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MONOTONE ITERATIVE TECHNIQUE FOR S–ASYMPTOTICALLY

PERIODIC PROBLEM OF FRACTIONAL EVOLUTION

EQUATION WITH FINITE DELAY IN ORDERED BANACH SPACE

QIANG LI ∗ AND MEI WEI

(Communicated by L. Mihoković)

Abstract. In this paper, we devote to considering S -asymptotically periodic problem of frac-
tional evolution equation with delay in ordered Banach space. Under some weaker assumptions,
we construct monotone iterative method in the presence of the lower and upper solutions to
the delayed fractional evolution equation, and obtain the existence of maximal and minimal
S -asymptotically periodic mild solutions. Finally, we present two examples to illustrate the fea-
sibility of our abstract results.

1. Introduction

In this paper, we use a monotone iterative technique in the presence of the lower
and upper solutions to discuss the existence of the minimal and maximal S -asymptoti-
cally ω -periodic solutions to the following abstract fractional evolution equation{

cDq
t u(t)+Au(t) = F(t,u(t),ut), t � 0,

u(t) = ϕ(t), t ∈ [−r,0],
(1.1)

in the ordered Banach space E , where cDq
t is the Caputo fractional derivation of order

q ∈ (0,1) , A : D(A) ⊂ E → E is a closed linear operator, and −A generates a C0 -
semigroup T (t) (t � 0) in E , F : R

+×E ×B → E is a given function which will be
specified later, ϕ ∈ B ; r > 0 is a constant, and B := C([−r,0],E) denotes the space
of continuous functions from [−r,0] into E provided with the uniform norm topology.
For t � 0, ut denotes the history function defined by ut(s) = u(t + s) for s ∈ [−r,0] ,
where u is a continuous function from [−r,∞) into E .

In recent years, fractional calculus has attracted extensive attention from many
scholars in different fields, such as, mathematicians, physicists, and so on, see the
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monographs of Podlubny [43], Agrawal [1], Zhou [51, 52] and references therein. Com-
pared with integer-order calculus, the main advantage of fractional-order calculus is that
it can accurately describe the memory or genetic characteristics of various new mate-
rials, or better describe the process or behavior of real dynamic systems. In particular,
many scholars have found that in many practical applications, fractional derivatives of
time can more truthfully describe the process and phenomena of things’motion develop-
ment than integer derivatives. Since fractional evolution equations are abstract models
in many practical applications such as engineering and physics, the study of fractional
evolution equations has attracted more and more attention of mathematicians. There
have been some works on the existence of mild solutions for semilinear fractional evo-
lution equations, see [31, 4, 47, 20, 7, 48, 8, 9, 14, 15, 16] and the references therein.

It is well known that the periodic law of the development or movement of things
is a common phenomenon in nature and human activities. However, in real life, many
phenomena do not have strict periodicity. In order to better characterize these mathe-
matical models, many scholars have introduced other definitions of generalized period-
icity, such as almost periodicity, asymptotic periodicity, asymptotic almost periodicity,
pseudo almost periodicity and S -asymptotic periodicity. On the other hand, because
fractional derivative has genetic or memory properties, the solutions of periodic bound-
ary value problems of fractional differential equations can not be extended periodically
to time t in R

+ . In particular, Ren et al [44] have proved the nonexistence of nonzero
periodic solutions for Caputo type linear fractional evolution equation. Therefore, in
view of the existence of many generalized periodic phenomena and the advantages of
fractional derivatives in real life, such as memory and heredity, many papers focus on
these types of solutions of fractional differential equations. Since S -asymptotically pe-
riodic functions were first studied in Banach space by Henrı́quez et al. [27], there are
some papers about S -asymptotically periodic solutions for fractional evolution equa-
tions, one can refer to [18, 17, 42, 44, 34, 33].

As we all know, the monotone iteration technique of upper and lower solutions
is an effective and flexible mechanism. By using this method, not only the existence
theory of solutions can be obtained, but also the approximate iteration sequence of solu-
tions can be obtained, which provides a reasonable and effective theoretical basis for the
approximate solution of computers. In fact, the monotone sequences of the lower and
upper approximate solutions converge to the minimal and maximal solutions between
the lower and upper solutions. As early as the end of last century, Du and Lakshmikan-
tham [22], Sun and Zhao [46] studied the initial values of ordinary differential equations
by means of monotone iteration technique of upper and lower solutions. Later, Li [36]
applied lower and upper solutions method to periodic solution problems for semilin-
ear evolution equations without delay in abstract spaces, and obtained the existence of
maximal and minimal periodic mild solutions by using the characteristics of positive
operators semigroups and the monotone iteration scheme. For the abstract evolution
equations, there are more results involving monotone iterative techniques and operator
semigroups theory, we can see [13, 12, 11, 10, 32]. However, as far as we know, there
are few results for the fractional evolution equations S -asymptotically periodic prob-
lems with delay by using the method of the lower and upper solutions coupled with the
monotone iterative technique.
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Recently, in [38] we dealt with the second-order ordinary differential equation pe-
riodic problem with delay in Banach spaces. Under the conditions that the nonlinear
function satisfies quasi-monotonicity, the existence of the minimum and the maximum
periodic solutions are obtained by using the monotone iteration technique of the up-
per and lower solutions. In [39], with the help of positive operator semigroup theory
and monotone iterative technique of lower and upper solutions, we also obtained the
existence and uniqueness of periodic mild solutions of the abstract evolution equation
under some quasi-monotone conditions.

Motivated by the papers mentioned above, the purpose of this paper is to construct
the general principle for lower and upper solutions coupled with the monotone iterative
technique for the fractional evolution equations S -asymptotically periodic problems
with delay, and obtain the existence of maximal and minimal periodic mild solutions,
which will fill the research gap in this area.

The paper is organized as follows. In Section 2, we introduce some notions, defi-
nitions, and preliminary facts which are used throughout this paper. Under the different
assumptions, the existence results of the minimum and the maximum S -asymptotically
ω -periodic mild solutions of the problem (1.1) are given in Section 3. In Section 4, we
give two examples to illustrate our main results in Section 3.

2. Preliminaries

Throughout this paper, we assume that (E,‖ · ‖) is an ordered Banach space,
whose positive cone K = {u ∈ E|u � θ} is normal with normal constant N , θ is the
zero element of E .

Assume that A : D(A) ⊂ E → E is a closed linear operator and −A generates a
C0 -semigroup T (t) (t � 0) in E . Here, we only recall some notions and properties
that are essential for us. For a general C0 -semigroup T (t) (t � 0) , there exist M � 1
and ν ∈ R such that (see [41])

‖T (t)‖ � Meνt , t � 0. (2.1)

Specially, C0 -semigroup T (t)(t � 0) is called to be uniformly bounded,

‖T (t)‖ � M, t � 0. (2.2)

Let

ν0 = inf{ν ∈ R| There exists M � 1 such that ‖T (t)‖ � Meνt , ∀t � 0}, (2.3)

then ν0 is called the growth exponent of the C0 -semigroup T (t) (t � 0) . Moreover, if
ν0 < 0, then the C0 -semigroup T (t) (t � 0) is said to be exponentially stable. Clearly,
the exponentially stable C0 -semigroup T (t) (t � 0) is uniformly bounded.

DEFINITION 2.1. ([6]) If T (t)x � θ for each x � θ and t � 0, then C0 -semigroup
T (t) (t � 0) on E is said to be positive.

It is not difficult to find that −(A + LI) also generates a C0 -semigroup S(t) =
e−LtT (t)(t � 0) in E for any L � 0. And S(t)(t � 0) is a positive C0 -semigroup if
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T (t) (t � 0) is positive. For more details of the properties of the C0 -semigroups and
the positive C0 -semigroup, we can refer to the monographs [40, 45] and the paper [35].

Now, we recall some basic definitions and properties of the fractional calculus
theory which are used in this paper.

DEFINITION 2.2. ([29]) The fractional integral of order q∈ (0,1) with the lower
limit zero for a function f is defined as

Iq
t f (t) =

1
Γ(q)

∫ t

0
(t − s)q−1 f (s)ds, t > 0,

where Γ(·) is the gamma function.

