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SCHUR–CONVEXITY RELATED TO

CO–ORDINATED CONVEX FUNCTIONS IN PLANE

N. SAFAEI AND A. BARANI ∗

(Communicated by J. Pečarić)

Abstract. In the paper, we investigate Schur-convexity of some functions which are obtained
from the co-ordinated convex functions on a square in plane. A version of celebrated Leibniz’s
derivative formula for double integrals is also given.

1. Introduction

The notion of Schur-convexity was done first by Issai Schur in 1923. Since then
numerous papers have been published in this literature, see for example [3, 5, 6, 9].
Schur-convexity has many important applications in analytic inequality, geometric in-
equality, combinatorial analysis, numerical analysis, matrix theory, and so on. Let us
recall the definition of Schur-convexity.

DEFINITION 1.1. [1] Suppose that I is an interval of real numbers. A function
f : In → R , is said to be Schur-convex on In if

f (x1,x2, . . . ,xn) � f (y1,y2, . . . ,yn)

for all x = (x1,x2, . . . ,xn) , y = (y1,y2, . . . ,yn) ∈ In with x ≺ y , that is

k

∑
i=1

x[i] �
k

∑
i=1

y[i] k = 1,2, . . . ,n−1,

and
n

∑
i=1

x[i] =
n

∑
i=1

y[i],

where x[i] , denotes the i− th largest component in x . A function f is said to be Schur-
concave on I if − f is Schur-convex.
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Recall that a n×n square matrix P is said to be a permutation matrix if each row
and column has a single unite entry, and all other entries are zero. Also the function
f : In → R is said to be a symmetric function if f (Px) = f (x) , for every permutation
matrix P, and for every x ∈ In , see [1, 7]. In order to prove our result, we shall need the
following theorem which gives a useful characterization of Schur-convexity, see [1].

THEOREM 1.1. Let f : In → R be a continuous symmetric function. If f is dif-
ferentiable on In , then f is Schur-convex if and only if

(xi − x j)
(

∂ f
∂xi

− ∂ f
∂x j

)
� 0,

for all xi,x j ∈ I, i, j = 1,2, . . . ,n. The function f is Schur-concave if and only if the
reverse inequality holds.

A Schur-convex function need not be convex (consider f (x,y) := |y− x| 1
2 on R

2 )
and a convex function need not be Schur-convex (consider f (x,y) := x+ y2 on R

2 ). In
[5] Elezović and Pečarić proved a theorem which gives relationship between convexity
and Schur-convexity.

THEOREM 1.2. Let f be a continuous function on an interval I ⊂ R , and

F(x,y) =

{
1

y−x

∫ y
x f (t)dt, x,y ∈ I, x �= y,

f (x), x = y ∈ I.

Then F(x,y) is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave)
on I .

Let I ⊂ R be an open interval and f ∈ C2(I) . In [3] Y. Chu et al. proved the
following theorem.

THEOREM 1.3. Let f : I → R be a continuous function. The function

F(x,y) =

{
1

y−x

∫ y
x f (t)dt− f ( x+y

2 ), x,y ∈ I, x �= y,

0, x = y ∈ I,

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I .

In [4], S. S. Dragomir defined convex function on the co-ordinates (or co-ordinated
convex functions) on the set [a,b]× [c,d] in R

2 with a < b and c < d as follows.

DEFINITION 1.2. A function f : [a,b]× [c,d] → R is said to be convex on the
co-ordinates on [a,b]× [c,d] if for every y ∈ [c,d] and x ∈ [a,b] , the partial mappings,

fy: [a,b] → R, fy(u) = f (u,y),
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and
fx: [c,d] → R, fx(v) = f (x,v),

are convex. This means that for every (x,y) , (z,w) ∈ [a,b]× [c,d] and t,s ∈ [0,1] ,

f (tx+(1− t)z,sy+(1− s)w)� ts f (x,y)+ s(1− t) f (z,y)
+ t(1− s) f (x,w)+ (1− t)(1− s) f (z,w).

Clearly, every convex function is co-ordinated convex. Furthermore, there exist
co-ordinated convex functions which are not convex. The following Hermite-Hadamard
type inequality for co-ordinated convex functions was also proved in [4].

