(h) = 0.

If d � degH , we have (see Proposition 4.3 of [10])

∑
h∈A

degh=d

χ(h) = 0. (3.5)

Therefore, we may suppose that 0 � d < degH . Let M = Td , by Lemma 2.2 statement
(a) and (b), we have

χ(A) = τ−1(χ)G(A,χ) ,and |τ(χ)| = |H| 1
2 , (3.6)

where A ∈ K and τ(χ) = G(1,χ) . It follows that

∑
A∈K

|A|<|M|

χ(A) = τ−1(χ) ∑
h∈K

|h|<|H|

χ(h) ∑
A∈K

|A|<|M|

e

(
Ah
H

)

= τ−1(χ)

⎛⎜⎜⎝ ∑
h∈K

|h|<| H
M |

χ(h)+ ∑
h∈K

| H
M |�|h|<|H|

χ(h)

⎞⎟⎟⎠ ∑
A∈K

|A|<|M|

e

(
Ah
H

)
.

(3.7)

By Lemma 2.1, we have

∑
A∈K

|A|<|M|

e

(
Ah
H

)
=

{ |M|, if |h| < |HM |;
0, if |h| � |HM |. (3.8)

It follows that

∑
A∈K

|A|<|M|

χ(A) = τ−1(χ)|M| ∑
h∈K

|h|<| H
M |

χ(h).

By (3.6), we thus have

| ∑
A∈K

|A|<|M|

χ(A)| � |τ(χ)|−1 · |H| = |H| 1
2
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and (3.1) holds. To prove (3.3), we write (M = Td ) then

∑
A∈A

degA=d

χ(A) = ∑
A∈K

|A|<|M|

χ(Td +A)

= τ−1(χ) ∑
h∈K

|h|<|H|

χ(h)e
(

hTd

H

)
∑
A∈K

|A|<|M|

e

(
Ah
H

)

= τ−1(χ)|M| ∑
h∈K

|h|<| H
M |

χ(h)e
(

hTd

H

)
.

(3.9)

(3.3) follows immediately. To show (3.2), by Lemma 2.1, it is easily see that

∑
a∈Fq

e(
aTd

H
) =

{
0, if d = degH−1;
q, if d < degH−1.

(3.10)

It follows that

∑
a∈F∗

q

e(
aTd

H
) =

{ −1, if d = degH −1;
q−1, if d < degH −1.

(3.11)

We may write (M = Td )

∑
A∈K

degA=d

χ(h) = ∑
a∈F∗

q

∑
A∈K

|A|<|M|

χ(aTd +A) = c1(d)τ−1(χ) ∑
h∈K

|h|<|H|

χ(h) ∑
A∈K

|A|<|M|

e

(
Ah
H

)
.

(3.12)
where c1(d) = −1, if d = degH −1, and, c1(d) = q−1, if d < degH −1. By (3.8),
we have

| ∑
A∈K

degA=d

χ(A)| � c(d)|H| 1
2 , (3.13)

where c(d) = 1 , if d = degH − 1, and c(d) = q− 1 if d � degH − 2. For (3.4),
suppose that χ is an even character and d = degH − 1, then the inner sums on the
right-hand side of (3.9) is zero.

At least, we deal with the case that χ is not primitive. Let μ(A) be the Möbius
function over K (see (2.11) of [13]), by (2.12) of [13], we have

∑
D|H

μ(D) =
{

1, if degH = 0;
0, if degH � 1;

(3.14)

the sum taken over all monic divisors of H . Suppose N is the conductor of H , χ0 is
the principal character modulo H and δ is a primitive character modulo N . By Lemma
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2.2 statement (c), we have (M = Td )

∑
m∈K

|m|<|M|

χ(m) = ∑
m∈K,(m,H)=1

|m|<|M|

δ (m)

= ∑
m∈K

|m|<|M|

δ (m) ∑
A∈K

A|(m,H)

μ(A)

= ∑
A|H

μ(A) ∑
|m|<|M|

A|m

δ (m)

= ∑
A|H

μ(A)δ (A) ∑
m∈K

|m|<|MA |

δ (m).

(3.15)

It follows that
| ∑

m∈K
|m|<|M|

χ(m)| � |N| 1
2 ∑

A|H
|μ(A)δ (A)|. (3.16)

|μ(A)|= 1 means that A is a square-free divisor of H and |δ (A)|= 1 means (A,N) =
1. Thus, A|H implied that A|HN . We obtain

∑
A|H

|μ(A)||δ (A)| � ∑
A|HN

1 = σ
(

H
N

)
. (3.17)

By (3.15), we have

| ∑
m∈K

|m|<|M|

χ(m)| � σ
(

H
N

)
|N| 1

2 . (3.18)

This complete the proof (1.7). By the same way, we have (1.8) immediately.
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