
Journal of
Mathematical

Inequalities

Volume 15, Number 2 (2021), 575–590 doi:10.7153/jmi-2021-15-42

OPTIMAL CONTROL FOR ELLIPTIC

HEMIVARIATIONAL INEQUALITIES INVOLVING

NONLINEAR WEAKLY CONTINUOUS OPERATORS

BIAO ZENG

(Communicated by J. Kyu Kim)

Abstract. We study an optimal control problem governed by elliptic hemivariational inequal-
ities involving nonlinear weakly continuous operators. By exploiting the surjectivity theorem
of multivalued weakly upper continuous operators, we present an existence result for a class of
subgradient inclusions involving nonlinear weakly continuous operators. Then we obtain the
existence of optimal pairs for the optimal control problem. Moreover, we consider a perturbed
optimal control problem and obtain the convergence of optimal pairs. This study can be applied
to stationary Navier-Stokes problems with multivalued frictional boundary condition.

1. Introduction

Let Y and Z be two separable and reflexive Banach spaces. Let a nonlinear oper-
ator A : Y → Y ∗ , a linear operator M : Y → Z with its dual operator M∗ : Z∗ → Y ∗ , a
locally Lipschitz functional J : Z →R , f ∈Y ∗ . We consider the elliptic hemivariational
inequality problem of the following form.

PROBLEM 1. Find y ∈ Y such that

〈Ay,v〉Y + J◦(My;Mv) � 〈 f ,v〉Y , ∀v ∈ Y.

It is clear Problem 1 is equivalent to the following subgradient inclusion problem.

PROBLEM 2. Find y ∈ Y such that

Ay+M∗∂J(My) 	 f .
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576 B. ZENG

DEFINITION 3. A function y ∈ Y is called a solution to Problem 2 if there exists
ξ ∈ Z∗ such that {

Ay+M∗ξ = f ,

ξ ∈ ∂J(My).

The theory of hemivariational inequalities has been initiated in early 1980s with
the pioneering works of Panagiotopoulos, cf. [29, 30] and the references therein. El-
liptic hemivariational inequalities have been studied in e.g. [3, 14, 15, 18, 19, 24, 27,
28, 31] by using methods based on surjectivity results for several classes of monotone
operators, in e.g. [4, 37] by using sub-supersolution method, and in e.g. [21, 34, 36, 41]
by introducing and applying some concepts of quasimonotonicity and KKM technique.
Optimal control problems for elliptic hemivariational inequalities have been studied by
[1, 6, 16, 20, 32, 33] and the reference therein.

In this paper we study the elliptic hemivariational inequality with a nonlinear
weakly continuous, bounded and coercive operator governing the process and a multi-
valued term involving the Clarke subgradient of a locally Lipschitz function. It is well
known that such inequalities have often an equivalent formulation as operator subgra-
dient inclusions. By exploiting the surjectivity theorem of multivalued weakly upper
continuous operators, we first present an existence result for the subgradient inclusions.
Then we obtain the existence of optimal pairs for the optimal control problem. More-
over, we consider a perturbed optimal control problem and obtain the convergence of
optimal pairs. This study can be applied to stationary Navier-Stokes equations.

It is worth pointing out that there are several novelties of the present paper. First,
instead of linearity, monotonicity, pseudomonotonicity, M -condition or strong conti-
nuity, used in all aformentioned papers, we suppose the weak continuity, boundedness
and coercivity conditions of the operator. Weak continuity and coercivity of the opera-
tor were used in [12] to study the existence of solution to elliptic equations and in [40] to
study the existence of solution to stationary inclusions. Second, we obtain the existence
of optimal pairs to an optimal control problem and a perturbed optimal control problem
with weakly continuous operators, and show the convergence of optimal pairs. Third,
as an application, we use weakly continuous operators to provide a simple proof of
existence of solutions to stationary Navier-Stokes problems with multivalued frictional
boundary condition. Results on solvability of stationary and non-stationary hemivaria-
tional inequalities for Navier-Stokes can be found in e.g. [10, 11, 23, 24, 25, 26].