THEOREM 1.4. Suppose that f : [a,b]× [c,d]→ R is convex on the co-ordinates
on [a,b]× [c,d] . Then,

f

(
a+b

2
,
c+d

2

)
� 1

2

[
1

b−a

∫ b

a
f

(
x,

c+d
2

)
dx+

1
d− c

∫ d

c
f

(
a+b

2
,y

)
dy

]

� 1
(b−a)(d− c)

∫ b

a

∫ d

c
f (x,y)dydx

� 1
4

[
1

b−a

∫ b

a
f (x,c)dx+

1
b−a

∫ b

a
f (x,d)dx

+
1

d− c

∫ d

c
f (a,y)dy+

1
d− c

∫ d

c
f (b,y)dy

]

� f (a,c)+ f (a,d)+ f (b,c)+ f (b,d)
4

.

The above inequalities are sharp.

We recall the following lemma from [2], which is known as Leibniz’s Formula.

LEMMA 1.1. Suppose that f : Δ = [a,b]× [c,d]→ R and ∂ f
∂ t : [a,b]× [c,d]→ R

are continuous and α1,α2 : [c,d] → [a,b] are differentiable functions. Then, the func-
tion ϕ : [c,d] → R defined by

ϕ(t) =
∫ α2(t)

α1(t)
f (x,t)dx,

has a derivative for each t ∈ [c,d] , which is given by

ϕ ′(t) = f (α2(t),t)α ′
2(t)− f (α1(t),t)α ′

1(t)+
∫ α2(t)

α1(t)

∂ f
∂ t

(x,t)dx.

Next, we establish the generalized Leibniz’s derivative formula for double inte-
grals which is a corrected version of similar result introduced in [8].
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LEMMA 1.2. Let F(u,v) =
∫ v
u

∫ v
u f (x,y)dxdy, where f (x,y) is continuous on the

rectangle [a, p]× [a,q] , u = u(b) and v = v(b) are differentiable with a � u(b) � p
and a � v(b) � q. Then,

∂F
∂b

=
(∫ v

u
f (x,v)dx+

∫ v

u
f (v,y)dy

)
v′(b)

−
(∫ v

u
f (x,u)dx+

∫ v

u
f (u,y)dy

)
u′(b).

(1)

Proof. Since F(u,v) =
∫ v
u

∫ v
u f (x,y)dxdy , by the chain rule for derivation of com-

posite functions, we have
∂F
∂b

=
∂F
∂u

du
db

+
∂F
∂v

dv
db

(2)

Let H(u,v,y) :=
∫ v
u f (x,y)dx , therefore F(u,v) =

∫ v
u H(u,v,y)dy . By using the Lemma

1.1 we have

∂F
∂v

=H(u,v,v)+
∫ v

u

∂
∂v

H(u,v,y)dy

=
∫ v

u
f (x,v)dx+

∫ v

u

∂
∂v

(∫ v

u
f (x,y)dx

)
dy

=
∫ v

u
f (x,v)dx+

∫ v

u
f (v,y)dy.

Similarly

∂F
∂u

=−H(u,v,u)+
∫ v

u

∂
∂u

H(u,v,y)dy

=−
∫ v

u
f (x,u)dx+

∫ v

u

∂
∂u

(∫ v

u
f (x,y)dx

)
dy

=−
∫ v

u
f (x,u)dx−

∫ v

u
f (u,y)dy.

By replacing ∂F
∂u and ∂F

∂v in (2) we obtain required results in (1). �

2. Main results

In this section we establish new results concerns the improvements of Theorem
1.2 and Theorem 1.3 for co-ordinated convex functions setting. To reach our goal, we
need the following two lemmas.

