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Abstract. In this paper, we first construct a relationship between a block Kronecker product and
a block Hadamard product of matrices. Then we give some power rules for the block Kronecker
product of matrices under commutation assumptions. We extend some inequalities for powers
of the block Hadamard product of a finite number of positive definite Hermitian matrices.

1. Introduction

In 1991, Horn, Mathias and Nakamura [3] defined a block Hadamard product and
gave some useful results for singular values and norms of the block Hadamard product
of two matrices. In 2012, Günther and Klotz [1] generalized Kronecker product for
block matrices and extended their studies to the block Hadamard product of positive
semidefinite matrices. Additionally, Mond and Pecaric [6] investigated several inequal-
ities involving eigenvalues and powers of the Hadamard product of positive definite
Hermitian matrices.

Firstly, we will construct a relationship between the block Kronecker and the block
Hadamard product of matrices. Further, we will prove the property associated with
the block Kronecker product of the powers of matrices. Finally, we shall give some
inequalities related to the powers of the block Hadamard product of a finite number of
positive definite Hermitian matrices.

Now, let us give the notation and terminology we will use throughout our study.
Let Mm×n be the linear space of m×n matrices with complex entries and Mp,q(Mm,n)
be the space of p × q block matrices, and write Mp,q := Mp,q(Mn,n) and Mp :=
Mp,p(Mn,n) . The identity matrix in Mp is denoted by Ip = diag(In, . . . , In) where
In ∈ Mn,n .

A matrix A ∈ Mp is Hermitian if A∗ = A where A∗ is the conjugate transpose
of A . A Hermitian matrix A is said to be positive definite if x∗Ax > 0 for all nonzero
x ∈ C.

Let A ∈ Mm,l and B = (Bi j) ∈ Ms,t(Ml,n) . Then the block Kronecker product of

A and B is defined by A�B = (ABi j)
j=1,...,t
i=1,...,s , where ABi j is the usual matrix product
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of A and Bi j . For A = (Ai j) ∈ Mp,q(Mm,l) , the block Kronecker product is given by

A�B = (Ai j �B) j=1,...,q
i=1,...,p . If A = (Ai j) ∈ Mp,q(Mm,l) and B = (Bi j) ∈ Mp,q(Ml,n) the

block Hadamard product of A and B is defined by A�B = (Ai jBi j) . Two matrices A∈
Mp,q and B ∈ Ms,t are called block commuting if every n× n block of A commutes
with every n× n block of B . It is denoted by AbcB . If A and B are both positive
definite and AbcB then A�B and A�B are positive definite matrices[1].

These block products are related to each other for A,B ∈ Mp(Mn,n) by a p2n× pn
selection matrix J such that

A�B = JT (A�B)J and JT J = I,

where JT = [E11E22 · · ·Epp] for which Eii is the p× p block matrix of zero matrices
except an identity matrix In in the ii th position.

2. Main results

Firstly, we shall give some properties of block commuting matrices which are
useful to establish our results. Let A ∈ Mp,q , B ∈ Ms,t , C ∈ Mq,u , and D ∈ Mt,v for
p,q,s, t,u,v ∈ N .

LEMMA 1. (a) If AbcB and CbcB then ACbcB .
(b) Let D̃ be a block diagonal matrix such that D̃ = diag(D1, · · · ,Dr) with Di ∈

Mn,n . If AbcD̃ then AbcD̃
s for a real number s.

(c) If A and B are Hermitian matrices and AbcB then AbcB
∗ .

Proof. (a) For all i, j, l,m = 1, . . . ,k , we have

Ai jCi jBlm = Ai jBlmCi j = BlmAi jCi j.

(b) It follows from the fact that is given in [2] pg.30 a matrix Ai j commutes with
a diagonal matrix Dk if and only if every entry ai j of Ai j is zero whenever dii �= di j .

(c) Clear. �

LEMMA 2. [1] (a) (A�B)∗ = A
∗ �B

∗ if and only if AbcB .
(b) If BbcC then (A�B)(C�D) = AC�BD .
(c) A�B = (A� Is)(Iq �B) .
(d) A�B = (Ip �B)(A� It) if and only if AbcB .

For a finite number of matrices Ai , Bi ∈ Mp , i = 1, . . . ,k , we write the following
results.