DEFINITION 2.3. ([30]) The Caputo derivative of order q ∈ (0,1) with the lower
limit zero for a function f ∈C1[0,∞) is defined as

cDq
t f (t) =

1
Γ(1−q)

∫ t

0
(t − s)−q f ′(s)ds, t > 0.

REMARK. If f is an abstract function with values in E , then the integrals which
appear in Definition 2.2 and 2.3 are taken in Bochner’s sense.

Define operators T(t)(t � 0) and S(t)(t � 0) in E as following

T(t) =
∫ ∞

0
ξq(s)T (tqs)ds, S(t) = q

∫ ∞

0
sξq(s)T (tqs)ds, (2.4)

where

ξq(s) =
1

πq

∞

∑
n=1

(−s)n−1 Γ(nq+1)
n!

sin(nπq), s ∈ (0,∞) (2.5)

is a probability density function defined on (0,∞) , which satisfies

ξq(s) � 0,s ∈ (0,∞),
∫ ∞

0
ξq(s)ds = 1,

∫ ∞

0
sξq(s)ds =

1
Γ(1+q)

.

LEMMA 2.4. The operators T(t)(t � 0) and S(t)(t � 0) defined by (2.4) have
the following properties:

(i) If T (t) (t � 0) is a uniformly bounded C0 -semigroup, then T(t) and S(t) are
linear and bounded operators for any fixed t ∈ R

+ , i.e,

‖T(t)x‖ � M‖x‖, ‖S(t)x‖ � M
Γ(q)

‖x‖, ∀ x ∈ E. (2.6)

(ii) If T (t) (t � 0) is a C0 -semigroup, then T(t)(t � 0) and S(t)(t � 0) are
strongly continuous operators, which means that for any x ∈ E and 0 � t1 � t2 ,

‖T(t2)x−T(t1)x‖ → 0 and ‖S(t2)x−S(t1)x‖ → 0 as t2 − t1 → 0.

(iii) If T (t) is a compact semigroup, then T(t) and S(t) are compact operators
for every t > 0 .
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(iv) If T (t) is an equicontinuous semigroup, then T(t) and S(t) are uniformly
continuous for t > 0 .

(v) If T (t) is a positive C0 -semigroup, then T(t) and S(t) are positive operators.

Proof. For the proof of (i)–(iii), one can refer to [50, 23, 48]. We only check (iv)
and (v) as follows.

(iv) For any 0 < t1 < t2 , it is easy to see

‖T(t2)−T(t1)‖ �
∫ ∞

0
ξq(s)‖T (tq2 s)−T (tq1 s)‖ds,

and

‖S(t2)−S(t1)‖ � q
∫ ∞

0
sξq(s)‖T (tq2 s)−T (tq1s)‖ds.

Since T (t) (t � 0) is an equicontinuous semigroup, and for any 0 < t1 < t2 and s � 0,

‖T (tq2s)−T (tq1 s)‖ � 2M,

then by the Lebesgue dominated convergence theorem and the properties of the function
ξq(s) , one can deduce that T(t) and S(t) are uniformly continuous by operator norm
for t > 0.

(v) From (2.4), the positivity of the semigroup T (t) (t � 0) and the function ξq(s)
defined by (2.5), it follows that T(t)(t � 0) and S(t)(t � 0) are also positive.

This completes the proof of Lemma 2.4. �

LEMMA 2.5. ([28]) Assume that −A generates an exponentially stable C0 -semi-
group T (t)(t � 0) in E , whose growth exponent denotes ν0 < 0 . Let

m = Mmax{sup
t�0

Eq(ν0t
q)(1+ t)q,sup

t�0
Eq,q(ν0t

q)(1+ t)2q}, (2.7)

where Eq and Eq,q are the Mittag-Leffler functions. Then

‖T(t)‖ � m
(1+ t)q , ‖S(t)‖ � m

(1+ t)2q , t ∈ R
+. (2.8)

REMARK. For the definitions and properties of the Mittag-Leffler functions, we
can refer to [29] and references therein.

Next, let Cb(R+,E) denote the Banach space of all bounded and continuous
functions from R

+ to E equipped with the norm ‖u‖C = supt∈R+ ‖u(t)‖ , and let
B = C([−r,0],E) denote the space of continuous functions from [−r,0] into E en-
dowed with the uniform norm ‖φ‖B = sups∈[−r,0]‖φ(s)‖ , where r > 0 is a constant.

DEFINITION 2.6. ([27]) A function u ∈ Cb(R+,E) is called S -asymptotically
ω -periodic if there exists ω > 0 such that lim

t→∞
‖u(t + ω)−u(t)‖ = 0. In this case, we

say that ω is an asymptotic periodic of u . It is clear that if ω is an asymptotic period
for u , then every kω , k = 1,2, · · · , is also an asymptotic period of u .
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Let SAPω(E) represent the subspace of Cb(R+,E) consisting of all the E -value
S -asymptotically ω -periodic functions endowed with the uniform convergence norm
denoted by ‖ · ‖C . Then SAPω(E) is a Banach space (see [27, Proposition 3.5]). If
u ∈ SAPω(E) , then it is not difficult to test and verify that the function t → ut belongs
to SAPω(B) (see [34, 33]).

For the rest of this paper, we define

Ω := {u ∈C([−r,∞),E)| u|[−r,0] ∈ B and u|R+ ∈ SAPω(E)}.
It is easy to see that Ω is a Banach space equipped with the norm

‖u‖Ω = sup
t∈[−r,∞)

‖u(t)‖.

Define a positive cone KΩ by

KΩ = {u ∈ Ω| u(t) ∈ K, t ∈ [−r,∞)},
then Ω is an ordered Banach spaces with the partial order relation “ � ” induced by
the cone KΩ , and KΩ is normal with the normal constant N . Similarly, B is also
an order Banach space whose partial ordering “ � ” induced by a positive cone KB =
{φ ∈ B|φ(s) ∈ K,s ∈ [−r,0]} with the normal constant N . For v,w ∈ Ω with v � w ,
we use [v,w] to denote the order interval {u|v � u � w} in Ω , moreover, [v(t),w(t)]
and [vt ,wt ] to denote the order intervals {u(t)|v(t) � u(t) � w(t),t ∈ [−r,∞)} in E and
{ut |vt � ut � wt , t � 0} in B , respectively. Set

Cq(R+,E) = {u ∈C(R+,E)|cDq
t u exists and cDq

t u ∈C(R+,E)}.
By E1 , we denote the Banach space D(A) with the graph norm ‖ · ‖1 = ‖ · ‖+‖A · ‖ .

DEFINITION 2.7. If a function v ∈ Ω with v|R+ ∈Cq(R+,E)∩C(R+,E1) , satis-
fies {

cDq
t v(t)+Av(t) � F(t,v(t),vt), t � 0,

v(t) � ϕ(t), t ∈ [−r,0],
(2.9)

then v is called a lower S -asymptotically ω -periodic solution of Eq. (1.1). If the
inequality of (2.9) is inverse, we call it an upper S -asymptotically ω -periodic solution
of Eq. (1.1).

Now, we give the definition of the mild solution for the equation (1.1) as follows.

DEFINITION 2.8. A function u : [−r,∞) → E is said to be a mild solution of the
problem (1.1) if u ∈C([−r,∞),E) and satisfies

u(t) =

⎧⎨⎩T(t)ϕ(0)+
∫ t

0
(t − s)q−1S(t− s)F(s,u(s),us)ds, t � 0,

ϕ(t), t ∈ [−r,0].
(2.10)

Moreover, if u ∈ Ω , then u is called S -asymptotically ω -periodic mild solution of Eq.
(1.1).
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Next, we recall some properties of measure of noncompactness which will be
used in the proof of our main results. Let α(·) denote the Kuratowski measure of
noncompactness of the bounded set. For any D⊂C([a,b],E) and t ∈ [a,b] , set D(t) =
{u(t)|u ∈ D} ⊂ E . If D is bounded in C([a,b],E) , then D(t) is bounded in E , and
α(D(t)) � α(D) . For more details of the definition and properties of the measure of
noncompactness, we refer to the monographs [5, 19, 24].