The rest of this paper is organized as follows. In the next section, we will briefly
recall some definitions and preliminary results. We give an existence result for Problem
2 by using the surjectivity theorem of weakly-weakly u.s.c. multivalued operator. In
Section 3, we consider an optimal control problem and obtain its existence of optimal
pairs. In Section 4, we show the convergence of optimal pairs to the perturbed optimal
control problem. In the last section, we apply our main results to stationary Navier-
Stokes problems with multivalued frictional boundary condition.
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2. Preliminaries

Let (X ,‖ · ‖X) be a Banach space. We denote by X∗ its dual space, by w-X the
space X endowed with the weak topology, and by 〈·, ·〉X the duality pairing between
X∗ and X . We denote by “ → ” the strong convergence and by “ ⇀ ” the weak con-
vergence.

DEFINITION 4. ([12]) Let X ,Y be two reflexive Banach spaces. An operator
F : X → Y is said to be weakly continuous, if for any sequence {xn}n�1 ⊂ X with
xn ⇀ x in X , then Fxn ⇀ Fx in Y .

DEFINITION 5. ([39]) An operator F : X → X∗ is said to be

(i) bounded, if there exists a continuous increasing function β : [0,+∞)→ [0,+∞) such
that

‖Fu‖X∗ � β (‖x‖X) for all x ∈ X .

(ii) coercive, if

lim
‖x‖X→∞

〈Fx,x〉X
‖x‖X

= +∞.

(ii) coercive with constant c , if

〈Fx,x〉X � c‖x‖2
X .

DEFINITION 6. ([2, 17]) A multivalued operator F : X → 2X∗
with closed values

is said to be

(i) upper semicontinuous (u.s.c.), if for every open subset O ⊂ X∗ the “strong inverse
image” of O under F given by F+(O) = {x ∈ X | F(x) ⊂ O} is open in X .

(ii) weakly-weakly u.s.c., if for every open subset O ⊂ (w-X∗) the set F+(O) is open
in w-X .

(iii) closed, if for any (xn,x∗n) ∈ Gr(F) = {(x,x∗) ∈ X ×X∗ | x∗ ∈ F(x)} with xn → x
in X , x∗n → x∗ in X∗ , we have (x,x∗) ∈ Gr(F) .

(iv) weakly-weakly closed, if for any (xn,x∗n) ∈ Gr(F) with xn ⇀ x in X , x∗n ⇀ x∗ in
X∗ , we have (x,x∗) ∈ Gr(F) .

(v) coercive, if

lim
‖x‖X→∞

infx∗∈F(x)〈x∗,x〉X
‖x‖X

= ∞.

It is known, see [17] that if F : X → 2X∗
is u.s.c. (weakly-weakly u.s.c.) with

closed (weakly closed) values, then F is closed (weakly-weakly closed).

THEOREM 7. ([40]) Let X be a separable reflexive Banach space and F : X →
2X∗

be weakly-weakly u.s.c. and coercive with nonempty, bounded, closed and convex
values. Then F is surjective, i.e., for every f ∈ X∗ , there is x ∈ X such that Fx 	 f .
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DEFINITION 8. ([5, 29]) Given a locally Lipschitz function ϕ : X → R , we de-
note by ϕ0(x;y) the (Clarke) generalized directional derivative of ϕ at the point x ∈ X
in the direction y ∈ X defined by

ϕ0(x;y) = limsup
λ→0+,ζ→x

ϕ(ζ + λy)−ϕ(ζ )
λ

.

The generalized gradient of ϕ at x ∈ X , denoted by ∂ϕ(x) , is a subset of X∗ given by

∂ϕ(x) = {x∗ ∈ X∗ | ϕ0(x;y) � 〈x∗,y〉X for all y ∈ X }.
At the end of this section, we give an existence result for Problem 2. We will make

the following hypotheses on the data of Problem 2.

(HA) A : Y → Y ∗ is bounded, weakly continuous and coercive with constant α >
0.

(HJ) J : Z → R is locally Lipschitz and there exist c0,c1 > 0 such that

‖∂J(z)‖Z∗ � c0 + c1‖z‖Z, ∀z ∈ Z.

(HM) M : Y → Z is linear, continuous and compact.

(H0) α > c1‖M‖2 .

THEOREM 9. Assume that hypotheses (HA),(HJ),(HM),(H0) hold. Then Prob-
lem 2 has at least one solution y ∈ Y and there exists a constant C > 0 such that

‖y‖Y � C(1+‖ f‖Y∗). (1)

Proof. Define a multivalued operator F : Y → 2Y ∗
by

F(y) = Ay+M∗∂J(My), ∀y ∈ Y.