LEMMA 2.1. Let D := [a1,b1]× [a1,b1] be a square in R
2 with a1 < b1 , and the

function f : D→ R is continuous, and has continuous second order partial derivatives
on D◦ (the interior of D). Choose a,b∈ (a1,b1) , with a < b, and let Δ := [a,b]× [a,b] .
Suppose that the function F : Δ → R is defined by

F(x,y) :=

{
1

(y−x)2
∫ y
x

∫ y
x f (t,s)dtds, x �= y, x,y ∈ [a,b],

f (x,x), x = y, x,y ∈ [a,b].
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Then, for all t0 ∈ [a,b] ,

∂F
∂x

∣∣∣
(t0,t0)

=
∂F
∂y

∣∣∣
(t0,t0)

=

∂ f
∂ t (t,s)

∣∣∣
(t0,t0)

+ ∂ f
∂ s (t,s)

∣∣∣
(t0,t0)

+2 ∂ f
∂ t (t,t)

∣∣∣
t0

6
. (3)

Proof. Fix t0 ∈ [a,b] . By using the L’Hospital’s rule, and Lemmas 1.1, 1.2 we see
that

∂F
∂x

∣∣∣
(t0,t0)

= lim
t→0

F(t0 + t,t0)−F(t0,t0)
t

= lim
t→0

1
t3

[∫ t0+t

t0

∫ t0+t

t0
f (u,v)dudv− t2 f (t0, t0)

]

= lim
t→0

1
3t2

[∫ t0+t

t0
f (u,t0 + t)du+

∫ t0+t

t0
f (t0 + t,v)dv−2t f (t0,t0)

]

= lim
t→0

1
6t

[∫ t0+t

t0

∂ f
∂ t

(u,t0 + t)du+
∫ t0+t

t0

∂ f
∂ t

(t0 + t,v)dv

+2 f (t0 + t,t0 + t)−2 f (t0,t0)
]

= lim
t→0

1
6

[∫ t0+t

t0

∂ 2 f
∂ t2

(u,t0 + t)du+
∫ t0+t

t0

∂ 2 f
∂ t2

(t0 + t,v)dv

+
∂ f
∂ t

(u,t0 + t)
∣∣∣
u=t0+t

+
∂ f
∂ t

(t0 + t,v)
∣∣∣
v=t0+t

+2
∂ f
∂ t

(t0 + t, t0 + t)
]

=

∂ f
∂ t (t,s)

∣∣∣
(t0,t0)

+ ∂ f
∂ s (t,s)

∣∣∣
(t0,t0)

+2 ∂ f
∂ t (t,t)

∣∣∣
t0

6
.

(4)

By changing the role of x by y in (4), we obtain required results in (3). �
The proof of the following lemma is similar to once in lemma 2.1 hence we omit

it.

LEMMA 2.2. Let D := [a1,b1]× [a1,b1] be a square in R
2 with a1 < b1 , and the

function f : D → R is continuous, and has continuous third order partial derivatives
on D◦ . Choose a,b∈ (a1,b1) , with a < b, and let Δ := [a,b]× [a,b] . Suppose that the
function G : Δ → R is defined by

G(x,y) :=

{
1

(y−x)2
∫ y
x

∫ y
x f (t,s)dtds− f ( x+y

2 , x+y
2 ), x �= y, x,y ∈ [a,b],

0, x = y, x,y ∈ [a,b].

Then, for all t0 ∈ [a,b] ,

∂G
∂x

∣∣∣
(t0,t0)

=
∂G
∂y

∣∣∣
(t0,t0)

=

∂ f
∂ t (t,s)

∣∣∣
(t0,t0)

+ ∂ f
∂ s (t,s)

∣∣∣
(t0,t0)

− ∂ f
∂ t (t,t)

∣∣∣
t0

6
.
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Following result is a improvement of theorem 1.2 in co-ordinated convex functions
setting.

THEOREM 2.1. Let D := [a1,b1]× [a1,b1] be a square in R
2 with a1 < b1 , and

the function f : D → R is continuous, and has continuous second order partial deriva-
tives on D◦ . Choose a,b ∈ (a1,b1) , with a < b, and let Δ := [a,b]× [a,b] . Suppose
that f is convex on the co-ordinates on Δ , then the function F : Δ → R defined by

F(x,y) :=

{
1

(y−x)2
∫ y
x

∫ y
x f (t,s)dtds, x �= y, x,y ∈ [a,b],

f (x,x), x = y, x,y ∈ [a,b],
(5)

is Schur-convex on Δ .

Proof. Case 1: If x,y ∈ [a,b] , with x = y . Then Lemma 2.1 implies that

(y− x)
(

∂F
∂y

− ∂F
∂x

)
= 0.