LEMMA 2.9. ([5, 24, 25]) Let E be a Banach space and let D ⊂C([a,b],E) be
bounded and equicontinuous. Then α(D(t)) is continuous on [a,b] , and

α(D) = max
t∈[a,b]

α(D(t)).

LEMMA 2.10. ([26]) Let E be a Banach space, D = {un} ⊂ C([a,b],E) be a
bounded and countable set. Then α(D(t)) is Lebesgue integrable on [a,b] , and

α
({∫ b

a
un(s)ds

})
� 2

∫ b

a
α(D(t))dt.

The following lemma is also needed.

LEMMA 2.11. ([49]) Assume that f (t) is a nonnegative function locally inte-
grable on 0 � t < Λ(some Λ � ∞), g(t) is a nonnegative, nondecreasing continuous
bounded function on 0 � t < Λ , p,q > 0 . Suppose that h(t) is nonnegative and locally
integrable on 0 � t < Λ with

h(t) � f (t)+g(t)
∫ t

0
(t − s)q−1h(s)ds.

Then,

h(t) � f (t)+
∫ t

0

( ∞

∑
n=1

(g(t)Γ(q))n

Γ(nq)
(t − s)nq−1 f (s)

)
ds.

3. Main results

THEOREM 3.1. Let E be an ordered Banach space, whose positive cone K is a
normal cone, let A : D(A) ⊂ E → E be a closed linear operator and −A generate a
positive and compact semigroup T (t) (t � 0) in E , whose growth exponent denotes
by ν0 . Assume that ω > 0 is a constant and the problem (1.1) has lower and upper
S-asymptotically ω -periodic solutions v(0),w(0) ∈ Ω with v(0) � w(0) . If the nonlinear
function F : R

+×E×B → E is continuous and satisfies the following conditions
(H1) for any bounded sets D⊂ E , D ⊂B , the set {F(t,x,φ)|t � 0,x∈D,φ ∈D}

is bounded, and
lim
t→∞

‖F(t + ω ,x,φ)−F(t,x,φ)‖ = 0

for all x ∈ E , φ ∈ B ,
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(H2) there exists a constant L � 0 such that

F(t,x2,φ2)−F(t,x1,φ1) � −L(x2 − x1)

for any t ∈ R
+ and v(0)(t) � x1 � x2 � w(0)(t) , v(0)

t � φ1 � φ2 � w(0)
t ,

then the problem (1.1) has minimal and maximal S-asymptotically ω -periodic mild
solutions u,u between v(0) and w(0) , which can be obtained by monotone iterative
sequences starting from v(0) and w(0) .

Proof. Obviously, the problem (1.1) is equal to the following problem{
cDq

t u(t)+Au(t)+Lu(t) = F(t,u(t),ut)+Lu(t), t � 0,

u(t) = ϕ(t), t ∈ [−r,0],
(3.1)

where the constant L is decided by the condition (H2).
Let L > |ν0| (otherwise replace L with L + |ν0|), then −(A+ LI) generates an

exponentially stable C0 -semigroup S(t) = e−LtT (t)(t � 0) in E , whose growth expo-
nent is μ0 := −L+ν0 < 0. Moreover, it is easy to see that S(t)(t � 0) is a positive and
compact C0 -semigroup since the semigroup T (t) (t � 0) is positive and compact. Let
M = supt�0 ‖S(t)‖ and

m = Mmax{sup
t�0

Eq(μ0t
q)(1+ t)q,sup

t�0
Eq,q(μ0t

q)(1+ t)2q}. (3.2)

We define two operators T (t)(t � 0) and S (t)(t � 0) by

T (t)x =
∫ ∞

0
ξq(s)S(tqs)xds, S (t)x = q

∫ ∞

0
sξq(s)S(tqs)xds, (3.3)

where x∈E and ξq(s) is the function defined by (2.6). Thus, the operators T (t)(t � 0)
and S (t)(t � 0) have the properties (i)–(v) in Lemma 2.4. Moreover, from Lemma 2.5,
it follows that for any t � 0 ,

‖T (t)‖ � m
(1+ t)q , ‖S (t)‖ � m

(1+ t)2q . (3.4)

For each u ∈ [v(0),w(0)] , it is easy to see that ut ∈ [v(0)
t ,w(0)

t ] ⊂ SAPω(B) for any
t � 0. Now, we define an operator Q on [v(0),w(0)] as following

Qu(t) =

⎧⎨⎩T (t)ϕ(0)+
∫ t

0
(t− s)q−1S (t− s) ·

(
F(s,u(s),us)+Lu(s)

)
ds, t � 0,

ϕ(t), t ∈ [−r,0].
(3.5)

By the normality of the cone K , the conditions (H1) and (H2), we find that for any
u ∈ [v(0),w(0)] , there exists a constant M0 such that

sup
t�0

{‖F(t,u(t),ut)‖+L‖u(t)‖}� M0. (3.6)
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From (3.3), it follows that∥∥∥∫ t

0
(t− s)q−1S (t− s) ·

(
F(s,u(s),us)+Lu(s)

)
ds

∥∥∥
�

∫ t

0
(t− s)q−1‖S (t − s)‖ ·

∥∥∥F(s,u(s),us)+Lu(s)
∥∥∥ds

� qM0M
∫ t

0

∫ ∞

0
σξq(σ)(t − s)q−1eμ0(t−s)qσ dσds

� M0M
∫ ∞

0
ξq(σ)dσ

∫ ∞

0
eμ0sds =

M0M
|μ0| , (3.7)

Thus, one can find that Q : [v(0),w(0)] →C([−r,∞),E) is well defined. Therefore, by
Definition 2.8, (3.1) and (3.5), we can assert u ∈ [v(0),w(0)] is an S -asymptotically
ω -periodic mild solution of the problem (1.1) if and only if u is a fixed point of the
operator Q .

Now, we complete the proof by five steps.
Step 1. We prove that Q([v(0),w(0)]) ⊂ Ω .
For any u ∈ [v(0),w(0)] , it is clear that Qu is defined on [−r,∞) , and because

ϕ ∈ B , we have Qu|[−r,0] ∈ B . Thus it suffices to show that the function

f : t → T (t)ϕ(0)+
∫ t

0
(t− s)q−1S (t− s) ·

(
F(s,u(s),us)+Lu(s)

)
ds ∈ SAPω(E).

Since u|R+ ∈ SAPω(E) and ut ∈ SAPω(B) for all t � 0, hence, for any ε > 0, there
exists a constant tε,1 > 0 such that ‖u(t + ω)− u(t)‖ � ε and ‖ut+ω − ut‖B � ε for
every t � tε,1 . Thus, by the condition (H1), for t � tε,1 , we have

‖F(t,u(t + ω),ut+ω)+Lu(t + ω)−F(t,u(t),ut)−Lu(t)‖ � |μ0|
2M

ε, (3.8)

and we can find a positive constant tε,2 sufficiently large such that for t � tε,2 ,

‖F(t+ω ,u(t+ω),ut+ω)+Lu(t+ω)−F(t,u(t+ω),ut+ω)−Lu(t+ω)‖ � |μ0|
2M

ε. (3.9)

Then for t > tε := max{tε,1,tε,2} , from (3.5), it follows that

f (t + ω)− f (t)

= T (t + ω)ϕ(0)+
∫ t+ω

0
(t + ω − s)q−1S (t + ω − s) ·

(
F(s,u(s),us)+Lu(s)

)
ds

−T (t)ϕ(0)−
∫ t

0
(t− s)q−1S (t− s) ·

(
F(s,u(s),us)+Lu(s)

)
ds

= T (t + ω)ϕ(0)−T (t)ϕ(0)

+
∫ ω

0
(t + ω − s)q−1S (t + ω − s)

(
F(s,u(s),us)+Lu(s)

)
ds
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+
∫ t

0
(t− s)q−1S (t− s) ·

(
F(s+ ω ,u(s+ ω),us+ω)+Lu(s+ ω)

−F(s,u(s),us)−Lu(s)
)
ds

:= I1(t)+ I2(t)+ I3(t).