We will use Theorem 7 to prove that F is surjective. It is sufficient to show that F is
weakly-weakly u.s.c. and coercive.

It is clear that F has nonempty and convex values. From [5, Proposition 2.1.2]
we see that the Clarke subgradient ∂J has weakly compact values in Z∗ , hence its
values are also closed. Moreover, we use the fact that a compact subset with respect to
the weak topology of a Banach space is bounded. Thus, the values of F are bounded
subsets in Y ∗ .

We will show that F is coercive. For y ∈ Y and y∗ ∈ F(y) , we have

〈y∗,y〉Y � α‖y‖2
Y − (c0 + c1‖M‖2‖y‖Y )‖y‖Y

= (α − c1‖M‖2)‖y‖2
Y − c0‖y‖Y .

Hence F is coercive.
It follows from (HA) , the upper semicontinuity of ∂J and the compactness of

M that F is weakly-weakly u.s.c. Therefore, by applying Theorem 7 we deduce that
Problem 2 has a solution y ∈Y . Moreover, (1) follows from the following inequalities

(α − c1‖M‖2)‖y‖2
Y − c0‖y‖Y � 〈y∗,y〉Y � ‖ f‖Y∗‖y‖Y , ∀y∗ ∈ F(y).

This completes the proof. �
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3. An optimal control problem

In this section, we consider an optimal control problem for Problem 2.

PROBLEM 10. Given a control u ∈U , find y ∈ Y such that

Ay+M∗∂J(My) 	 f +Bu,

where B : U → Y ∗ is a nonlinear control operator with U being a reflexive Banach
space.

Denote by Sol(u) the set of all solutions of Problem 10 corresponding to the con-
trol u and let

V = {(u,y) ∈U ×Y |y ∈ Sol(u)}.
Consider the following hypothesis on the control operator B .

(HB) B : U → Y ∗ is weakly continuous and there exist b0,b1 � 0 such that

‖Bu‖Y∗ � b0 +b1‖u‖U , ∀u ∈U.

THEOREM 11. Assume that hypotheses (HA),(HJ),(HM),(H0),(HB) hold. Then
for every u ∈ U , Problem 10 has at least one solution y ∈ Sol(u) and there exists a
constant C1 > 0 such that

‖y‖Y � C1(1+‖ f‖Y∗ +‖u‖U). (2)

Moreover, the solution operator Sol : U → Y is weakly-weakly closed.

Proof. The existence and boundedness follows from 9. We show that the solution
operator Sol : U → Y is weakly-weakly closed. For any sequence {un} with un ⇀ u
in U and yn ∈ Sol(un) with yn ⇀ y in Y , there exists ξn ∈ ∂J(Myn) such that

Ayn +M∗ξn = f +Bun. (3)

It comes from (HJ) that the sequence {ξn} is bounded in Z . Since the space Z∗ is
reflexive, there is a subsequence of {ξn} , denoted by {ξn} again, such that ξn ⇀ ξ
for some ξ ∈ Z∗ . Since the operator M is compact, we deduce that M∗ξn → M∗ξ and
ξ ∈ ∂J(My) . On the other hand, (HA),(HB) imply that

Ayn ⇀ Ay, Bun ⇀ Bu.

Letting n → ∞ in (3) we obtain by the assumptions that

Ay+M∗ξ = f +Bu,

where ξ ∈ ∂J(My) . Therefore, y ∈ Sol(u) , i.e., Sol :U → Y is weakly-weakly closed.
The proof is complete. �
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Next, we study an optimal control problem for Problem 10. Given another Banach
space (the so-called observation space) W , a nonlinear operator Σ :Y →W , and a target
ϒ ∈W , we consider the following cost function:

H(u,y) := ‖Σ(u)−ϒ‖+ ε‖y‖2,

where ε > 0. The optimal control problem studied in this work is to solve the following
minimization problem.

PROBLEM 12. Find a pair (u∗,y∗) ∈V such that

H(u∗,y∗) = min
(u,y)∈V

H(u,y).

Consider the following hypothesis on Σ .
(HΣ) Σ : Y →W is weakly continuous and there exist d0,d1 � 0 such that

‖Σ(y)‖W � d0 +d1‖y‖Y , ∀y ∈ Y.