Case 2: If x,y ∈ [a,b] , with x �= y . Then by Lemma 1.2 we have

∂F
∂y

=
−2

(y− x)3

∫ y

x

∫ y

x
f (t,s)dtds

+
1

(y− x)2

(∫ y

x
f (t,y)dt +

∫ y

x
f (y,s)ds

)
,

and

∂F
∂x

=
2

(y− x)3

∫ y

x

∫ y

x
f (t,s)dtds

− 1
(y− x)2

(∫ y

x
f (t,x)dt +

∫ y

x
f (x,s)ds

)
.

Thus,

(y− x)
(

∂F
∂y

− ∂F
∂x

)
=

−4
(y− x)2

∫ y

x

∫ y

x
f (t,s)dtds

+
1

y− x

(∫ y

x

(
f (t,x)+ f (t,y)

)
dt

+
∫ y

x

(
f (x,s)+ f (y,s)

)
ds

)
.

Then, (y− x)
(∂F

∂y − ∂F
∂x

)
is nonnegative if

1
(y− x)2

∫ y

x

∫ y

x
f (t,s)dtds

� 1
4(y− x)

(∫ y

x

(
f (t,y)+ f (t,x)

)
dt +

(
f (y,s)+ f (x,s)

)
ds

)
.
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The last inequality follows from Theorem 1.4. Therefore, by Theorem 1.1 the function
F is Schur-convex. �

A consequence of theorem 1.2 is given in [5] as follows: If f > 0 on I and f ′
f is

convex (concave) then the function

F(x,y) =

{
log f (x)−log f (y)

x−y , x,y ∈ I, x �= y,
f ′(x)
f (x) , x = y ∈ I,

(6)

is Schur-convex (Schur-concave) on I2 . The following example show that for the func-
tion F(x,y) in (6) the function F2(x,y) is not Schur-convex and not Schur-concave in
general.

EXAMPLE 2.1. Consider the function f (t) := e
1
3 t3−t for −2 � t � 0. It is easy to

see that for the function F in (6), we have F(x,x) = x2 −1, for every x ∈ [−2,0] , and

F(x,y) =
1
3
(x2 + y2 + xy)−1,

for every x,y ∈ [−2,0] , with x �= y . Thus,

F(x,y) =
1
3
(x2 + y2 + xy)−1,

for every x,y ∈ [−2,0] . If x,y ∈ [−2,0] , we have

(
∂F2

∂y
− ∂F2

∂x

)
(y− x) =

2
3

(
y− x

)2
(

1
3
(x2 + y2 + xy)−1

)
.

Since −1 � 1
3 (x2 + y2 + xy)−1 � 3, then ( ∂F2

∂y − ∂F2

∂x )(y− x) has both positve values

and negative values. Therefore by Theorem 1.1 the function F2(x,y) is not Schur-
convex and not Schur-concave on [−2,0]× [−2,0] .

In the following corollary we give a condition in which the function F2(x,y) is
Schur-convex.

COROLLARY 2.1. Let f > 0 on interval I and f ∈C2(I) . Suppose that the func-

tion g : I2 → R defined by g(t,s) := f ′(t) f ′(s)
f (t) f (s) is convex on the co-ordinates (concave on

the co-ordinates) on I2 . Then the function

F2(x,y) :=

⎧⎪⎨
⎪⎩

(
log f (x)−log f (y)

x−y

)2
, x,y ∈ I, x �= y,(

f ′(x)
f (x)

)2
, x = y ∈ I,

is Schur-convex (Schur-concave) on I2 .
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Proof. Since the function g(t,s) is convex on the co-ordinates on I2 , the result
follows from Theorem 2.1. �

A generalized version of theorem 1.3 for co-ordinated convex functions is estab-
lished in the next theorem.

THEOREM 2.2. Let D := [a1,b1]× [a1,b1] be a square in R
2 with a1 < b1 , and

the function f : D→R is continuous, and has continuous third order partial derivatives
on D◦ . Choose a,b ∈ (a1,b1) , with a < b, and let Δ := [a,b]× [a,b] . Suppose that f
is convex on the co-ordinates on Δ , then the function G : Δ → R defined by

G(x,y) :=

{
1

(y−x)2
∫ y
x

∫ y
x f (t,s)dtds− f ( x+y

2 , x+y
2 ), x �= y, x,y ∈ [a,b],

0, x = y, x,y ∈ [a,b],
(7)

is Schur-convex on Δ .

