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ON THE DERIVATIVE OF A RATIONAL
POLYNOMIAL WITH PRESCRIBED POLES

DINESH T., S. HANS AND BABITA TYAGI

(Communicated by J. Pecari¢)

Abstract. Let p(z) =Y\ _gayz” be a polynomial of degree n and W (z) =TT}_;(z—a;), where
lai| > 1, j=1,2,...n. If r(z) = p(z)/W(z) be a rational function does not vanish in |z| > 1.
The aim of this paper is to obtained some generalization of an inequality due to Xin Li, R. N.
Mohapatra and R.S. Rodriguez [ Inequality (12), J. London Math." Soc: 51 (20); 1995, pp.
523-531] for the polynomial r(z) having all its zeros in |z| <& and other related results.

1. Introduction

Let P, denote the class all complex of polynomial p(z) = X" _javz" of degree n.
Forall ay,v=1,2,...,n with |a,| > 1, we write

n

W(z) =[] Gz=av), H<1—avz>

v=1 = i ay

and
Rn:Rn(ahaZV")an):—'- pEPn

Here R, is the set of all rational function with pole a;,a»,...,a, at most and with finite
limit at infinity. So, it isclear that B(z) € R,,. Assume that T; := {z; |z| = k,k > 0},
Dy denotes the region outside 7; and D;_ denotes region inside 7.

For peP,;

THEOREM A. If p € P, then

< ). 11
max |p'(2)| < nmax |p(2)| (1.1)

The result is best possible and equality holds for p(z) = AZ".

The above result is known as Bernstein inequality due to S. N. Bernstein [4] on the
derivative of polynomial. By taking a restriction on the zeros of p(z) the above result
is sharpened. It was first conjectured by Prof. P. Erdos and later verify by P. D. Lax [4]
by proving that
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THEOREM B. If p € P, and having all it zeros in Ty UD; ., then

n
<= . 1.2
Izlg;XIP( )| zlzlgglp(Z)I (1.2)

The result is sharp and equality holds for p(z) = AZ".

P. Turdn [4] consider the class of polynomial p(z) having all its zeros in T} UD; _
and prove the following.

THEOREM C. If p € P, and having all it zeros in Ty UD; ., then

n
> - . 1.3
Izlg;XIP( )| zlzlgglp(Z)I (1.3)

The result is sharp and equality holds for p(z) = AZ".

Li, Mohapatra and Rodriguez [3] have proved the following results similar to The-
orem A, Theorem B and Theorem C respectively for rational functions r € R, with
prescribed poles where they replaced z" by Blaschke product B(z).

THEOREM D. If r € R, then

sup | (z)| < |B'(2)] sup |r(z)]- (1.4)

z€T) zeTy

Equality in above holds for r(z) = aB(z)yo € Tj.

THEOREM E. Suppose r € R, and all the zeros of r(a) lies in Ty UD\ 4, then

B/
Sup @k sup (2. (15
zelhy z€Ty

Equality in above holds for r(z) = aB(z) + B with o, € T;.
THEOREM F. Suppose r.€ R, and all its zeros lies in Ty UD1_, then
B/
sup |7/ (z)| = B sup |r(z)]. (1.6)
zeT) 2 zeT)
Equalityin above holds for r(z) = aB(z) + B with a,B € Tj.

Aziz and Zargar [1] proved the following generalization of Theorem E by taking
all the zeros of r(z) in TuUDyy, k> 1.

THEOREM G. Suppose r € R, and having all its zeros in T, UDy., k> 1, then

ot < L gy 16D QPR
supl' ) < 5 {101~ S S L (1)

where ||r|| = sup,cr, |r(2)|. Equality in above holds for p(z) = (z+k)"/(z—a)", a> 1,
k>1.

Recently, Xin Li [2] proved another generalization of Theorem D by sating that
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THEOREM H. Let r,s € R, and assume s(z) has all its zeros in Ty UD;_ and
Ir(2)| < |s(z)| for z € Ty, then for any p with |p| < 1/2

7' (2)+pB'(2)r(2)] < |5/ (2) + pB'(2)s(2)| (1.8)

Equality in above holds for r(z) = s(z).

Some other extension and generalizations of above results was also proved by
Tripathi, Hans, Mogbademu and Tyagi [5]. Here, we first prove the following gener-
alization of Theorem F for r € R,, and having all its zeros in T, UD;_, k < 1. More
precisely, we prove

THEOREM 1. Suppose r € R,, and having all its zeros in T, UDy_, k <1, then

sup (0 > 5 {101 - L2 L (. (19)

z€Th 1 + k ze€NY

where m is number of zeros and n is number of poles of r(z). Equality in above holds
for r(z) = o+ BB(z), where o, € T) and k =dsm = n.