THEOREM 13. Assume that hypotheses (HA),(HJ),(HM),(H0),(HB),(HΣ) hold.
Then Problem 12 has a solution (u,y) ∈V .

Proof. By applying Theorem 9, for every control u∈U , Problem 10 has a solution
y ∈ Sol(u) . Let {(un,yn)} ⊂V be a minimizing sequence. That is,

lim
n→∞

H(un,yn) = inf{H(u,y) : (u,y) ∈V},

where un ∈U and yn ∈ Sol(un) . Then we have

Ayn +M∗ξn = f +Bun,

where ξn ∈ ∂J(Myn) . As n is large enough, we obtain

ε‖un‖2 � ‖Σ(yn)−ϒ‖2 + ε‖un‖2 � lim
n→∞

H(un,yn)+1,

hence the sequence {un} is bounded in the Banach space U . Since the space U is
reflexive, there is a subsequence of {un} , denoted by {un} again, such that un ⇀ u for
some u ∈U .

Consequently, we choose {yn} to be a subsequence of solutions of Problem 10
that corresponds to the subsequence of controls {un} . From (2) we know that {yn}
remains bounded. Let {yn} be a subsequence converging weakly to y for some y ∈Y .
From Theorem 9 we know that y ∈ Sol(u) .

Finally, we have

H(u,y) = ‖Σ(y)−ϒ‖2 + ε‖u‖2

� liminf
n→∞

‖Σ(yn)−ϒ‖2 + liminf
n→∞

ε‖un‖2

� liminf
n→∞

H(un,yn)

= inf{H(u,y) : u ∈U,y ∈ Sol(u)},
which shows that (u,y) is an optimal pair to Problem 12. This completes the proof. �
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4. Convergence of optimal pairs

Given mappings Σn : Y →W (n ∈ N) , we consider the following perturbed cost
function:

Hn(u,y) := ‖Σn(y)−ϒ‖+ ε‖u‖2,

where ε > 0. Consider the following perturbed subgradient inclusion:

PROBLEM 14. Find y ∈ Y such that

Any+M∗∂Jn(My) 	 f +Bnu.

Denote by Soln(u) the set of all solutions of Problem 14 corresponding to the control
u and let

Vn = {(u,y) ∈U ×Y |y ∈ Soln(u)}.
We are interested in the convergence behavior of the following optimal problem.

PROBLEM 15. Find a pair (u∗n,y∗n) ∈Vn such that

Hn(u∗n,y
∗
n) = min

(u,y)∈Vn

Hn(u,y).

To obtain the result of this section, we need the following assumptions.

(HAn) An : V →V ∗ is weakly continuous and coercive with constant αn > 0, and
there exist a constant εAn > 0 and a continuous function τ1 : R+ → R+ such that

‖Any−Ay‖ � εAnτ1(‖y‖), ∀y ∈ Y.

(HJn) There exist a constant εJn > 0 and a continuous function τ2 : R
+ → R

+

such that

‖J◦n(z;w)− J◦(z;w)‖ � εJnτ2(‖z‖), ∀z,w ∈ Z.

(HBn) Bn : Y →V ∗ is weakly continuous and there exist a constant εBn > 0 and a
continuous function τ3 : R+ → R+ such that

‖Bnu−Bu‖� εBnτ3(‖u‖), ∀u ∈U.

(HΣn) Σn :V →V ∗ is weakly continuous and there exist a constant εΣn > 0 and a
continuous function τ4 : R+ → R+ such that

‖Σn(y)−Σ(y)‖ � εΣnτ4(‖y‖), ∀y ∈Y.

(H0n) There exists a constant m0 > 0 such that αn � m0 > c1‖M‖2 and

εAn , εJn , εBn , εΣn → 0 as n → ∞.
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The following theorem is the main result of this section.

THEOREM 16. Assume that hypotheses (HA),(HJ),(HM),(HB),(HΣ) and (HAn) ,
(HJn) , (HBn) , (HΣn) , (H0n) hold. Then for every n ∈ N , Problem 15 has a solution
(yn,un) ∈ Vn , and there exists a subsequence of {(un,yn)} that converges weakly to a
solution of Problem 12.