Then
‖ f (t + ω)− f (t)‖� ‖I1(t)‖+‖I2(t)‖+‖I3(t)‖. (3.10)

By (3.4) and (3.6), we have

‖I1(t)‖ � ‖T (t + ω)ϕ(0)‖+‖T (t)ϕ(0)‖
� (‖T (t + ω)‖+‖T (t)‖) · ‖ϕ‖B

� 2m‖ϕ‖B

(1+ t)q ,

‖I2(t)‖ �
∫ ω

0
(t + ω − s)q−1‖S (t + ω − s)‖ ·

∥∥∥F(s,u(s),us)+Lu(s)
∥∥∥ds

�
∫ ω

0
(t + ω − s)q−1 · mM0

(1+ t + ω − s)2q ds

� mM0((t + ω)q− tq)
q(1+ t)2q

� mM0ωq

q(1+ t)2q ,

hence, we deduce that ‖I1‖,‖I2‖ tend to 0 as t → ∞ . By (3.4) and (3.6)–(3.9), we
obtain

‖I3(t)‖ �
∫ t

0
(t − s)q−1‖S (t− s)‖ ·

∥∥∥F(s+ ω ,u(s+ ω),us+ω)+Lu(s+ ω)

−F(s,u(s+ ω),us+ω)−Lu(s+ ω)
∥∥∥ds

+
∫ t

0
(t − s)q−1‖S (t− s)‖ ·

∥∥∥F(s,u(s+ ω),us+ω)+Lu(s+ ω)

−F(s,u(s),us)−Lu(s)
∥∥∥ds

� 4M0

∫ tε

0

(t− s)q−1m
(1+ t− s)2q ds+

∫ t

tε
(t− s)q−1‖S (t− s)‖ds

|μ0|ε
M

� 4mM0

∫ tε

0
(t− s)−q−1ds+

∫ t

0
(t − s)q−1‖S (t− s)‖ds

|μ0|ε
M

� 4mM0
(t − tε)−q− t−q

q
+ ε,

which implies that ‖I3(t)‖ tends to 0 as t → ∞ .
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Thus, from the above results, we can deduce that

t → T (t)ϕ(0)+
∫ t

0
(t − s)q−1S (t − s) ·

(
F(s,u(s),us)+Lu(s)

)
ds ∈ SAPω(E).

Combining this with the definition of Q , we can conclude that Qu ∈ Ω for any u ∈
[v(0),w(0)] , which implies that Q([v(0),w(0)]) ⊂ Ω .

Step 2. We show that Q : [v(0),w(0)]→ [v(0),w(0)] is a monotone increasing oper-
ator.

On the one hand, let

cDq
t v

(0)(t)+Av(0)(t)+Lv(0)(t) := h(t), t � 0.

By Definition 2.7, Definition 2.8, and the positivity of operators T (t) and S (t) , for
t � 0, one can obtain that

v(0)(t) = T (t)v(0)(0)+
∫ t

0
(t − s)q−1S (t − s)h(s)ds

� T (t)ϕ(0)+
∫ t

0
(t− s)q−1S (t− s)

(
F(s,v(0)(s),v(0)

s )+Lv(0)(s)
)
ds

= Qv(0)(t),

and v(0)(t) � ϕ(t) for t ∈ [−r,0] , which imply that v(0) � Qv(0) . Similarly, we can
show that Qw(0) � w(0) .

On the other hand for any u(1),u(2) ∈ [v(0),w(0)] with u(1) � u(2) and t � 0, we

have v(0)(t) � u(1)(t) � u(2)(t) � w(0)(t) , v(0)
t � u(1)

t � u(2)
t � w(0)

t . From the condition
(H2), we obtain that

F(t,u(2)(t),u(2)
t )+Lu(2)(t) � F(t,u(1)(t),u(1)

t )+Lu(1)(t).

Thus, by means of the positivity of the operator S (t)(t � 0) , one has∫ t

0
(t − s)q−1S (t− s)

(
F(s,u(2)(s),u(2)

s )+Lu(2)(s)
)
ds

�
∫ t

0
(t − s)q−1S (t− s)

(
F(s,u(1)(s),u(1)

s )+Lu(1)(s)
)
ds.

Therefor, by (3.5) and the positivity of the operator T (t)(t � 0) , we can obtain that
Qu(1) � Qu(2) .

Hence, Q : [v(0),w(0)] → [v(0),w(0)] is a monotone increasing operator.
Now, we define two sequences {v(i)} and {w(i)} in [v(0),w(0)] by the iterative

scheme
v(i) = Qv(i−1), w(i) = Qw(i−1), i = 1,2, · · · . (3.11)

Then from the monotonicity of the operator Q , it follows that

v(0) � v(1) � v(2) � · · · � v(i) � · · · � w(i) � · · · � w(2) � w(1) � w(0). (3.12)
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Step 3. We show that {v(i)},{w(i)} ⊂ [v(0),w(0)] are equicontinuous in [−r,∞) .
In fact, for any u ∈ [v(0),w(0)] , by (3.5), we only consider it on [0,∞) . Without

loss of generality, we may assume that 0 � t1 < t2 . By (3.5), one can see

‖Qu(t2)−Qu(t1)‖

=
∥∥∥T (t2)u(0)+

∫ t2

0
(t2 − s)q−1S (t2 − s) ·

(
F(s,u(s),us)+Lu(s)

)
ds

−T (t1)u(0)−
∫ t1

0
(t1− s)q−1S (t1 − s) ·

(
F(s,u(s),us)+Lu(s)

)
ds

∥∥∥
� ‖T (t2)u(0)−T (t1)u(0)‖

+
∫ t1

0
((t2− s)q−1− (t1− s)q−1) · ‖S (t2− s)‖ ·

∥∥∥F(s,u(s),us)+Lu(s)
∥∥∥ds

+
∫ t1

0
(t1− s)q−1 · ‖S (t2 − s)−S (t1 − s)‖ ·

∥∥∥F(s,u(s),us)+Lu(s)
∥∥∥ds

+
∫ t2

t1
(t2− s)q−1 · ‖S (t2 − s)‖ ·

∥∥∥F(s,u(s),us)+Lu(s)
∥∥∥ds

:= J1 + J2 + J3 + J4.

Next, we check ‖Ji‖ tend to 0 independently of u ∈ [v(0),w(0)] as t2 − t1 → 0, i =
1,2,3,4. By Lemma 2.4 (ii), it is easy to see that J1 → 0 as t2 − t1 → 0. By (3.4) and
(3.6) , we can obtain

J2 =
∫ t1

0
((t2 − s)q−1− (t1− s)q−1) · ‖S (t2− s)‖ ·

∥∥∥F(s,u(s),us)+Lu(s)
∥∥∥ds

� mM0

∫ t1

0

(t1 − s)q−1− (t2− s)q−1

(1+ t2− s)2q ds

� mM0

(1+ t2− t1)2q

(
tq1 − tq2 +(t2− t1)q

)
� 2mM0(t2 − t1)q

→ 0 as t2− t1 → 0.

If t1 = 0 and t2 > 0, then it easy to see that J3 = 0. For t1 > 0 and ε > 0 small enough,
by (3.4), (3.6) and Lemma 2.4 (iv), we get that

J3 =
∫ t1

0
(t1 − s)q−1 · ‖S (t2 − s)−S (t1− s)‖ ·

∥∥∥F(s,u(s),us)+Lu(s)
∥∥∥ds

� M0

∫ t1−ε

0
(t1 − s)q−1 · ‖S (t2 − s)−S (t1− s)‖ds

+M0

∫ t1

t1−ε
(t1− s)q−1 · ‖S (t2 − s)−S (t1 − s)‖ds
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� sup
s∈[0,t1−ε]

‖S (t2 − s)−S (t1 − s)‖ ·M0

∫ t1−ε

0
(t1 − s)q−1ds

+2mM0

∫ t1

t1−ε
(t1 − s)q−1ds

� sup
s∈[0,t1−ε]

‖S (t2 − s)−S (t1 − s)‖ · M0(t
q
1 − εq)
q

+
2mM0εq

q

→ 0 as t2− t1 → 0.

Finally, from (3.4) and (3.6), we have

J4 � mM0

∫ t2

t1
(t2 − s)q−1ds =

mM0

q
(t2 − t1)q → 0 as t2 − t1 → 0.

As a result, ‖Qu(t2)−Qu(t1)‖ tends to 0 independently of u∈ [v(0),w(0)] as t2− t1 →
0, which means that Q : [v(0),w(0)] → [v(0),w(0)] is equicontinuous.

