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Abstract. Let p(z) = ∑n
ν=0 aν zν be a polynomial of degree n and W(z) = ∏n

ν=1(z−ai) , where
|ai| > 1 , j = 1,2, . . . n . If r(z) = p(z)/W(z) be a rational function does not vanish in |z| > 1 .
The aim of this paper is to obtained some generalization of an inequality due to Xin Li, R. N.
Mohapatra and R.S. Rodriguez [ Inequality (12), J. London Math. Soc. 51 (20), 1995, pp.
523–531] for the polynomial r(z) having all its zeros in |z| � k and other related results.

1. Introduction

Let Pn denote the class all complex of polynomial p(z) = ∑n
ν=0 aνzν of degree n .

For all aν ,ν = 1,2, . . . ,n with |aν | > 1, we write

W (z) =
n

∏
ν=1

(z−aν), B(z) =
n

∏
ν=1

(
1− aνz
z−aν

)

and

Rn = Rn(a1,a2, . . . ,an) =
p(z)
W (z)

; p ∈ Pn

Here Rn is the set of all rational function with pole a1,a2, . . . ,an at most and with finite
limit at infinity. So, it is clear that B(z) ∈ Rn . Assume that Tk := {z; |z| = k,k > 0} ,
Dk+ denotes the region outside Tk and Dk− denotes region inside Tk .

For p ∈ Pn ;

THEOREM A. If p ∈ Pn , then

max
z∈T1

|p′(z)| � nmax
z∈T1

|p(z)|. (1.1)

The result is best possible and equality holds for p(z) = λ zn .

The above result is known as Bernstein inequality due to S. N. Bernstein [4] on the
derivative of polynomial. By taking a restriction on the zeros of p(z) the above result
is sharpened. It was first conjectured by Prof. P. Erdös and later verify by P. D. Lax [4]
by proving that
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THEOREM B. If p ∈ Pn and having all it zeros in T1∪D1+ , then

max
z∈T1

|p′(z)| � n
2

max
z∈T1

|p(z)|. (1.2)

The result is sharp and equality holds for p(z) = λ zn .

P. Turán [4] consider the class of polynomial p(z) having all its zeros in T1∪D1−
and prove the following.

THEOREM C. If p ∈ Pn and having all it zeros in T1∪D1+ , then

max
z∈T1

|p′(z)| � n
2

max
z∈T1

|p(z)|. (1.3)

The result is sharp and equality holds for p(z) = λ zn .

Li, Mohapatra and Rodriguez [3] have proved the following results similar to The-
orem A, Theorem B and Theorem C respectively for rational functions r ∈ Rn with
prescribed poles where they replaced zn by Blaschke product B(z) .

THEOREM D. If r ∈ Rn , then

sup
z∈T1

|r′(z)| � |B′(z)| sup
z∈T1

|r(z)|. (1.4)

Equality in above holds for r(z) = αB(z),α ∈ T1 .

THEOREM E. Suppose r ∈ Rn and all the zeros of r(a) lies in T1∪D1+ , then

sup
z∈T1

|r′(z)| � |B′(z)|
2

sup
z∈T1

|r(z)|. (1.5)

Equality in above holds for r(z) = αB(z)+ β with α,β ∈ T1 .

THEOREM F. Suppose r ∈ Rn and all its zeros lies in T1 ∪D1− , then

sup
z∈T1

|r′(z)| � |B′(z)|
2

sup
z∈T1

|r(z)|. (1.6)

Equality in above holds for r(z) = αB(z)+ β with α,β ∈ T1 .

Aziz and Zargar [1] proved the following generalization of Theorem E by taking
all the zeros of r(z) in Tk ∪Dk+ , k � 1.

THEOREM G. Suppose r ∈ Rn and having all its zeros in Tk ∪Dk+ , k � 1 , then

sup
z∈T1

|r′(z)| � 1
2

{
|B′(z)|− n(k−1)

k+1
.
|r(z)|2
||r||2

}
||r||, (1.7)

where ||r||= supz∈T1
|r(z)| . Equality in above holds for p(z) = (z+k)n/(z−a)n , a > 1 ,

k � 1 .