Proof. By applying Theorem 13, for every n ∈ N , Problem 15 has a solution
(u∗n,y∗n) ∈V . That is,

Hn(u∗n,y
∗
n) = inf

(u,y)∈V
Hn(u,y).

where u∗n ∈U and y∗n ∈ Soln(u∗n) . Consequently, we have

Any
∗
n +M∗ξ ∗

n = f +Bnu
∗
n, (4)

where ξ ∗
n ∈ ∂Jn(My∗n) .

We claim that the sequence {u∗n} is bounded in the Banach space U . Arguing by
contradiction, assume that {u∗n} is not bounded in U . Then, passing to a subsequence
still denoted {u∗n} , we have

‖u∗n‖U → +∞ as n → +∞.

Since Hn(u∗n,y∗n) � ε‖u∗n‖U , by passing to the limit as n → +∞ we deduce that

limHn(u∗n,y
∗
n) → +∞ as n → +∞. (5)

On the other hand, since (u∗n,y∗n) is a solution to Problem 15, we have

Hn(u∗n,y
∗
n) � Hn(un,yn), ∀un ∈U, yn ∈ Soln(un).

We now fix an element u0 ∈U and let y0
n ∈ Soln(u0) . Then

Hn(u∗n,q
∗
n) � Hn(u0,y0

n) = ‖Σn(y0
n)−ϒ‖+ ε‖u0‖2. (6)

By (HΣn) we deduce that there exists C > 0 such that

‖Σn(y0
n)−ϒ‖2 + ε‖u0‖2 � C, for sufficient large n ∈ N. (7)

Relations (5), (6) and (7) lead to a contradiction, which concludes the claim.
Since the space U is reflexive, there is a subsequence of {u∗n} , denoted by {u∗n}

again, such that u∗n ⇀ u for some u ∈U .
Next, from (2) we know that {y∗n} remains bounded. Let {y∗n} be a subsequence

converging weakly to y for some y ∈ Y . We will show that y ∈ Sol(u) .
Since

Any
∗
n−Ay = Any

∗
n−Ay∗n +Ay∗n−Ay

and
Bnu

∗
n−Bu = Bnu

∗
n−Bu∗n +Bun−Bu,
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Hypotheses (HA),(HB),(HAn),(HBn),(H0n) imply that

Any
∗
n ⇀ Ay, Bnu

∗
n ⇀ Bu.

Moreover, we have

〈−Ay+Bu+ f ,y〉Y � limsup
n→∞

〈−Any
∗
n +Bnu

∗
n + f ,y〉Y

= limsup
n→∞

〈M∗ξ ∗
n ,y〉Y

= limsup
n→∞

〈ξ ∗
n ,My〉Z

� limsup
n→∞

J◦n(My∗n;My)

� limsup
n→∞

(J◦n(My∗n;My)− J◦(My∗n;My)+ J◦(My∗n;My))

� limsup
n→∞

εJnτ2(‖My∗n‖)+ limsup
n→∞

J◦(My∗n;My)

� J◦(My;My).

Then there exits ξ ∈ ∂J(My) such that

−Ay+Bu+ f = M∗ξ ,

i.e.,

Ay+M∗ξ = Bu+ f .

Therefore, y ∈ Sol(u) .
Finally, we show that (u,y) is an optimal pair to Problem 12. From Theorem 13

we know that Problem 12 has a solution. Let (u′,y′) be a solution of Problem 12. We
can construct a sequence {y′n} with y′n ∈ Soln(u′) such that y′n ⇀ y′ . Then, by (HΣn)
we have

H(u,y) = ‖Σ(y)−ϒ‖+ ε‖u‖2

� liminf
n→∞

‖Σ(y∗n)−ϒ‖+ liminf
n→∞

ε‖u∗n‖2

= liminf
n→∞

‖Σ(y∗n)−Σn(y∗n)+ Σn(y∗n)−ϒ‖+ liminf
n→∞

ε‖u∗n‖2

� liminf
n→∞

(‖Σ(y∗n)−Σn(y∗n)‖+‖Σn(y∗n)−ϒ‖)+ liminf
n→∞

ε‖u∗n‖2)

� lim
n→∞

(εΣnτ4(‖y∗n‖))2 + liminf
n→∞

(‖Σn(y∗n)−ϒ‖+ ε‖u∗n‖2)

� liminf
n→∞

(‖Σn(y′n)−ϒ‖+ ε‖u′‖2)

� ‖Σ(y′)−ϒ‖+ ε‖u′‖2 = H(u′,y′),

which shows that (y,u) is an optimal pair to Problem 12. This completes the proof. �
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5. Stationary Navier-Stokes problem

In this section we provide an example to illustrate our main theorem and show the
existence of solutions to elliptic hemivariational inequality which arise in the study of
Navier-Stokes problems with nonmonotone and multivalued frictional boundary condi-
tion.