REMARK 1.1. The right hand side of inequality (1.9) may be negative for small

If r € R, has exactly n zeros, i.e. mo= n, then we have following result.

COROLLARY 1.1. Suppose r € R, and having all its zeros in T, UDy_, k<1,
then

sanly/ 01 25 {01+ 0 s e, (1.10)

Z€T| 1 + k zeT)

Equality in above holds for r(z) = a+ BB(z), where o, € Ty and k = 1.

REMARK 1.2. On taking k¥ = 1 in inequality (1.10), Theorem F has been ob-
tained.
Next; we prove the following generalization of Theorem H.

THEOREM 2. Let r,s € R, and assume s(z) has all its zeros in T, UDy_, k< 1
and |r(z)| < |s(z)| for z € Ty, then for any B with |B| < 1/2

/@ +8{ B+ D) < o+ p{rar+ 22 st
(1.11)

Equality in above holds for r(z) = s(z).

REMARK 2.1. Theorem H can be followed by taking £ = 1 in inequlity (1.11).
If we take s(z) = B(z) sup,cy, [7(z)| and using (3.5), following auxiliary result has
been obtained.
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COROLLARY 2.1. If r € Ry, then for B with |B| <1/2 and z€ T

1—k) n(1—k)
/ B n( <in B
r(Z)+ﬁ{ @+ = (7@ <  HHBIB @I +IBl— EEE"(Z)"
(1.12)
for k< 1.
On taking f = 2 , we obtained the following result.

COROLLARY 2.2. If r € Ry, then for z € T

703 (1w o) < s {me+ 2w, o

for k< 1.
Finally, we prove following result concerning minimum modulus of polynomial.

THEOREM 3. If r € R, has n zeros all in Dy_ ,then for every § with |B| < 1/2
1—k) n(l —k)
! B ul > |1 1+ ————7—||B(
@+ { e+ o o) > B S0
4)

where m = inf.cr, |r(z)|. The equality in (1.14) holds for r(z) = AB(z), A > 0 and
k=1.

By taking B =0 and k = 17in inequality (1.14), we get the following result.

COROLLARY 3.1. If# € R, has.n zeros all in D;_, then

inf |#(z)| = |B'(2)] inf |r(z)]. (1.15)
zeTy

zeT)

The equality in' (1.15) holds for r(z) = AB(z), A > 0.

From inequality (1.10) and with suitable choice of 3, we get for z € Tj

) iz 31+ =2 o) = 1= e {01+ 22 )

Now combining inequality (1.14) with above inequality, we have for z € T}

/@1~ 1B { 1B @1+ = o) = zr’<z>+ﬁ{|B’<z>|+”“‘k)}r<z>\

1+k 1+k
> |1 1+ B'(
‘+ﬁ{ 1+kW’ }M

)]
> {1—|[5|{1 m}}w’(z)lm

and by letting B — 1/2, we obtained the following.
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COROLLARY 3.2. If r € R, has n zeros all in Dy_, then

suplv'(9) > {0 + 0= s e+ {181 - T | i o,

€Ty +k ) en (L+k) J zem
(1.16)
The equality in above holds for r(z) = AB(z) and k= 1.
The following result has been obtained by taking k = 1 in Corollary 3.2.
COROLLARY 3.2. If r € R, has n zeros all in D, _, then
B/
sup |7/ (z)| = B )| sup |r(z)| + inf |r(2)] ¢ - (1.17)
€T 2 zeT) zeT)

The equality in above holds for r(z) = AB(z).

2. Lemma

For the proof our results, we require following Lemma due to Xin Li [2].
LEMMA 1. Let x and y be two complex number.
1. If |x| > |y| and y # 0, then x # Oy for'all complex number & satisfying |6| < 1.