Recently, Xin Li [2] proved another generalization of Theorem D by sating that
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THEOREM H. Let r,s ∈ Rn and assume s(z) has all its zeros in T1 ∪D1− and
|r(z)| � |s(z)| for z ∈ T1 , then for any ρ with |ρ | � 1/2

∣∣r′(z)+ ρB′(z)r(z)
∣∣ � ∣∣s′(z)+ ρB′(z)s(z)

∣∣ (1.8)

Equality in above holds for r(z) = s(z) .

Some other extension and generalizations of above results was also proved by
Tripathi, Hans, Mogbademu and Tyagi [5]. Here, we first prove the following gener-
alization of Theorem F for r ∈ Rn and having all its zeros in Tk ∪Dk− , k � 1. More
precisely, we prove

THEOREM 1. Suppose r ∈ Rn and having all its zeros in Tk ∪Dk− , k � 1 , then

sup
z∈T1

|r′(z)| � 1
2

{
|B′(z)|− n(1+ k)−2m

1+ k

}
sup
z∈T1

|r(z)|, (1.9)

where m is number of zeros and n is number of poles of r(z) . Equality in above holds
for r(z) = α + βB(z) , where α,β ∈ T1 and k = 1,m = n.

REMARK 1.1. The right hand side of inequality (1.9) may be negative for small
m .

If r ∈ Rn has exactly n zeros, i.e. m = n , then we have following result.

COROLLARY 1.1. Suppose r ∈ Rn and having all its zeros in Tk ∪Dk− , k � 1 ,
then

sup
z∈T1

|r′(z)| � 1
2

{
|B′(z)|+ n(1− k)

1+ k

}
sup
z∈T1

|r(z)|, (1.10)

Equality in above holds for r(z) = α + βB(z) , where α,β ∈ T1 and k = 1 .

REMARK 1.2. On taking k = 1 in inequality (1.10), Theorem F has been ob-
tained.

Next, we prove the following generalization of Theorem H.

THEOREM 2. Let r,s ∈ Rn and assume s(z) has all its zeros in Tk ∪Dk− , k � 1
and |r(z)| � |s(z)| for z ∈ T1 , then for any β with |β | � 1/2

∣∣∣∣zr′(z)+ β
{
|B′(z)|+ n(1− k)

1+ k

}
r(z)
∣∣∣∣�
∣∣∣∣zs′(z)+ β

{
|B′(z)|+ n(1− k)

1+ k

}
s(z)
∣∣∣∣ .
(1.11)

Equality in above holds for r(z) = s(z) .

REMARK 2.1. Theorem H can be followed by taking k = 1 in inequlity (1.11).
If we take s(z) = B(z)supz∈Tk

|r(z)| and using (3.5), following auxiliary result has
been obtained.
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COROLLARY 2.1. If r ∈ Rn , then for β with |β | � 1/2 and z ∈ T1∣∣∣∣r′(z)+ β
{
|B′(z)|+ n(1− k)

1+ k

}
r(z)
∣∣∣∣�
{
|1+ β ||B′(z)|+ |β |n(1− k)

1+ k

}
sup
z∈Tk

|r(z)|,
(1.12)

for k � 1 .

On taking β = − 1
2 , we obtained the following result.

COROLLARY 2.2. If r ∈ Rn , then for z ∈ T1∣∣∣∣r′(z)− 1
2

{
|B′(z)|+ n(1− k)

1+ k

}
r(z)
∣∣∣∣� 1

2

{
|B′(z)|+ n(1− k)

1+ k

}
sup
z∈Tk

|r(z)|, (1.13)

for k � 1 .

Finally, we prove following result concerning minimum modulus of polynomial.

THEOREM 3. If r ∈ Rn has n zeros all in Dk− , then for every β with |β | � 1/2∣∣∣∣zr′(z)+ β
{
|B′(z)|+ n(1− k)

1+ k

}
r(z)
∣∣∣∣�
∣∣∣∣1+ β

{
1+

n(1− k)
(1+ k)|B′(z)|

}∣∣∣∣ |B′(z)|m,

(1.14)
where m = infz∈T1 |r(z)| . The equality in (1.14) holds for r(z) = λB(z) , λ > 0 and
k = 1 .

By taking β = 0 and k = 1 in inequality (1.14), we get the following result.

COROLLARY 3.1. If r ∈ Rn has n zeros all in D1− , then

inf
z∈T1

|r′(z)| � |B′(z)| inf
z∈T1

|r(z)|. (1.15)

The equality in (1.15) holds for r(z) = λB(z) , λ > 0 .