Step 4. {v(i)} and {w(i)} are convergent in Ω .
For any a ∈ (0,∞) , restrict {v(i)} to interval [−r,a] , then {v(i)} is a bounded set

of C([−r,a],E) . Let V = {v(i)} and V0 = V ∪{v(0)} , obviously, V (t) = (QV0)(t) for
t ∈ [−r,a] .

In view of the fact that v(i)(t) = ϕ(t) for t ∈ [−r,0] , thus, {v(i)(t)} is relatively
compact on E for t ∈ [−r,0] . For ∀ ε ∈ (0,t) and ∀ δ > 0, we define a set Qε,δV0(t)
by

Qε,δV0(t) := {Qε,δ v(i)(t) | v(i) ∈V0, t ∈ [0,a]}, (3.13)

where

Qε,δ v(i)(t) = T (t)v(i−1)(0)+q
∫ t−ε

0

∫ ∞

δ
τ(t − s)q−1ξq(τ)S((t − s)qτ)

·
(
F(s,v(i−1)(s),v(i−1)

s )+Lv(i−1)(s)
)
dτds

= T (t)v(i−1)(0)+qS(εqδ )
∫ t−ε

0

∫ ∞

δ
τ(t − s)q−1ξq(τ)S((t − s)qτ − εqδ )

·
(
F(s,v(i−1)(s),v(i−1)

s )+Lv(i−1)(s)
)
dτds.

Then from the compactness of T (t) and S(εqδ ) , we obtain that the set Qε,δV0(t) is
relatively compact in E for ∀ ε ∈ (0,t) and ∀ δ > 0. Moreover, for every v(i) ∈V0 and
t ∈ [0,a] , from the following inequality

‖Qv(i)(t)−Qε,δ v(i)(t)‖

�
∥∥∥q

∫ t

0

∫ δ

0
τ(t − s)q−1ξq(τ)S((t− s)qτ) ·

(
F(s,v(i−1)(s),v(i−1)

s )

+Lv(i−1)(s)
)
dτds

∥∥∥



534 Q. LI AND M. WEI

+
∥∥∥q

∫ t

t−ε

∫ ∞

δ
τ(t− s)q−1ξq(τ)S((t− s)qτ) ·

(
F(s,v(i−1)(s),v(i−1)

s )

+Lv(i−1)(s)
)
dτds

∥∥∥
� qMM0

∫ t

0
(t− s)q−1ds

∫ δ

0
τξq(τ)dτ +qMM0

∫ t

t−ε
(t− s)q−1ds

∫ ∞

δ
τξq(τ)dτ

� MM0t
q
∫ δ

0
τξq(τ)dτ +

MM0

Γ(1+q)
εq

→ 0 as ε → 0,δ → 0,

one can obtain that the set (QV0)(t) is relatively compact, which implies that {v(i)(t)}
is relatively compact on E for t ∈ [0,a] . Thus, we have proved that {v(i)(t)} is rela-
tively compact on E for t ∈ [−r,a] .

Therefore, {v(i)} is relatively compact in C([−r,a],E) by the Arzela-Ascoli The-
orem, which implies that there is convergent subsequence in {v(i)} . Combining this
with the monotonicity and the normality of the cone, we can easily prove that {v(i)}
themselves is convergent, i.e., there is u ∈C([−r,a],E) such that lim

i→∞
v(i)(t) = u(t) for

t ∈ [−r,a] . According to the arbitrariness of a , one can find that u(t) is defined on
[−r,∞) . On the other hand, it is easy to see lim

t→∞
‖u(t + ω)− u(t)‖ . Hence, we can

deduce that there is u ∈ Ω such that lim
i→∞

v(i) = u . Similarly, it can be shown that there

is u ∈ Ω such that lim
i→∞

w(i) = u .

Taking limit in (3.11), we have

u = Qu, u = Qu. (3.14)

Therefore u,u∈Ω are fixed points of Q , and they are the S -asymptotically ω -periodic
mild solution of the problem (1.1).

Step 5. We prove the minimal and maximal properties of u,u .
Assume that ũ is a fixed point of Q with ũ ∈ [v0,w0] , then for every t ∈ [−r,∞) ,

v(0)(t) � ũ(t) � w(0)(t) , and

v(1)(t) = (Qv(0))(t) � (Qũ)(t) = ũ(t) � (Qw(0))(t) = w(1)(t), (3.15)

namely, v(1) � ũ � w(1) . In general

v(i) � ũ � w(i), i = 1,2, · · · . (3.16)

Taking limit in (3.16) as i → ∞ , we get u � ũ � u . Therefore u,u are minimal and
maximal S -asymptotically ω -periodic mild solutions of the problem (1.1), and u,u
can be obtained by the iterative sequences defined in (3.11) starting from v0 and w0

respectively. This completes the proof of Theorem 3.1. �
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THEOREM 3.2. Let E be an ordered Banach space, whose positive cone K is
a normal cone; let A : D(A) ⊂ E → E be a closed linear operator and −A generate
a positive equicontinuous C0 -semigroup T (t) (t � 0) in E whose growth exponent
denotes by ν0 . Assume that ω > 0 is a constant and the problem (1.1) has lower
and upper S-asymptotically ω -periodic solutions v(0),w(0) ∈ Ω with v(0) � w(0) . If
the nonlinear function F : R

+×E ×B → E is continuous and satisfies the conditions
(H1), (H2) and the following condition

(H3) There exists a constant C > 0 such that for all t � 0 and monotonic se-
quences {u(i)} ⊂ [v(0),w(0)] ,

α({F(t,u(i)(t),u(i)
t )+Lu(i)(t)}) � C(α({u(i)(t)})+ sup

s∈[−r,0]
α({u(i)

t (s)})),

then the problem (1.1) has minimal and maximal S-asymptotically ω -periodic mild
solutions u,u between v(0) and w(0) , which can be obtained by monotone iterative
sequences starting from v(0) and w(0) respectively.

Proof. Let Q be defined by (3.5). From the proof of Theorem 3.1, we know
that Q : [v(0),w(0)] → [v(0),w(0)] is a continuous increasing operator and v(0) � Qv(0) ,
Qw(0) � w(0) . Hence, the iterative sequences v(i) and w(i) defined by (3.11) satisfy
(3.12). By T (t) (t � 0) is an equicontinuous C0 -semigroup, it follows that S(t)(t � 0)
is also an equicontinuous C0 -semigroup. From the proof of Theorem 3.1, we obtain
that {v(i)}, {w(i)} are bounded and equicontinuous in t ∈ [−r,∞) .

Next, we show that {v(i)}, {w(i)} are convergent in Ω .
For ∀ a > 0, restrict {v(i)} to interval [−r,a] , then {v(i)} is a bounded set on

set C([−r,a],E) . Hence α({v(i)}(t)) is continuous on [−r,a] and from v(i)(t) =
Qv(i−1)(t) = ϕ(t), t ∈ [−r,0] , it follows that α({v(i)}(t)) = 0 for t ∈ [−r,0] . For
every t ∈ [0,a] , one can see

sup
s∈[−r,0]

α({v(i)
t (s)}) = sup

s∈[−r,0]
α({v(i)(t + s)}) � α({v(i)(t)}). (3.17)

Therefore, for t ∈ [0,a] , taking condition (H3), Lemma 2.10 and (3.17), we can obtain
that

α({v(i)(t)}) = α({Qv(i−1)(t)})
= α

({
T (t)ϕ(0)+

∫ t

0
(t − s)q−1S (t− s) · (F(s,v(i−1)(s),v(i−1)

s )+Lv(i−1)(s))ds
})

� 2
∫ t

0
(t − s)q−1‖S (t− s)‖ ·α

({
F(s,v(i−1)(s),v(i−1)

s )+Lv(i−1)(s)
})

ds

� 2C
∫ t

0
(t− s)q−1‖S (t − s)‖ ·

(
α(v(i−1)(s))+ sup

τ∈[−r,0]
α(v(i−1)

s (τ))
)
ds

� 4Cm
∫ t

0
(t − s)q−1α(v(i)(s))ds.
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Hence, from Lemma 2.11, it follows that α({v(i)(t)}) ≡ 0 on [0,a] . Thus, we can
deduce that α({v(i)(t)}) ≡ 0 on [−r,a] .

