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SCHUR-CONVEXITY RELATED TO
CO-ORDINATED CONVEX FUNCTIONS IN PLANE

N. SAFAEI AND A. BARANI*

(Communicated by J. Pecaric)

Abstract. In the paper, we investigate Schur-convexity of some functions which are obtained
from the co-ordinated convex functions on a square in plane. A version of celebrated Leibniz’s
derivative formula for double integrals is also given.

1. Introduction

The notion of Schur-convexity was done first by Issai Schur in 1923. Since then
numerous papers have been published in this literature, see for example [3, 5, 6, 9].
Schur-convexity has many important applications in analytic inequality, geometric in-
equality, combinatorial analysis, numerical analysis, matrix theory, and so on. Let us
recall the definition of Schur-convexity.

DEFINITION 1.1. [1] Suppose that / is an interval of real numbers. A function
f:I"— R, is said to be Schur-convex on " if

f(xlax2a"'7~xn) < f(ylay2a"'7yn)

forall x = (x1,x2,...,%,), y= (V1,¥2,...,yn) € I" with x <y, that is

k k
E)C[i] < Ey[,-] k=1,2,....,n—1,
i=1 i=1

and
;ngm’

where x;, denotes the i—th largest component in x. A function f is said to be Schur-
concave on [ if —f is Schur-convex.
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Recall that a n x n square matrix P is said to be a permutation matrix if each row
and column has a single unite entry, and all other entries are zero. Also the function
S :I" — R is said to be a symmetric function if f(Px) = f(x), for every permutation
matrix P, and for every x € I"*, see [, 7]. In order to prove our result, we shall need the
following theorem which gives a useful characterization of Schur-convexity, see [1].

THEOREM 1.1. Let f:I" — R be a continuous symmetric function. If f is dif-
ferentiable on I", then f is Schur-convex if and only if

0 0
(xi —x;) (9_)]:1 - 5—;;) =0,

forall x;,x; €1,i,j=1,2,...,n. The function f is Schur-concave if and only if the
reverse inequality holds.

A Schur-convex function need not be convex (consider f(x,y) := |y — x|% on R?)
and a convex function need not be Schur-convex (consider f(x,y) :=x+y*> on R?). In
[5] Elezovi¢ and Pecari¢ proved a theorem which gives relationship between convexity
and Schur-convexity.

THEOREM 1.2. Let f be a continuous function on an interval I C R, and

F(x,y) = y%xf)g)f(t)dt, x,y€Il, x#y,
F@x), x=yel

Then F(x,y) is Schur-convex (Schur-concave)on I* ifand only if f is convex (concave)
onl.

Let / C R be an open interval and f € C>(I). In [3] Y. Chu et al. proved the
following theorem.

THEOREM 1.3. Let f:1— R be a continuous function. The function

R f@de— (5B, xyel x#y,
F(x7y)_
0, x=yel,

is Schur-convex (Schur-concave) on I? if and only if f is convex (concave) on I.

In [4], S. S. Dragomir defined convex function on the co-ordinates (or co-ordinated
convex functions) on the set [a,b] x [c,d] in R? with a < b and ¢ < d as follows.

DEFINITION 1.2. A function f : [a,b] X [c,d] — R is said to be convex on the
co-ordinates on [a,b] x [c,d] if for every y € [c,d] and x € [a,b], the partial mappings,

fy: [a7b]—>R7 fy(u):f(uay)7
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and

VES [C7d] — R, fx(V) :f(x7 V)’

are convex. This means that for every (x,y), (z,w) € [a,b] x [c,d] and t,s € [0,1],

flx+ (1 =0)z,sy+ (1 —s)w) < 1sf(x,y) +s(1—1)f(z,y)
+t(1=5)f(x,w)+ (1 =) (1 —s)f(z,w).

Clearly, every convex function is co-ordinated convex. Furthermore, there exist
co-ordinated convex functions which are not convex. The following Hermite-Hadamard
type inequality for co-ordinated convex functions was also proved in [4].