From inequality (1.10) and with suitable choice of β , we get for z ∈ T1∣∣∣∣zr′(z)+ β
{
|B′(z)|+ n(1− k)

1+ k

}
r(z)
∣∣∣∣= |zr′(z)|− |β |

{
|B′(z)|+ n(1− k)

1+ k

}
|r(z)|

Now combining inequality (1.14) with above inequality, we have for z ∈ T1

|zr′(z)|− |β |
{
|B′(z)|+ n(1− k)

1+ k

}
|r(z)| =

∣∣∣∣zr′(z)+ β
{
|B′(z)|+ n(1− k)

1+ k

}
r(z)
∣∣∣∣

�
∣∣∣∣1+ β

{
1+

n(1− k)
(1+ k)|B′(z)|

}∣∣∣∣ |B′(z)|m

�
{

1−|β |
{

1+
n(1− k)

(1+ k)|B′(z)|
}}

|B′(z)|m

and by letting β → 1/2, we obtained the following.
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COROLLARY 3.2. If r ∈ Rn has n zeros all in Dk− , then

sup
z∈T1

|r′(z)| �
{
|B′(z)|+ n(1− k)

1+ k

}
sup
z∈T1

|r(z)|+
{
|B′(z)|− n(1− k)

(1+ k)

}
inf
z∈T1

|r(z)|.
(1.16)

The equality in above holds for r(z) = λB(z) and k = 1 .

The following result has been obtained by taking k = 1 in Corollary 3.2.

COROLLARY 3.2. If r ∈ Rn has n zeros all in D1− , then

sup
z∈T1

|r′(z)| � |B′(z)|
2

{
sup
z∈T1

|r(z)|+ inf
z∈T1

|r(z)|
}

. (1.17)

The equality in above holds for r(z) = λB(z) .

2. Lemma

For the proof our results, we require following Lemma due to Xin Li [2].

LEMMA 1. Let x and y be two complex number.

1. If |x| � |y| and y �= 0 , then x �= δy for all complex number δ satisfying |δ |< 1 .

2. Conversely, if x �= δy for all complex number δ with |δ | < 1 , then |x| � |y| .

3. Proof of Results

Proof of Theorem 1. Since r(z) = p(z)/W (z) ∈ Rn . Let b j , j = 1,2, . . . ,m are
the zeros of p(z) , then |b j| � k � 1. Therefore, we have

zr′(z)
r(z)

=
zp′(z)
p(z)

− zW ′(z)
W (z)

. (3.1)

Since p(z) = ∏m
j=1(z−b j) , therefore

zp′(z)
p(z)

=
m

∑
j=1

z
z−b j

.

So, equation (3.1) become

zr′(z)
r(z)

=
m

∑
j=1

z
z−b j

− zW ′(z)
W (z)

.

and for z ∈ T1

Re

(
zr′(z)
r(z)

)
= Re

m

∑
j=1

z
z−b j

−Re

(
zW ′(z)
W (z)

)
. (3.2)
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Now it is easy to verify that for z ∈ T1 , |b j| � k � 1

Re

(
z

z−b j

)
� 1

1+ k
(3.3)

and W (z) = ∏n
j=1(z−a j) . So, W ∗(z) = znW (1/z) and for z ∈ T1,z = 1/z , we get

Re

(
zW ∗′(z)
W ∗ (z)

)
+Re

(
zW ′(z)
W (z)

)
= n (3.4)

Also we get from

B(z) =
n

∏
ν=1

(
1− aνz
z−aν

)
,

which gives

zB′(z)
B(z)

=
zW ∗′(z)
W ∗(z)

− zW ′(z)
W (z)

i.e. for z ∈ T1 ,

|B′(z)| = Re

(
zW ∗′(z)
W ∗(z)

)
−Re

(
zW ′(z)
W (z)

)
. (3.5)

From equation (3.4) and (3.5), we have

Re

(
zW ′(z)
W (z)

)
=

n−|B′(z)|
2

(3.6)

On using (3.3) and (3.6) in (3.2), we get

Re

(
zr′(z)
r(z)

)
� m

1+ k
− n−|B′(z)|

2
(3.7)

Hence for z ∈ T1 and r �= 0, we have∣∣∣∣ zr′(z)r(z)

∣∣∣∣� Re

(
zr′(z)
r(z)