We introduce the physical setting of the problem and provide both classical and
weak formulations of the stationary Navier-Stokes problem. We denote by S

d the space
of d × d symmetric matrices. The canonical inner products and the corresponding
norms on Rd and Sd are given by

y · v = yivi, ‖y‖ = (y · y)1/2 for all y = (yi), v = (vi) ∈ R
d ,

C : D = Ci jDi j, ‖C‖ = (C : C)1/2 for all C = (Ci j), D = (Di j) ∈ S
d .

Here and in the sequel, the summation over two repeated indices is applied.
Let Ω be a bounded open and connected domain in Rd with d = 2, 3. The

boundary Γ = ∂Ω is supposed to be Lipschitz continuous and it is composed of two
measurable parts ΓD and ΓC , with disjoint relatively open sets ΓD and ΓC such that
meas(ΓD) > 0. We denote by ν = (νi) the unit outward normal vector on Γ and
by x = (xi) ∈ Ω the position vector. We are concerned with the following statinary
problem which classical formulation reads as follows.

PROBLEM 17. Find a flow velocity field y = y(x) and a pressure p = p(x) such
that

−ν0 Δy+(y ·∇)y+ ∇p = f +u in Ω, (8)

divy = 0 in Ω, (9)

y = 0 on ΓD, (10)

uν = 0 on ΓC, (11)

−Sτ ∈ ∂ j(yτ) on ΓC. (12)

We briefly comment on the equations and conditions in Problem 17. The sys-
tem describes the non-stationary flow of incompressible viscous liquid occupying the
volume Ω subjected to a given external volume forces of density f = f (x) and
a control force u = u(x) . Here ν0 > 0 denotes a viscosity constant of the fluid,
ν0 = 1/Re, where Re is the Reynolds number. Equation (8) is the conservation law,

where the expression (y · ∇)v =
(

∑d
j=1 y j

∂vi
∂x j

)d

i=1
denotes the nonlinear convective

term. The solenoidal (divergence free) condition (9) states that the motion of the fluid
is incompressible. The total stress tensor in the fluid is given by σ = −p I + S
in Q , where I denotes the identity matrix and S : Ω → Sd is the extra (viscous)
part of the stress tensor. The symmetric part of the velocity gradient D : Ω → Sd is
given by D(y) = 1

2 (∇y + ∇y) . We assume that the extra stress tensor S is related
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with the symmetric part of the velocity gradient D by means of the constitutive law
S = 2ν0 D(y) in Q .

As for the boundary conditions, we consider on ΓD the adherence boundary con-
dition boundary conditions (10) (since the fluid is viscous). On the part ΓC , we decom-
pose the velocity vector into the normal and tangential parts. We denote by uν and y τ
the normal and the tangential components of y on the boundary ΓC , i.e., uν = y · ν
and y τ = y − uν ν . Similarly, for an extra stress tensor field S , we define its normal
and tangential components by Sν = (S ν ) · ν and S τ = S ν −Sν ν , respectively. We
assume that there is no flux condition through ΓC , so that the normal component of the
velocity vanishes on this part of the boundary, cf. (11). The tangential components of
the stress tensor S τ and the velocity y τ are assumed to satisfy the multivalued fric-
tion law (12), where ∂ j denotes the Clarke subgradient of a locally Lipschitz function
j : Rd → R . The boundary condition (12) is called the boundary conditions of fric-
tion type. We refer to [8, 9, 13, 22, 35] and the references therein for more details on
stationary Navier-Stokes problems.