By uniform boundedness and equicontinuous of {v(i)} on [−r,a] , {v(i)} is rela-
tively compact in C([−r,a],E) , hence, there is convergent subsequence in {v(i)} . Com-
bining this with the monotonicity and the normality of the cone, we can easily prove
that {v(i)} itself is convergent, which means that there is u ∈ C([−r,a],E) such that
lim
i→∞

v(i)(t) = u(t) for t ∈ [−r,a] . According to the arbitrariness of a , u(t) is defined on

[−r,∞) , and lim
t→∞

‖u(t +ω)−u(t)‖ , which implies that u ∈ Ω . Similarly, we can prove

that there exists u ∈ Ω satisfying lim
i→∞

w(i)(t) = u(t) for t ∈ [−r,∞) .

Therefore, from the proof of Theorem 3.1, u,u are the minimal and maximal S -
asymptotically ω -periodic mild solutions of the problem (1.1), which can be obtained
by monotone iterative sequences starting from v(0) and w(0) . This completes the proof
of Theorem 3.2. �

THEOREM 3.3. Let E be an ordered and weakly sequentially complete Banach
space, whose positive cone K is normal, let A : D(A) ⊂ E → E be a closed linear
operator and −A generate a positive equicontinuous C0 -semigroup T (t) (t � 0) in
E whose growth exponent denotes by ν0 . Assume that ω > 0 is a constant and the
problem (1.1) has lower and upper S-asymptotically ω -periodic solutions v(0),w(0) ∈
Ω with v(0) � w(0) . If the nonlinear function F : R

+ ×E ×B → E is continuous and
satisfies the conditions (H1) and (H2), then the problem (3.1) has minimal and maximal
S-asymptotically ω -periodic mild solutions u,u ∈ [v0,w0] .

Proof. From the proof of Theorem 3.1, it follows that the iterative sequences {vi}
and {wi} defined by (3.11) satisfy (3.12). Hence, for any t ∈ [−r,∞) , {v(i)(t)} and
{w(i)(t)} are monotone and order-bounded sequences in E . Noticing that E is a
weakly sequentially complete Banach space, from Theorem 2.2 in [21], one can get
that {v(i)(t)} and{w(i)(t)} are precompact in E for any t ∈ [−r,∞) . Combining this
with the monotonicity (3.12), it follows that {v(i)(t)} and{w(i)(t)} are uniformly con-
vergent in E . Denote

u(t) = lim
i→∞

v(i)(t), u(t) = lim
i→∞

w(i)(t), t ∈ [−r,∞). (3.18)

Obviously, {v(i)(t)} , {w(i)(t)} ⊂ Ω , and v(0)(t) � u(t) � u(t) � w(0)(t)(t ∈ [−r,∞)) .
Moreover, by (3.5), we have

v(i)(t) = Qv(i−1)(t)

=

⎧⎪⎪⎨⎪⎪⎩
T (t)ϕ(0)+

∫ t

0
(t− s)q−1S (t− s) ·

(
F(s,v(i−1)(s),v(i−1)

s )

+Lv(i−1)(s)
)
ds, t � 0,

ϕ(t), t ∈ [−r,0],

(3.19)
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and

w(i)(t) = Qw(i−1)(t)

=

⎧⎪⎪⎨⎪⎪⎩
T (t)ϕ(0)+

∫ t

0
(t− s)q−1S (t− s) ·

(
F(s,w(i−1)(s),w(i−1)

s )

+Lw(i−1)(s)
)
ds, t � 0,

ϕ(t), t ∈ [−r,0].

(3.20)

Taking limit in (3.19) and (3.20) as i → ∞ , from the Lebesgue dominated convergence
theorem, one can obtain

u(t) =

⎧⎨⎩T (t)ϕ(0)+
∫ t

0
(t − s)q−1S (t− s) ·

(
F(s,u(s),us)+Lu(s)

)
ds, t � 0,

ϕ(t), t ∈ [−r,0],

and

u(t) =

⎧⎨⎩T (t)ϕ(0)+
∫ t

0
(t − s)q−1S (t− s) ·

(
F(s,u(s),us)+Lu(s)

)
ds, t � 0,

ϕ(t), t ∈ [−r,0],

and it is easy to see that u,u ∈ Ω .
Hence, similar to the proof of Theorem 3.1, we obtain that the u,u are mini-

mal and maximal S -asymptotically ω -periodic mild solutions of the problem (1.1) in
[v(0),w(0)] . This completes the proof of Theorem 3.3. �

REMARK 1. Analytic semigroup and differentiable semigroup are continuous by
operator norm for every t > 0 (see [41]). In the application of partial differential equa-
tions, such as parabolic equations and strongly damped wave equations, the correspond-
ing solution semigroup is analytic semigroup. Therefore, Theorem 3.2 and Theorem 3.3
in this paper has broad applicability.

In the above works, the key assumption (H2) (the monotone on the third variable
of the nonlinear function) is employed. However, we hope that the nonlinear function
is quasi-monotonicity. In this case, the results have more extensive application back-
ground.

In fact, we find that if the problem (1.1) has lower and upper S -asymptotically
ω -periodic mild solutions v(0),w(0) ∈ Ω with v(0) � w(0) and

(H4) there is a sufficiently small constant L0 > 0 , such that

u(2)(t)−u(1)(t) � L0(u
(2)
t (·)−u(1)

t (·)),

for any t � 0 and u(1),u(2) ∈ [v(0),w(0)] with u(2) � u(1) ,
then the condition (H2) can be replaced by the following condition

(H5) there are nonnegative constants L1,L2 , such that

F(t,x2,φ2)−F(t,x1,φ1) � −L1(x2 − x1)−L2(φ2(·)−φ1(·)),
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for all t � 0 , x1,x2 ∈ E and φ1,φ2 ∈ B with v(0)(t) � x1 � x2 � w(0)(t) , v(0)
t � φ1 �

φ2 � w(0)
t .

In fact, for every t � 0 and u(1),u(2) ∈ [v(0),w(0)] with u(1) � u(2) , one can obtain

that v(0)(t) � u(1)(t) � u(2)(t) � w(0)(t) , v(0)
t � u(1)

t � u(2)
t � w(0)

t . From the conditions
(H4) and (H5), it follows that

F(t,u(2)(t),u(2)
t )−F(t,u(1)(t),u(1)

t )

� −L1(u(2)(t)−u(1)(t))−L2(u
(2)
t (·)−u(1)

t (·))

� −L1(u(2)(t)−u(1)(t))− L2

L0
(u(2)(t)−u(1)(t))

= −
(
L1 +

L2

L0

)
(u(2)(t)−u(1)(t))

:= −L(u(2)(t)−u(1)(t)).

Hence, we can obtain the following results from Theorem 3.1, Theorem 3.2 and Theo-
rem 3.3.

THEOREM 3.4. Let E be an ordered Banach space, whose positive cone K is
normal cone, let A : D(A) ⊂ E → E be a closed linear operator and −A generate a
positive and compact semigroup T (t) (t � 0) in E , whose growth exponent denotes
ν0 . Assume that ω > 0 is a constant and the problem (1.1) has lower and upper S-
asymptotically ω -periodic solutions v(0),w(0) ∈ Ω with v(0) � w(0) . If the nonlinear
function F : R

+ ×E ×B → E is continuous and the conditions (H1), (H4) and (H5)
hold, then the problem (1.1) has minimal and maximal S-asymptotically ω -periodic
mild solutions u,u ∈ [v(0),w(0)] .

THEOREM 3.5. Let E be an ordered Banach space, whose positive cone K is
normal cone, let A : D(A) ⊂ E → E be a closed linear operator and −A generate
a positive equicontinuous C0 -semigroup T (t) (t � 0) in E , whose growth exponent
denotes ν0 . Assume that ω > 0 is a constant and the problem (1.1) has lower and
upper S-asymptotically ω -periodic solutions v(0),w(0) ∈ Ω with v(0) � w(0) . If the
nonlinear function F : R

+ ×E ×B → E is continuous and the conditions (H1), (H3),
(H4) and (H5) hold, then the problem (1.1) has minimal and maximal S-asymptotically
ω -periodic mild solutions u,u ∈ [v(0),w(0)] .