THEOREM 1.4. Suppose that f : [a,b] x [c,d] — R is convex on the co-ordinates
on la,b] X [c,d]. Then,

a+b c+d 1] 1 b c+d 1 a+b
f( 2 2 )gz[b—a/af<x’ 2 )d +d—c/c f( 2 ’y)dy}
<( //fxydydx

1 1 1 b
< Z[b—a/a f(x,c)dx—km/a Sf(x,d)dx

+E~/c f(a,y)dy—kﬁ/c f(ba}’)dY}

fla,c)+ fa,d) + f(b,c) + f(b,d)
I :

<

The above inequalities are sharp.
We recall the following lemma from [2], which is known as Leibniz’s Formula.
LEMMA 1.1. Suppose that f: A= |a,b] X [c,d] = R and af ta,b] x [¢,d] = R

are continuous and o, 0, : [c,d) — |a,b] are differentiable functlons Then, the func-
tion @ : [c,d] — R defined by

has a derivative for each t € [c,d], which is given by

() g f

(1) =f(062(t)7t)00ﬁ(t)—f(al(t)»t)ai(tH/al(t) 57 (ot)dx.

Next, we establish the generalized Leibniz’s derivative formula for double inte-
grals which is a corrected version of similar result introduced in [8].
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LEMMA 1.2. Let F(u,v) = [ [ f(x,y)dxdy, where f(x,y) is continuous on the
rectangle |a,p] X [a,q], u=u(b) and v =v(b) are differentiable with a < u(b) < p
and a < v(b) < q. Then,

= (/va(x7v)dx+/uvf(v7y)dy) V(D)
- (/uvf(x,u)dx—i-/uvf(u,y)dy) ' (b).

Proof. Since F(u,v) = [ [ f(x,y)dxdy, by the chain rule for derivation of com-
posite functions, we have

ey

9F _F du oF av o
db  Jdudb Jvdb
Let H(u,v,y) := [} f(x,y)dx, therefore F(u,v) = [,/ H(u,v,y)dy. By using the Lemma
1.1 we have

JoF
——Huvv—|—/ H(u,v,y)dy
av

i/fxvdmﬁ/ (/fxydo
:/M f(x,v)dx—F/M f(v,y)dy.
Similarly

JoF
uvu+/ H(u,v,y)dy

du
/fxudx+/ (/fxydx)
—/u f(x,u)dx—/u f(u,y)dy.

By replacmg o £ and %—f in (2) we obtain required results in (1). [

2. Main results

In this section we establish new results concerns the improvements of Theorem
1.2 and Theorem 1.3 for co-ordinated convex functions setting. To reach our goal, we
need the following two lemmas.

LEMMA 2.1. Let D:= [a1,b;] X [a,b] be a square in R? with a; < by, and the
function f: D — R is continuous, and has continuous second order partial derivatives
on D° (the interior of D). Choose a,b € (ay,by), with a < b, and let A:=[a,b] X [a,b].
Suppose that the function F : A — R is defined by

Py [ R R fs)dds, vy, xvelad],
W f(x»x)7 xX=y, X, ye& [a7b]~



CO-ORDINATED CONVEX 471

Then, for all 1y € [a,b],

JF

oF oF
ox

(t,s)
_ _ (to,t0) (to,t0) o 3)
(todo) Oy

(t07t0) B 6

Proof. Fix ty € [a,b]. By using the L’Hospital’s rule, and Lemmas 1.1, 1.2 we see
that

JIF . F(to+1,10) — Flto,10)
3}6 (t0,10) _t—>0 t
to+t  rto+t
=lim —~ [/ / S(u,v)dudv —1t f(to,to)]
t—0t
1 1o+t
—hn(l)ﬁ[ FURN +t)du+/ Sflto+1,v)dv—"2tf(to,10)
11—
1 0+ Qf to-+t 3f
=1
t1—>06t|:/ at(ut0+tdu+/ (to+1t,v)dv