)
� m

1+ k
− n−|B′(z)|

2
. (3.8)

Furthermore, if r(z) = 0, then equality is trivially satisfied.Thus the result holds for all
z ∈ T1 . Proof of Theorem 1 is completed. �

Proof of Theorem 2. Consider no zeros of s(z) lies on Tk , therefore all the zeros
of s(z) lies in Dk− and |r(z)| � |s(z)| for z ∈ T1 . Let α be an arbitrary number with
|α|< 1, therefore by direct application of Rouche’s Theorem, αr(z)+s(z) has as many
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zeros in Dk− as s(z) . Thus all the zeros of αr(z)+ s(z) lies in Dk− . By inequality
(3.8), we get

|αzr′(z)+ zs′(z)| � Ak|αr(z)+ s(z)|, (3.9)

where

Ak =
1
2

{
|B′(z)|+ n(1− k)

1+ k

}
. (3.10)

It can be easily verify that B′(z) �= 0, then R.H.S of inequality (3.9) is nonzero. Now,
using 1 of Lemma 1, we have for any δ with |δ | < 1

αzr′(z)+ zs′(z) �= δAk(αr(z)+ s(z)) for z ∈ T1,

or, equivalently for |α| < 1

α
{
zr′(z)− δAkr(z)

} �= −{zs′(z)− δAks(z)
}

.

On using 2 of Lemma 1, we have∣∣zs′(z)− δAks(z)
∣∣� ∣∣zr′(z)− δAkr(z)

∣∣ . (3.11)

On taking β = −δ/2, we get |β |< 1/2. Therefor using (3.10) in inequality (3.11), we
have∣∣∣∣zs′(z)+ β

{
|B′(z)|+ n(1− k)

1+ k

}
s(z)
∣∣∣∣�
∣∣∣∣zr′(z)+ β

{
|B′(z)|+ n(1− k)

1+ k

}
r(z)
∣∣∣∣ .
(3.12)

Using the continuity in zeros and β with |β |< 1/2, we can obtain the inequality when
some zeros of s(z) lie on the unit circle. Which proof the Theorem 2. �

Proof of Theorem 3. If r(z) has a zero in Tk , then Theorem e is trivial. So, we
consider that r(z) has all its zeros in Dk− . If m = infz∈T1 |r(z)| , then m > 0 and |r(z)|�
m for z ∈ T1 . Therefore, for any δ with |δ | < 1, then the function F(z) = r(z)−
δmB(z) of degree n , has all its zeros in Dk− . From inequality (3.8)

|zF ′(z)| � Ak|F(z)| (3.13)

where Ak is defined in (3.10),i.e.

|zr′(z)− δmzB′(z)| � Ak|r(z)− δmB(z)| (3.14)

Since F(z) = r(z)− δmB(z) �= 0 in Tk ∪Dk+ , then for any complex number ρ with
|ρ | < 1, we have from (i) of Lemma 1

T (z) = z{r′(z)− δmB′(z)}+ βAk{r(z)− δmB(z)} �= 0 (3.15)

i.e.

T (z) =
{
zr′(z)+ ρAkr(z)

}− δ
{
zB′(z)+ ρAkB(z)

}
m �= 0
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in T1 ∪D1+ .Now from (ii) of Lemma 1, we obtained for |δ | < 1∣∣zr′(z)+ ρAkr(z)
∣∣� ∣∣zB′(z)+ ρAkB(z)

∣∣m, (3.16)

i.e. ∣∣zr′(z)+ ρAkr(z)
∣∣� ∣∣zB′(z)+ ρAkB(z)

∣∣m, (3.17)

Now for z ∈ T1 ,

|B′(z)| = zB′(z)
B(z)

=
n

∑
j=1

(|a j|2−1)
|z−a j|2 ,

i.e. |B′(z)|B(z) = zB′(z) for z ∈ T1 and ρ
2 = β with |β | � 1/2, therefore inequality

(3.17) becomes∣∣∣∣zr′(z)+ β
{
|B′(z)|+ n(1− k)

1+ k

}
r(z)
∣∣∣∣�
∣∣∣∣1+ β

{
1+

n(1− k)
(1+ k)|B′(z)|

}∣∣∣∣ |B′(z)|m
(3.18)

When a zero of r(z) lie on T1 and |β | � 1/2, the case can follow by using argument
of continuity. Which complete Theorem 3. �
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