Next, we provide the weak formulation of Problem 17. To this end, we introduce
the following spaces

Ṽ = {v ∈ C ∞(Ω;Rd) | divv = 0 in Ω, v = 0 on ΓD, vν = 0 on ΓC},
V = closure of Ṽ in H1(Ω;Rd) (13)

and

H̃ = {v ∈ C ∞(Ω;Rd) | divv = 0 in Ω, vν = 0 on ΓC},
H = closure of H̃ in L2(Ω;Rd). (14)

The space V is equipped with the norm ‖v‖ = ‖v‖H1(Ω;Rd ) for v ∈ V . On V we
introduce also the norm given by ‖v‖V = ‖D(v)‖L2(Ω;Sd) for v ∈ V . From the Korn
inequality cK‖v‖H1(Ω;Rd) � ‖D(v)‖L2(Ω;Sd) for v ∈V with cK > 0 (cf. e.g. [9, Theo-
rem 4]), it follows that ‖·‖H1(Ω;Rd) and ‖·‖V are the equivalent norms on V . Moreover,
V is a reflexive separable Banach space, H is a separable Hilbert space, the embedding
V ⊂ H is continuous, compact and V is dense in H . This means that (V,H,V ∗) forms
an evolution triple of spaces.

Next, we introduce the space Z = L2(ΓC;Rd) and the continuous and compact
trace operator γ : V → Z . Its norm is denoted by ‖γ‖ = ‖γ‖L (V,U) .

In the study of Problem 17, we will assume the following hypotheses.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j : R
d → R is such that

(a) j is locally Lipschitz.

(b) there exist c0,c1 > 0 such that

‖∂ j(ξ )‖
Rd � c0 + c1‖ξ‖

Rd for all ξ ∈ Rd .

(15)

Using a standard procedure (cf. e.g. [8, 9, 10, 11]), we obtain the following varia-
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tional formulation of Problem 17 which takes the form of a hemivariational inequality.
Remark that, due to the incompressibility condition, the pressure is not involved in the
variational formulation.

PROBLEM 18. Find a velocity field y ∈V such that

ν0

∫
Ω

∇y : ∇vdx+
∫

Ω
((y ·∇)y) · vdx

+
∫

ΓC

j0(yτ ;vτ)dΓ �
∫

Ω
f · vdx+

∫
Ω

u · vdx for all v ∈V.

We have the following existence result.

THEOREM 19. Assume that (15) holds and f , u ∈ V ∗ . Then Problem 18 has a
solution y ∈V if ν0 >

√
2c1‖γ‖2 .

Proof. We apply Theorem 9 to show existence of solution to an elliptic inclusion
associated with the hemivariational inequality in Problem (18). Let us define the oper-
ator A : V →V ∗ and the functional J : Z → R by

〈Ay,v〉V = a(y,v)+b(y,y,v) for y, v ∈V, (16)

J(v) =
∫

ΓC

j(vτ(x))dΓ for v ∈U, (17)

where

a : V ×V → R, a(y , v) = ν0

∫
Ω

∇y : ∇v dx,

b : V ×V ×V → R, b(y , v , w) =
∫

Ω
((y ·∇)v) · w dx

for y , v , w ∈V . We consider an auxiliary evolutionary inclusion. Find y ∈ W such
that

Ay + γ∗∂J(γ y) 	 f + u . (18)

We will show that (18) has a solution. To this end, we will check the hypotheses
(HA),(HJ),(HM) and apply Theorem 9.

First, we check hypothesis (HJ) . Using hypothesis (15), by [27, Corollary 4.15 (ii)],
it is clear that J is locally Lipschitz. From part (v) of the same corollary, we infer that
the inequality

‖∂J(z)‖Z∗ � c0 + c1‖z‖Z

holds for all z ∈ Z with c0 =
√

2meas(ΓC)c0,c1 =
√

2c1 . This implies (HJ) .
Condition (HM) is obvious since γ is linear, continuous and compact.
Subsequently, we will verify condition (HA) . From [12, Proposition 2.2], it is

obvious that a linear continuous operator on a reflexive Banach space is weakly contin-
uous. This means that the operator A1 : V →V ∗ defined by 〈A1 y , v〉V = a(y , v) for y ,
v ∈V is weakly continuous. The trilinear form b generates the operator B1 : V →V ∗
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defined by 〈B1 y , v〉V = b(y , y , v) for y , v ∈ V . From [12, Proposition 2.6], we de-
duce that B1 is well defined and weakly continuous. By [12, Proposition 2.1], it follows
that the sum A = A1 +B1 of two weakly continuous operators is a weakly continuous
operator.