4)
+2f(to+1,10+1) — 2f(fo7to)}

o+t 92 o+t 92
=lim —~ [/ J f(u o+t du+/ of (to+t v)dv
1o

—0 6 ot 2
af Jaf Jaf
+ ot (10 +1) u=to+ + ot (to+1,v) v:to+r+2 ot (to+1:00+1)
af aof 29f
at , S)’(foﬂfo) RS (t,5) (tost0) Mz t,0)

fo

6
By changing the role of x by y in (4), we obtain required results in (3). [
The proof of the following lemma is similar to once in lemma 2.1 hence we omit
it.

LEMMA 2.2. Let D := [ay,by] x [a1,b1] be a square in R? with a; < by, and the
function f: D — R is continuous, and has continuous third order partial derivatives
on D°. Choose a,b € (ay,by), with a < b, and let A := |a,b] x [a,b]. Suppose that the
function G : A — R is defined by

oo i R f @ s)deds — (552, 555), x#y, xy € la,b],
Glry)=q"
O, X=Y, X,y¢€ [a7b]'

Then, for all ty € [a,b],

a6
(to0) Oy

8_G
dx

(t07t0) 6
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Following result is a improvement of theorem 1.2 in co-ordinated convex functions
setting.

THEOREM 2.1. Let D := [ay,by] x [a1,b1] be a square in R? with a; < by, and
the function f: D — R is continuous, and has continuous second order partial deriva-
tives on D°. Choose a,b € (a1,b)), with a < b, and let A= [a,b] x |a,b]. Suppose
that f is convex on the co-ordinates on A, then the function F : A — R defined by

Fiey) o R R S0 ads, vy xyelad], -
e f(x»x)7 xX=y, X, ye& [a7b]»

is Schur-convex on A.

Proof. Case 1: If x,y € [a,b], with x =y. Then Lemma 2.1 implies that

Case 2: If x,y € [a,b], with x # y. Then by Lemma 1.2 we have

JF -2
a_y :(y_x)3 ‘/Xy/xyf(tys)dtds

ﬁ( [ s+ [ roas).

_ﬁ/xy/xyf(t,s)dtds
1 y

and

Thus,

-9 (55 ) e [ [ fesaras

e / (£ + £0.9)ds
+ / $)+ () d )
JdF _ JF

Then, (y—x)(5; — E) is nonnegative if

O—x? //ftsdtds

S m (/ (f(.3) + (1, x))dt+(f(y7s)+f(x,s))ds>.

X
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The last inequality follows from Theorem 1.4. Therefore, by Theorem 1.1 the function
F is Schur-convex. [l

A consequence of theorem 1.2 is given in [5] as follows: If f >0 on I and ? is
convex (concave) then the function
logf(x)—logf(y)
=y )Y € I7 X # Y
F(xy) = { ' (6)

BT e

is Schur-convex (Schur-concave) on 2. The following example show that for the func-
tion F(x,y) in (6) the function F2(x,y) is not Schur-convex and not Schur-concave in
general.

EXAMPLE 2.1. Consider the function f(z) := e3° =1 for —2 <t <0. Itiseasy to
see that for the function F in (6), we have F(x,x) = x> — 1, for every x € [~2,0], and

1
Fry) =304y +) = 1,
for every x,y € [—2,0], with x # y. Thus,
L 5 5
Flx,y) =30+ +xy) -1,

forevery x,y € [-2,0]. If x,y € [-2,0], we have

(88—112 - 88—P;> (y—x) = %(y—X)z (%(x2+y2+xy) - 1) :

Since —1 < (x> +y*+xy) — 1 <3, then (aa—sz - aaixz)(y — x) has both positve values
and negative values. Therefore by Theorem 1.1 the function F?(x,y) is not Schur-
convex and not Schur-concave on [—2,0] x [-2,0].

In the following corollary we give a condition in which the function F2(x,y) is
Schur-convex.