THEOREM 3.6. Let E be an ordered and weakly sequentially complete Banach
space, whose positive cone K is normal let A : D(A) ⊂ E → E be a closed linear
operator and −A generate a positive equicontinuous C0 -semigroup T (t) (t � 0) in E
whose growth exponent denotes ν0 . Assume that ω > 0 is a constant and the problem
(1.1) has lower and upper S-asymptotically ω -periodic solutions v(0),w(0) ∈ Ω with
v(0) � w(0) . If the nonlinear function F : R

+ × E ×B → E is continuous and the
conditions (H1), (H4) and (H5) hold, then the problem (3.1) has minimal and maximal
S-asymptotically ω -periodic mild solutions u,u ∈ [v0,w0] .
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REMARK 2. Obviously, the condition (H4) is easy to satisfy, and the condition
(H5) weakens the condition (H2). Hence, Theorem 3.4–3.5 partially improve Theorem
3.1–3.3.

In the end of this section, we discuss the uniqueness of the S -asymptotically ω -
periodic mild solution for the problem (1.1) under T (t) (t � 0) is an equicontinuous
semigroup.

THEOREM 3.7. Let E be an ordered Banach space, whose positive cone K is
normal cone with normal constant N , let A : D(A)⊂E →E be a closed linear operator
and −A generate a positive equicontinuous C0 -semigroup T (t) (t � 0) , whose growth
exponent denotes ν0 . Assume that ω > 0 is a constant and the problem (1.1) has lower
and upper S-asymptotically ω -periodic solutions v(0),w(0) ∈ Ω with v(0) � w(0) . If
the nonlinear function F : R

+ ×E ×B → E is continuous and the conditions (H1),
(H4), (H5) and

(H6) there exist constants C1,C2 > 0 such that

F(t,x2,φ2)−F(t,x1,φ1) � C1(x2 − x1)+C2(φ2(·)−φ1(·))

for every t � 0 and v(0)(t) � x1 � x2 � w(0)(t) , v(0)
t � φ1 � φ2 � w(0)

t ;
hold, then the periodic problem (1.1) has a unique S-asymptotically ω -periodic mild
solution in [v(0),w(0)] , which can be obtained by monotone iterative sequences starting
from v(0) or w(0) .

Proof. We can find that (H4), (H5) and (H6) imply (H3). In fact, for t � 0, let
{u(n)} ⊂ [v(0),w(0)] be an increasing sequence. For m,n = 1,2, · · · with m > n , by (H5)
and (H6), we have

θ � F(t,u(m)(t),u(m)
t )−F(t,u(n)(t),u(n)

t )

+L1(u(m)(t)−u(n)(t))+L2(u
(m)
t (·)−u(n)

t (·))

� F(t,u(m)(t),u(m)
t )−F(t,u(n)(t),u(n)

t )+ (L1 +
L2

L0
)(u(m)(t)−u(n)(t))

� (L1 +
L2

L0
+C1)(u(m)(t)−u(n)(t))+C2(u

(m)
t (·)−u(n)

t (·)).

Denote L = L1 + L2
L0

, by the normality of positive cone K , we have

‖F(t,u(m)(t),u(m)
t )−F(t,u(n)(t),u(n)

t )+L(u(m)(t)−u(n)(t))‖
� (NL+NC1)‖(u(m)(t)−u(n)(t))‖+NC2‖(u(m)

t (·)−u(n)
t (·))‖. (3.21)

From (3.21) and the definition of measure of noncompactness, we can find that

α({F(t,u(n)(t),u(n)
t )+Lu(n)(t)}) � C

(
α({u(n)(t)})+ sup

s∈[−r,0]
α({u(n)

t (s)})
)
,

where C = max{(NL+NC1),NC2} . Hence, (H3) holds.
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Therefore, From Theorem 3.5, the problem (1.1) has minimal and maximal S -
asymptotically ω -periodic mild solutions u,u ∈ [v(0),w(0)] .

Obviously, u(t) = u(t) = ϕ(t) for t ∈ [−r,0] . For any t � 0, by (3.5),(3.14) and
the condition (H6), one can obtain

θ � u(t)−u(t) = Qu(t)−Qu(t)

=
∫ t

0
(t − s)q−1S (t − s) ·

(
F(s,u(s),us)+Lu(s)

)
ds

−
∫ t

0
(t− s)q−1S (t − s) ·

(
F(s,u(s),us)+Lu(s)

)
ds

�
∫ t

0
(t − s)q−1S (t − s) ·

(
(C1 +L)(u(s)−u(s))+C2(us(·)−us(·))

)
ds

� (C1 +L+
C2

L0
)
∫ t

0
(t − s)q−1S (t− s)(u(s)−u(s))ds.

Thus, from the normality of the cone K , it follows that for t � 0,

‖u(s)−u(s)‖ � NM(C1 +L+
C2

L0
)
∫ t

0
(t − s)q−1‖u(s)−u(s)‖ds. (3.22)

From Lemma 2.11, it follows that u(t) = u(t) for t � 0. Hence, u = u is the unique
S -asymptotically ω -periodic mild solution of the problem (1.1) in [v(0),w(0)] . From
the proof of Theorem 3.1, the unique S -asymptotically ω -periodic mild solution can
be obtained by monotone iterative sequences starting from v(0) or w(0) . This completes
the proof of Theorem 3.7. �

4. Application

EXAMPLE 4.1. S -asymptotically ω -periodic solutions of fractional parabolic equa-
tion with delay in R

n(n � 1) .
Let Ω ∈ R

n be a bounded domain with C2 -boundary ∂Ω for n ∈ N . We consider
the following semilinear fractional parabolic equation boundary value problem with
delay ⎧⎪⎪⎨⎪⎪⎩

∂ q

∂ tq u(ξ , t)+ ∇2u(ξ ,t) = a(t) f (u(ξ ,t),ut(ξ )), ξ ∈ Ω, t ∈ R
+,

u|∂Ω = 0,

u(ξ ,τ) = ϕ(ξ ,τ), ξ ∈ Ω,τ ∈ [−r,0],

(4.1)

where ∂ q

∂ tt is the Caputo fractional partial derivative of order q∈ (0,1) , ∇2 is a Laplace
operator, a : R

+ → R and f : R×C([−r,0],L2(Ω)) → R are continuous functions,
ϕ ∈C(Ω× [−r,0],L2(Ω)) , r > 0 is a constant.
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THEOREM 4.1. Assume that a ∈ SAPω(R) . If the following conditions
(A1) a(t) f (0,0) � 0 for any t ∈ R

+ , and there is a function 0 � w = w(x,t) ∈
C(Ω× [−r,∞))∩C2,q(Ω×R

+) satisfying lim
t→∞

w(·,t + ω)−w(·,t) = 0 , such that⎧⎪⎪⎨⎪⎪⎩
∂ q

∂ tq w(ξ , t)+A(ξ ,D)w(ξ ,t) � a(t) f (w(ξ ,t),wt (ξ )), ξ ∈ Ω, t ∈ R
+,

w|∂Ω = 0,

w(ξ ,τ) � ϕ(ξ ,τ), ξ ∈ Ω,τ ∈ [−r,0],

(A2) there exists a constant l > 0 , such that for any ξ ∈ Ω ,t ∈ R
+ and 0 � x1 �

x2 � w(x, t) , 0 � φ1 � φ2 � wt(ξ ) ,

a(t) f (x2,z2)−a(t) f (x1,z1) � −l(x2− x1),

hold, then semilinear fractional delayed parabolic equation boundary value problem
(4.1) has minimal and maximal time S-asymptotically ω -periodic solutions u,u ∈
C([−r,∞),L2(Ω))∩SAPω(L2(Ω)) between 0 and w, which can be obtained by mono-
tone iterative sequences starting from 0 and w.

Proof. In order to write the semilinear fractional parabolic equation boundary
value problem with delay (4.1) in the form of the problem (1.1), let E = L2(Ω) with
the L2 -norm ‖ · ‖2 , K = {u ∈ E|u(x) � 0,a.e. x ∈ Ω} , then E is an ordered Banach
space, whose positive cone K is a normal regeneration cone.