Proof. Case 1: If x,y ∈ [a,b] , with x = y . Then Lemma 2.2 implies that

(y− x)
(

∂G
∂y

− ∂G
∂x

)
= 0

Case 2: If x,y ∈ [a,b] , with x �= y . Then by Lemma 1.2 we have

(y− x)
(

∂G
∂y

− ∂G
∂x

)
� 0,

if

1
(y− x)2

∫ y

x

∫ y

x
f (t,s)dtds

� 1
4(y− x)

(∫ y

x

(
f (t,y)+ f (t,x)

)
dt +

(
f (y,s)+ f (x,s)

)
ds

)
.

The result follows from Theorem 1.1 and Theorem 1.4. �

In the following example we show that the converse of theorem 2.1 is not true.

EXAMPLE 2.2. Consider the non co-ordinates convex function:

f (t,s) := t2 − 1
2
s2 ,t,s ∈ [1,2].

It is easy to see that for the function F in (5), F(x,x) = 1
2x2 , for every x ∈ [1,2] .

Moreover for every x,y ∈ [1,2] , with x �= y we have

F(x,y) =
1

(y− x)2

∫ y

x

∫ y

x
(t2 − 1

2
s2)dtds =

1
6
(x2 + y2 + xy).
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Thus,

F(x,y) =
1
6
(x2 + y2 + xy),

for every x,y ∈ [1,2] . Clearly F is symmetric, continuous and differentiable on [1,2]×
[1,2] .

If x,y ∈ [1,2] , we have

(y− x)
(

∂F
∂y

− ∂F
∂x

)
=

1
6
(y− x)2 � 0.

Therefore, by Theorem 1.1 the function F is Schur-convex.

The following remark show that the converse of theorem 1.4 is not valid in general.

REMARK 2.1. It is easy to see that for function f was defined in example 2.2 we
have:

f

(
x+ y

2
,
x+ y

2

)
� 1

2(y− x)

[∫ y

x
f

(
t,

x+ y
2

)
dt +

∫ y

x
f

(
x+ y

2
,s

)
ds

]

� 1
(y− x)2

∫ y

x

∫ y

x
f (t,s)dtds

� 1
4(y− x)

[∫ y

x
( f (t,x)dt + f (t,y))dt

+
∫ y

x
( f (x,s)ds+ f (y,s))ds

]

� f (x,x)+ f (x,y)+ f (y,x)+ f (y,y)
4

,

for every x,y ∈ [1,2] , with x �= y . This means that each of the inequalities in theorem
1.4 is valid while f is not convex on co-ordintes.

Finally the following example illustrates that the converse of theorem 2.2 is not
true in general.

EXAMPLE 2.3. Consider the non co-ordinated convex function:

f (t,s) :=
1
2
t2− 1

3
s2, t,s ∈ [0,1].

It is easy to see that for the function G in (7), G(x,x) = 0, for every x∈ [0,1] . Moreover
for every x,y ∈ [0,1] , with x �= y we have

G(x,y) =
1

(y− x)2

∫ y

x

∫ y

x

(
1
2
t2− 1

3
s2

)
dtds− 1

6

(
x+ y

2

)2

=
1
72

x2 +
1
72

y2− 1
36

xy.
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Thus,

G(x,y) =
1
72

x2 +
1
72

y2− 1
36

xy,

for every x,y∈ [0,1] . Clearly G is symmetric, continuous and differentiable on [0,1]×
[0,1] .

If x,y ∈ [0,1] , we have

(y− x)
(

∂G
∂y

− ∂G
∂x

)
=

1
18

(y− x)2 � 0.

Therefore, by Theorem 1.1 the function G is Schur-convex.
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[5] N. ELEZOVIĆ, J. PEČARIĆ, A note on Schur-convex functions, Rocky Mountain J. Math., 30 (3)

(2000), 853–856.
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