COROLLARY 2.1. Let f >0 oninterval I and f € C*(I). Suppose that the func-
tion g : I* — R defined by g(t,s) := 7}8;(2\)) is convex on the co-ordinates (concave on

the co-ordinates) on I*. Then the function

log £(x)—log £(+) | >
(Tv> ) x7y617x7éy7

(Y, e

is Schur-convex (Schur-concave) on I*.

Fz(xvy) =
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Proof. Since the function g(¢,s) is convex on the co-ordinates on 12, the result
follows from Theorem 2.1. [

A generalized version of theorem 1.3 for co-ordinated convex functions is estab-
lished in the next theorem.

THEOREM 2.2. Let D := [ay,by] x [a1,b1] be a square in R? with a; < by, and
the function f: D — R is continuous, and has continuous third order partial derivatives
on D°. Choose a,b € (ay,by), with a < b, and let A := [a,b] X [a,b]. Suppose that f
is convex on the co-ordinates on A, then the function G : A — R defined by

L VY ta dld - mvm ) 9 ) S 7b7
Glx,y) = (y,x)zfx fx f(t,s)drds — f( PEEI) ), XFy, Xy [a ]
0, X=y, X, ye& [avb]7

(7
is Schur-convex on A.
Proof. Case 1: If x,y € [a,b], with x =y. Then Lemma 2.2 implies that

Case 2: If x,y € [a,b], with x # y. Then by Lemma 1.2 we have
G 0JG
if
1 y oy
=2 /X /x Sf(t,8)deds
1 y
< o ([ G+ g0+ (700 + ) ).

The result follows from Theorem 1.1 and Theorem 1.4. [

In the following example we show that the converse of theorem 2.1 is not true.
EXAMPLE 2.2. Consider the non co-ordinates convex function:
2 1o
f,s)=1t"— 35 € (1,2].

It is easy to see that for the function F in (5), F(x,x) = %xz, for every x € [1,2].
Moreover for every x,y € [1,2], with x # y we have

1 v 1 1
F(x,y) = ——> 2 S )deds = - (2 +y +xy).
()= o | ] @ 39 ds = G745 )
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Thus,
1
F(x,y) = g(xz +y% +xy),

forevery x,y € [1,2]. Clearly F is symmetric, continuous and differentiable on [1,2] x
[1,2].

If x,y € [1,2], we have
OF 9F\ 1 )
_ e E A >0.
(v X)<3y ax> c—x)"2>0

Therefore, by Theorem 1.1 the function F is Schur-convex.

The following remark show that the converse of theorem 1.4 is not valid in general.

REMARK 2.1. Itis easy to see that for function f was defined in example 2.2 we

have:
f@y’x;y) < 2<yl—x> [/f< )‘“/ ( M
//ftsdtds

(y—x)?2

[ tears oy

/

N

N

4@—@
+ /xy(f(x,s)ds +f(y,s))ds]

Fx) + F(,y) + f(,x) + £(0,9)
4 ’

<
for every x,y € [1,2], with x # y. This means that each of the inequalities in theorem
1.4 is valid while f is not convex on co-ordintes.

Finally the following example illustrates that the converse of theorem 2.2 is not
true in general.

EXAMPLE 2.3. Consider the non co-ordinated convex function:

1 1
flt,s) = §t2 — §s2, t,s €10,1].

Itis easy to see that for the function G in (7), G(x,x) =0, forevery x € [0, 1]. Moreover
for every x,y € [0,1], with x # y we have

own=gnl [ (#-17) o3 ()

1o 1, 1
72" +72y 36xy
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Thus,

1 1 1
G(x,y) = ﬁxz + iyz 36

forevery x,y € [0,1]. Clearly G is symmetric, continuous and differentiable on [0, 1] x
[0,1].

If x,y € [0,1], we have

G G\ 1 )
-9 (5~ 52 ) = 022 =0

Therefore, by Theorem 1.1 the function G is Schur-convex.
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