LEMMA 3. Let Ai and Bi be matrices such that Bi block commutes with Ai+ j

for all i = 1, . . . ,k−1 and j = 1, . . . ,k− i . Then

( k

∏
i=1

Ai

)
�

( k

∏
i=1

Bi

)
=

k

∏
i=1

(Ai �Bi). (1)
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Proof. Let k = 3. For i = 1, B1 commutes with A2 and A3 . For i = 2, B2

commutes with A3 . Applying Lemma 1(a) and Lemma 2(b), we get

(A1 �B1)(A2 �B2)(A3 �B3) = (A1A2 �B1B2)(A3 �B3)
= (A1A2)A3 � (B1B2)B3.

The proof is completed by induction. �
Let A ∈ Mp be a positive definite n×n Hermitian matrix. There exits a matrix U

such that
A = U

∗[λ1,λ2, . . . ,λpn]U, U
∗
U = I,

where [λ1,λ2, . . . ,λn] is the diagonal matrix with λi eigenvalues of A[6]. Then for any
real number s , As is defined by

A
s = U

∗[λ s
1 ,λ

s
2 , . . . ,λ

s
n ]U.

LEMMA 4. Let A, B∈Mp be positive definite matrices such that A = U∗DU and
B = V∗KV where D, K are diagonal matrices and s a nonzero real number. Suppose
that A block commutes with B , then

A
s �B

s = (A�B)s. (2)

Proof. First note that if AbcB then UbcV , UbcK , UbcD , VbcK , VbcD and DbcK .
By Lemma 1, we get

A
s �B

s = (U∗
D

s
U)� (V∗

K
s
V)

= ((U∗
D

s)U)� (V∗(Ks
V))

= (U∗
D

s �V
∗)(U�K

s
V)

= (U∗
D

s �V
∗
I)(IU�K

s
V)

= (U∗ �V
∗)(Ds � I)(I�K

s)(U�V)
= (U�V)∗(Ds �K

s)(U�V)
= (U�V)∗(D�K)s(U�V)
= (A�B)s.

Since V∗
bcU , we have

(U�V)∗(U�V) = (U∗ �V
∗)(U�V)

= U
∗
U�V

∗
V

= Ipn � Ipn = Ip2n. �

The block Hadamard and the block Kronecker product of matrices Ai , i = 1, . . . ,k
will be denoted by �k

i=1Ai and �k
i=1Ai , respectively.

For a finite number of positive definite Hermitian matrices Ai ∈ Mp , we can ex-
tend the equation (2) as follows.
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THEOREM 1. Let Ai = U∗
i DiUi be a positive definite Hermitian matrix with a

diagonal matrix Di and a matrix Ui such that U∗
i Ui = I for i = 1, . . . ,k . Assume that

Ai block commutes with A j for all i �= j . Then we have

�k
i=1A

s
i =

(
�k

i=1 Ai

)s
.

Proof. First we prove this for k = 3. By considering assumptions and (2), we
obtain

(As
1 �A

s
2)�A

s
3 = (A1 �A2)

s �A
s
3

= (A1 �A2 �A3)
s .

This can be extended from m to m+ 1 similarly. Thus, the proof is accomplished by
induction. �

We shall give a result that we use mainly in the proofs of Theorems 2 and 3.

LEMMA 5. Let Ai ∈ Mp . Then there exists a pkn× pn selection matrix J such
that JT J = I and

�k
i=1Ai = J

T
(

�k
i=1 Ai

)
J.

Proof. We prove for three block matrices. The extension from m to m + 1 is
similar. Using the fact that JT block commutes with A , we get

A�B�C = A�(JT (B�C)J)

= J
T (A� (JT (B�C)J))J

= J
T (

(IAI)� (JT (B�C)J)
)
J

= J
T (

(I�J
T )(A�B�C)(I�J)

)
J

= J̃
T (A�B�C)J̃

where J̃ = (I�J)J∈ Mp3,p with

J̃
T
J̃ = J

T (I�J
T )(I�J)J = J

T (I� I)J = I. �

LEMMA 6. [4] Let A ∈ Mn be a positive definite Hermitian matrix and V ∈ Mn,p

matrix such that V ∗V = I . Then for all real r and s, r < s,

(V ∗AsV )1/s � (V ∗ArV )1/r

where r /∈ (−1,1) and s /∈ (−1,1) or s � 1 � r � 1
2 or r � −1 � s � − 1

2 .
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THEOREM 2. Let Ai and A j be block commuting matrices for i �= j . Suppose
that Ai are positive definite matrices and r and s be real numbers such that r < s.
Then (

�k
i=1A

s
i

)1/s
�

(
�k

i=1A
r
i

)1/r
(3)

for r /∈ (−1,1) and s /∈ (−1,1) or s � 1 � r � 1
2 or r � −1 � s � − 1

2 .