Now, we pass to boundedness of the operator A : V →V ∗ . From e.g. [8, Lemma 13],
it follows that

〈B1 u , v〉V � c‖u‖V‖u‖V‖v‖V for all u , v ∈V with c > 0. (19)

We observe that the continuous embedding

H1(Ω;Rd) ⊂ Lq(Ω;Rd) for
1
q

� 1
2
− 1

d
,

with q = 4 holds for d � 4. Hence and by the Hölder inequality and (19), we obtain

〈Au,v〉V � ν0 ‖u‖V‖v‖V +‖u‖V‖u‖L4(Ω;Rd)‖v‖L4(Ω;Rd) � ν0‖u‖V‖v‖V + c‖u‖2
V‖v‖V

and hence

‖Au‖V∗ = sup
‖v‖�1

|〈Au , v〉V | � β (‖u‖V ) for all u ∈V,

where β (r) = max{ν0,c}(r+ r2) for r � 0. Hence A is bounded.
Now, we pass to coercive property of the operator A : V →V ∗ . Note that

〈B1y,y〉V =
∫

Ω
((y ·∇)y) · ydx =

∫
Ω

d

∑
i, j=1

yi
∂y j

∂xi
y j dx =

∫
Ω

d

∑
i, j=1

yi
∂

∂xi

y2
j

2
dx

= −1
2

∫
Ω

div y
d

∑
j=1

y2
j dx+

1
2

∫
ΓC

uν
d

∑
j=1

y2
j dx = 0 (20)

for all y ∈ Ṽ . Then, exploiting density of Ṽ in V , and we get (20) for all y ∈ Y .
Therefore, we have

〈Ay , y〉V = 〈A1 y , y〉V + 〈B1 y , y〉V � α‖y‖2
V for all y ∈V

with α = ν0 . Hence (HA) holds.
We have verified all hypotheses of Theorem 9. Therefore, from this theorem, we

deduce that (18) has a solution y ∈ W . Finally, we note that every solution to (18) is a
solution to Problem 18. Indeed, let y ∈ W solve (18) and v ∈V . We obtain

〈Ay + γ∗ξ , v〉V = 〈 f + u , v〉V (21)

with ξ ∈ ∂J(γ y) . Using the definition of the Clarke subgradient and [27, Proposition
3.47 (iv)], we have the following inequality

〈γ∗ ξ , v〉V = 〈ξ ,γ v〉U � J0(γ y ;γ v) �
∫

ΓC

j0(y τ ; v τ)dΓ. (22)



588 B. ZENG

Hence, combining (21) and (22), we immediately see that y ∈ Y is a solution to Prob-
lem 18. �

Finally, we consider two optimal control problems for Problem 18.
Let h1 : V ∗ ×V → R , h2 : V ∗ ×L2(ΓC;Rd) → R be of the forms

h1(u, y) = ‖y − y0‖V + ε‖u‖2
V∗ ,

and
h2(u, y) = ‖γ y − y1‖L2(ΓC;Rd) + ε‖u‖2

V∗ ,

respectively, where y0 ∈V, y1 ∈ L2(ΓC;Rd) are fixed elements and ε > 0.
Denote by S(u) the set of all solutions of Problem 18 corresponding to the control

u and let
V = {(u , y) ∈V ∗ ×V |y ∈ Sol(u)}.

Consider the following two optimal problems.

PROBLEM 20. Find a pair (u∗, y∗) ∈ V such that

h1(u∗, y∗) = min
(u ,y )∈V

h1(u , y).

PROBLEM 21. Find a pair (u∗, y∗) ∈ V such that

h2(u∗, y∗) = min
(u ,y )∈V

h2(u , y).

We have the following results for above optimal control problems.

THEOREM 22. Assume that all the hypotheses of Theorem 19 are satisfied. Then
Problem 20 and Problem 21 are solvable.

Note that h1 and h2 are weakly continuous since the identity operator i : V →
V and operator γ : V → L2(ΓC;Rd) are weakly continuous. Therefore, by applying
Theorem 13 we can obtain the existence of optimal solutions to the optimal control
problem for Problem 18 with the functionals h1 and h2 .

Finally, we can also the convergence of optimal solutions to corresponding per-
turbed problems of Problem 20 and Problem 21, which is analogous to Theorem 16.
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