Define an operator A : D(A) ⊂ E → E by:

D(A) = W 2,2(Ω)∩W1,2
0 (Ω), Au = −∇2u. (4.2)

From [3], we know that −A is a selfadjoint operator in E , and generates an expo-
nentially stable analytic semigroup T (t) (t � 0) , which is contractive in E . Hence,
‖T (t)‖2 � M := 1 for every t � 0. Furthermore, we assume that λ1 is the smallest
eigenvalue of operator A , and from [2, Theorem 1.16], it follows that λ1 > 0. On the
other hand, by the maximum principle of elliptic operators, we know that (λ I +A) has
a positive bounded inverse operator (λ I+A)−1 for λ > 0, hence T (t) (t � 0) is a pos-
itive C0 -semigroup (see [35]). Since the operator A has compact resolvent in L2(Ω) ,
thus, T (t) (t � 0) is a compact semigroup (see [41]), which implies that the growth
exponent of the semigroup T (t) (t � 0) satisfies ν0 = −λ1 .

For ξ ∈ Ω , we set

u(t)(ξ ) = u(ξ ,t), ϕ(τ)(ξ ) = ϕ(ξ ,τ), τ ∈ [−r,0],

F(t,u(t),ut)(ξ ) = a(t) f (u(ξ ,t),ut(ξ )). (4.3)

Then the semilinear fractional parabolic equation boundary value problem with delay
(4.1) can be rewritten into the abstract form of the problem (1.1). From the assumptions
of the functions a and f , we can deduce that F : R

+ ×E ×C([−r,0],E) → E defined
by (4.3) is a continuous function which satisfying the condition (H1). And from the
condition (A1), it follows that v0 ≡ 0 and w0 = w(ξ ,t) � 0 are lower and upper time
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S -asymptotically ω -periodic mild solutions of the problem (4.1), respectively. Thus,
by the condition (A2), one can find that the condition (H2) holds.

Therefore, from Theorem 3.1, we can obtain that the problem (4.1) has minimal
and maximal time S -asymptotically ω -periodic mild solutions u,u ∈ C([−r,∞),E)∩
SAPω(E) , which can be obtained by monotone iterative sequences starting from 0 and
w , respectively. �

EXAMPLE 4.2. Time S -asymptotically periodic solutions of fractional order de-
layed partial differential equation with periodic boundary condition.

We are concerned with the existence of S -asymptotically 2π -periodic solutions
for the semilinear fractional order delayed partial differential equation with periodic
boundary condition⎧⎪⎪⎨⎪⎪⎩

∂ q

∂ tt u(ξ , t)+ ∂
∂ξ u(ξ ,t) = a(t) f (u(ξ ,t),u(ξ ,t + τ)), ξ ∈ R,t ∈ R

+,τ ∈ [−r,0],

u(ξ +2π , t) = u(x,t), ξ ∈ R,t ∈ [−r,∞),

u(ξ ,τ) = ϕ(ξ ,τ), ξ ∈ R,τ ∈ [−r,0],
(4.4)

where ∂ q

∂ tt is the Caputa fractional partial derivative of order q ∈ (0,1) , a : R
+ → R

and f : R
2 → R are continuous functions, ϕ ∈C(R× [−r,0]) , r > 0 is a constant.

THEOREM 4.3. Assume that a ∈ SAP2π(R) , a(t) f (0,0) � 0 and there is a func-
tion 0 � w = w(x, t) ∈ C(R × [−r,∞)) ∩C1,q(R ×R

+) satisfying lim
t→∞

w(·,t + ω)−
w(·,t) = 0 , such that⎧⎪⎪⎨⎪⎪⎩

∂ q

∂ tq w(ξ , t)+ ∂
∂xw(ξ ,t) � a(t) f (w(ξ ,t),w(ξ ,t + τ)), x ∈ R,t ∈ R

+,τ ∈ [−r,0],

w(ξ +2π , t) = w(ξ ,t), ξ ∈ R,t ∈ [−r,∞),

w(ξ ,τ) � ϕ(ξ ,τ), ξ ∈ R,τ ∈ [−r,0].

For any ξ ∈R, t ∈R
+,τ ∈ [−r,0] , and 0 � u1(ξ ,t)� u2(ξ ,t)� w(ξ ,t) , if the following

conditions
(A3) there exists a positive constant l1 such that

u2(ξ ,t)−u1(ξ ,t) � l1(u2(ξ ,t + τ)−u1(ξ ,t + τ));

(A4) there exist positive constants l2, l3 such that

a(t) f (u2(ξ ,t),u2(ξ ,t + τ))−a(t) f (u1(ξ , t),u1(ξ ,t + τ))

� −l2(u2(ξ ,t)−u1(ξ ,t))− l3(u2(ξ ,t + τ)−u1(ξ ,t + τ));

(A5) there exist positive constants c1,c2 such that,

a(t) f (u2(ξ ,t),u2(ξ ,t + τ))−a(t) f (u1(ξ , t),u1(ξ ,t + τ))

� c1(u2(ξ ,t)−u1(ξ ,t))+ c2(u2(ξ ,t + τ)−u1(ξ , t + τ)),
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hold, then the semilinear fractional order delayed partial differential equation with pe-
riodic boundary condition (4.4) has a unique time S-asymptotically 2π -periodic mild
solution u∗ ∈C(R× [−r,∞))∩SAP2π(C2π(R)) between 0 and w.

Proof. Let C2π(R) denote the Banach space {u∈C(R)|u(ξ +2π)= u(ξ ),ξ ∈R}
endowed the maximum norm ‖u‖C = maxξ∈[0,2π ] ‖u(ξ )‖ , K = {u ∈ C2π(R)|u(ξ ) �
0,ξ ∈R} , then C2π(R) is an ordered Banach space, whose positive cone K is a normal
cone. Let

D(A) = C1
2π(R), A =

∂u
∂ξ

. (4.5)

From [37, Lemma 2.1], if λ �= 0, we know that (λ I +A) has a bounded inverse
operator (λ I +A)−1 in C2π(R) and

(λ I +A)−1h(ξ ) =
∫ ξ

ξ−2π
r(s− y)h(y)dy, h ∈C2π(R), (4.6)

where

r(ξ ) =
e−λ ξ

1− e−2πλ , ξ ∈ [0,2π ].

By (4.5), it follows that (λ I+A)−1 is positive operator for λ > 0, and its norm ‖(λ I+
A)−1‖ � 1

λ . From Hille-Yosida Theorem and exponential formula of semogroup (see
[41]), we can obtain that −A generates a contractive and positive C0 -semigroup T (t)
(t � 0) in C2π(R) , whose growth exponent ν0 � 0. Thus, −(A+LI) (L := l2 + l3

l1
)

generates a contractive and positive C0 -semigroup S(t) = e−LtT (t)(t � 0) with the
growth exponent μ0 = −L+ ν0 � −L and M := supt�0 ‖S(t)‖ � 1.

Set u(t)(ξ ) = u(ξ ,t),u(t + τ)(ξ ) = u(ξ ,t + τ) , and

F(t,u(t),ut(τ))(ξ ) = a(t) f (u(ξ ,t),u(ξ ,t + τ)), (4.7)

then the periodic problem (4.4) can be reformulated as following{
cDq

t u(t)+Au(t) = F(t,u(t),u(t + τ)), t ∈ R
+,τ ∈ [−r,0],

u(τ) = ϕ(τ), τ ∈ [−r,0].
(4.8)

From the assumptions of the functions a and f , we can deduce that F : R
+×C2π(R)×

C2π(R) →C2π(R) defined by (4.8) is a continuous function which satisfying the con-
dition (H1). And from the assumptions, one can find that v0 ≡ 0 and w0 = w(ξ ,t) � 0
are lower and upper time S -asymptotically 2π -periodic mild solutions of the prob-
lem (4.4), respectively. By the conditions (A3-A5), we can deduce that the conditions
(H4-H6) hold. Therefore, from Theorem 3.7, we can obtain that the problem (4.4)
has a unique time S -asymptotically ω -periodic mild solutions u∗ ∈ C(R× [−r,∞))∩
SAP2π(C2π(R)) between 0 and w . �
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