2. Conversely, if x # 8y for all complexnumber 6 with |8| < 1, then |x| > |y|.

3. Proof of Results

Proof of Theorem 1. Since r(z) = p(z)/W(z) € R,. Let b, j=1,2,...,m are
the zeros of p(z), then |b;| < k <'I. Therefore, we have

'z _w'(x) W(2)

@ e WE Gb
Since’p(z) = [17-1(¢— b;), therefore
@)z
e
So, equation (3.1) become
7'z &z W
r(z) _QZ'I z—b; W(2)
and for z € T}
7@\ _ .~ 2 W (2)
Re(r(z) )_Rejz'lz—bj Re(W(z) ) (3.2)
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Now it is easy to verify that for z € Ty, |b;| <k <1

Z 1
R > — .
e(z—bj) 1+k (3-3)

and W(z) =IT_,(z—a;). So, W*(z) ="W(1/z) and for z € T1,Z=1/z, we get

W (2) W)\ ,
Re(W*(Z)>+Re<W(Z> >_ (3.4)

Also we get from

which gives

B(2) W (2) _W'(2)

i.e. forz e Ty,
st o [ V) (ZW’(Z))
|B'(z)] —Re< e ) Re o ) (3.5)
From equation (3.4) and (3.5), we have
W)\ _n—|B(2)
Re( W) ) = > (3.6)
On using (3:3) and(3.6) in (3.2), we get
zr'(2) m_ n—|B'(z)|
Re( r(z) ) > 1+k 2 S
Hence for.z € T} and r # 0, we have
7 (z) 7 (z) m_ n—|B'(z)
) >Re< ) ) STk 2 SR

Furthermore, if 7(z) = 0, then equality is trivially satisfied. Thus the result holds for all
z € Ty. Proof of Theorem 1 is completed. [J

Proof of Theorem 2. Consider no zeros of s(z) lies on T}, therefore all the zeros
of s(z) lies in Dy and |r(z)| < |s(z)| for z € Tj. Let o be an arbitrary number with
|| < 1, therefore by direct application of Rouche’s Theorem, ¢t7(z) +s(z) has as many
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zeros in Dy as s(z). Thus all the zeros of ar(z) +s(z) lies in Dy_. By inequality
(3.8), we get

lozr! (z) +25'(2)] = Ax| or(z) +5(2)], (3.9)
where
L n(l—k)
Ak_§{|B (2)|+ 177 } (3.10)

It can be easily verify that B'(z) # 0, then R.H.S of inequality (3.9) is nonzero. Now,
using 1 of Lemma 1, we have for any § with |6] < 1

0z (z) +25'(2) # 6A(ar(z) +s(z)) for z €Ty
or, equivalently for |et| < 1
a{z’(z) — 8Awr(z)} # —{z5' (z) — SAws(2)} .

On using 2 of Lemma 1, we have

|25’ (z) — 8Aws(2)| = |a(z) — 8Awr(2)]: (3.11)
On taking 8 = —8/2, we get |B| < 1/2. Therefor using (3.10) in inequality (3.11), we
have

@+ {18 @1+ L@+ s { e+ 2 .
(3.12)

Using the continuity in zerosand 3 with |B| < 1/2, we can obtain the inequality when
some zeros of s(z) lie'on the unit.circle. Which proof the Theorem 2. [

Proof of Theorem 3. Tf r(z) has a zero in T, then Theorem e is trivial. So, we
consider that#(z) has all its zeros in Dy_ . If m =inf.c7, |r(2)|, then m >0 and |r(z)| >
m for z € Ty Therefore, for any § with |§| < 1, then the function F(z) = r(z) —
OmB(z) of degree n,has all its zeros in Dy_ . From inequality (3.8)

|2F'(2)| = Ax|F (2)] (3.13)
where A is defined in (3.10),1.e.
|2/ (z) — dmzB' (2)| = Ax|r(z) — dmB(2)] (3.14)

Since F(z) = r(z) — 6mB(z) # 0 in T; U Dy, then for any complex number p with
|p| < 1, we have from (i) of Lemma 1

T(z) =z{r' (z) — 6mB'(2)} + BA{r(z) — dmB(2)} # 0 (3.15)
ie.

= {2 (2) + pAwr(2) } — 8 {zB'(z) + pAB(z) } m # 0
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in 7y UD;4 .Now from (ii) of Lemma 1, we obtained for |§| < 1

|27’ (2) + pAkr(z)| = |2B' (z) + pAB(2) | m, (3.16)
ie.
|2 (2) + pAkr(2)| = |2B' (z) + pAeB(2) | m, (3.17)
Now for z € Ty,
zB’ % (laj]?—1)
B()] = z = —

ie. |B'(2)|B(z) =2zB'(z) for z€ T} and § = B with |B| < 1/2, therefore inequality
(3.17) becomes

F@+B{ 1@+ b

sl v
(3.18)

When a zero of r(z) lie on Ty and |B] < 1/2, the.case can follow by using argument
of continuity. Which complete Theorem 3. [
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