Proof. By using the selection matrix J instead of V in Lemma 6, we have(
�k

i=1A
s
i

)1/s
=

(
J

T
(
�k

i=1A
s
i

)
J

)1/s

=
(
J

T
(
�k

i=1Ai

)s
J

)1/s

�
(

J
T
(
�k

i=1Ai

)r
J

)1/r

=
(
J

T
(
�k

i=1A
r
i

)
J

)1/r

=
(
�k

i=1A
r
i

)1/r
. �

Similarly using (3) we obtain the following corollary.

COROLLARY 1. Let Ai and A j be block commuting matrices for i �= j . Then

(a)
(
�k

i=1Ai
)

�
(
�k

i=1A
−1
i

)−1
or

(
�k

i=1A
−1
i

)
�

(
�k

i=1Ai
)−1

.

(b)
(
�k

i=1A
r
i

)1/r �
(
�k

i=1Ai
)

or
(
�k

i=1Ai
)1/r �

(
�k

i=1A
1/r
i

)
for r > 1 .

(c)
(
�k

i=1A
2
i

)1/2 �
(
�k

i=1Ai
)

or
(
�k

i=1Ai
)1/2 �

(
�k

i=1A
1/2
i

)
.

LEMMA 7. [5] Let A ∈ Mn be a positive definite Hermitian matrix with eigenval-
ues in [m,M] , m > 0 . Let V ∈ Mn,p such that V ∗V = I . If r < s real numbers such
that either r /∈ (−1,1) or s /∈ (−1,1) , then

(V ∗AsV )1/s � Δ(V ∗ArV )1/r , (4)

where

Δ =
{

r(αs −αr)
(s− r)(αr −1)

}1/s { s(αr −αs)
(r− s)(αs −1)

}−1/r

(5)

α = M/m, and M and m are the largest and smallest eigenvalues of A, respectively.

THEOREM 3. Let Ai and A j be block commuting matrices for i �= j . Suppose
that Ai are positive definite matrices and r and s be nonzero real numbers such that
r /∈ (−1,1) or s /∈ (−1,1) and r < s. Then(

�k
i=1A

s
i

)1/s
� Δ

(
�k

i=1A
r
i

)1/r
, (6)
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where Δ is given by (5), Mi and mi are the largest and smallest eigenvalues of �k
i=1Ai ,

respectively.

Proof. By Lemma 3 and Lemma 7, we obtain(
�k

i=1A
s
i

)1/s
=

(
J

T
(
�k

i=1A
s
i

)
J

)1/s

=
(
J

T
(
�k

i=1Ai

)s
J

)1/s

� Δ
(

J
T
(
�k

i=1Ai

)r
J

)1/r

= Δ
(
J

T
(
�k

i=1A
r
i

)
J

)1/r

= Δ
(
�k

i=1A
r
i

)1/r
. �

In (6) setting s = 2, r = 1, and s = 1, r = −1, respectively, we get the following
corollary.

COROLLARY 2. Let Ai and A j be block commuting matrices for i �= j . Then

(a)
(
�k

i=1A
2
i

)1/2
� M +m

2
√

Mm

(
�k

i=1Ai

)
.

(b)
(
�k

i=1Ai

)
� (M +m)2

4Mm

(
�k

i=1A
−1
i

)−1
.
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[1] M. GÜNTHER, L. KLOTZ, Schur’s theorem for a block Hadamard product, Linear Algebra and its
Applications, 437, (2012), 948–956.

[2] R. A. HORN, C. R. JOHNSON, Matrix Analysis, Cambridge University Press, New York 1985.
[3] R. A. HORN, R. MATHIAS, AND Y. NAKAMURA, Inequalilities for Unitarily Invariant Norms and

Bilinear Matrix Products, Linear and Multilinear Algebra, 30, (1991), 303–314.
[4] B. MOND, J. PECARIC, On Jensen’s inequality for operator convex functions, Houston J. of Math.

21, (1995), 739–754.
[5] B. MOND, J. PECARIC, A matrix version of the Ky Fan inequalities of the Kantorovich inequality II,

Linear and Multilinear Algebra, 38, (1995), 309–313.
[6] B. MOND, J. PECARIC, On inequalities involving the Hadamard product of matrices, Electronic J. of

Linear Algebra, 6, (2000), 56–61.

(Received March 9, 2018) Mustafa Özel
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