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Abstract. In this paper, some new Lyapunov-type inequalities for one-dimensional Minkowski-
curvature equation with anti-periodic and Sturm-Liouville boundary conditions are presented.

1. Introduction

In this paper, we will give some new Lyapunov-type inequalities for the follow-
ing one-dimensional Minkowski-curvature equation involving anti-periodic and Sturm-
Liouville boundary conditions

{(q)(u’(t)))’Jrr(t)u(t) =0, a<t<b, 0
u(a)+ub)=0, u'(a)+u'(b)=0,
{(¢>(u’(z)))’+r(r)u(t) =0, a<t<b, 12
ou(a) — Bu'(a) =0, yu(b)+6u'(b) =0,
where ¢(y) = —= y € (—1,1), weight function r(¢) is continuous on [a,b] and

VI=bP2’
o,B,7,0 20, By+ad+oay(b—a)>0.
The equation in system (1.1) is driven by a strongly nonlinear differential operator
of ¢ -laplacian type, precisely

9

This is the one-dimensional version of the partial differential operator

we (), where 9(&) :=

. Vu
u— —div| —— |,
V1—|Vul?
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which is usually meant as a mean-curvature operator in Lorentz-Minkowski spaces, it
also plays a important role in the theory of nonlinear electromagnetism (cf. [9] and the
references therein). Recently, there has been a significant interest in the study of the
existence and multiplicity issues of the associated boundary value problems (cf. [3—
8, 10-12]). For the second order linear ordinary differential equation, Lyapunov [1]
found the following interesting results. If u(¢) is a nontrivial solution of the differential
system

{ u"(t)+r()u()=0, 1€ (ab), (1.3)
u(a) =0=u(b),
where r(f) is a continuous and nonnegative function defined in [a, ], then
b 4
/a r(t)de > P (1.4)

and the constant 4 cannot be replaced by a larger number.

After the appearance of Lyapunov inequality, a large number of generalizations
have been proved. Concerning previous works on Lyapunov-type inequality, for the in-
teger order differential equations, we refer readers to [13—19], for fractional differential
equations, please refer to [20-25].

Recently, Rui Yang et al. [2] first obtained Lyapunov inequalities for the following
one-dimensional Minkowski-curvature problems

{(q)(u’(t)))’Jrr(t)u(t):O, a<t<bh, 05
u(a) =0=u(b),
(O (1)) +ri(ua(t) =0, a<t<b,
(0(us(1))) +ra(t)us(t) =0, a<t<b,
..................... (16)
(O, (1)) +ra(t)uy(t) =0, a<t<b,
ui(a) =u;(b)=0,i=1,2,---n,
and
(@@, (1) +ri(t) () +ua(t) + - +ua(t)) =0, a<t<b,
(¢(us(2))) +ra(t) () +ua(t) + - +ua(t)) =0, a<t<b,
..................... (17)
(O (1)) +ral) w1 (1) + 12(0) &+ + 1) =0, @<t <,

ui(a)=ui(b)=0,i=1,2,---,n,

Motivated by the paper [2], the aim of the present paper is to get three types of
Lyapunov inequalities for one-dimensional Minkowski-curvature problems.

The rest of this paper is organized as follows. In Section 2, we obtain Lyapunov
inequalities for problems (1.1) and (1.2). In Section 3, we give Lyapunov-type inequal-
ities for cycled system. In Section 4, Lyapunov-type inequalities for a strongly coupled
system of one-dimensional Minkowski-curvature problem are proved. In Section 5, We
give two examples to illustrate the application of the main results.
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2. Lyapunov inequalities for problems (1.1) and (1.2)

We say u a solution of problem (1.1) (or (1.2)) if u € C'[a,b],||u/|| < 1, and
¢(u'(.)) is absolutely continuous in any compact subinterval of (a,b), and u satisfies
the equation and the boundary conditions in problem (1.1) (or (1.2)).

We first give the Lyapunov inequality for problem (1.1).

THEOREM 2.1. If the problem (1.1) has a nontrivial continuous solution, then

one has
b 4
t)|dt >
[ Irtoyiar > 5=

Proof. Since the nontrivial solution u of problem (1.1) satisfies the anti-periodic
boundary conditions, then we have

=3 / ds— —/bu/(s)ds = /ubH(Ls)u/(s)ds

u(t) = 3 u”(s)ds——/ ds-/ H(t,s)u"

2.1

where
1
Ea agséh
H(t,s) = {
—E,tgsgb
Thus
b
:/ Hit,s
b b
:/Ht,s)</ H(s, )ds
= Hts” (/Hsrds)
and
b—a (b
@) < ——= | " (9)ldz, 2.2)

by the relation
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we have
b—a [P
Nl < (1) dt
££§W(N ) a\u(ﬂ
/ \m
/1_
(t)||u(z)|dt
< .
< / (o) ldr - max [u(), 23)
therefore,
b 4
t)dt > ——. U 2.4
[ irtoyian > = o4

Secondly, we give the Lyapunov-type inequality for problem (1.2). In fact, we
have the following result.

THEOREM 2.2. [f the problem (1.2) has a nontrivial continuous solution, then
one has

[let-a) + Blvto -0+ 8lr0lar> B+ et ayr-a). @)

Proof. Define

[oe(s —a) + B[y(b—1) + 8]
By+ad+ay(b—a)

ot —a) + Bl[y(b—s) + 8]
By+ad+ay(b—a)

Then, by the Sturm-Liouville boundary condition in (1.2), we have

/a ' G(t,s)u" (s)ds = / Gt s)dul (s) + /t ' G(t,s)du(s)

—G(t.0d (1) — G(t,a)ud (a) — Mi[zg’ . 2;(;1 5 / " (5)ds

,a<s<t<b

G(t,s) = (2.6)

a<t<s<b.

)

/ / Ylo(t —a) + B] b,
FG{ebp () - Gl (@) + 1 a5+ay(b_a)[ i (s)ds
Sla(t —a)+ Bl

_ Bly(b—1)+ 9]
" By+ad+oayb—a) By+ad+ ay(b—a)
aly(b—1)+9]
vla(r—a)+ Bl
By+ad+ay(b—a)
:—M(l),

u'(b) — W' (a)

[u(b) — u(r)]
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- /ab G(t,s)u’ (s)ds

(1) )_ W (1)
VI—w@®)2 ) VI-w0rr

therefore

by the relation

b

(0@ (1) = (

we have
b "
<
max Ju(t)| < [ G0l (1)
b
/G(t,t (/)‘ 23\dt
('(1))?]
_/ G(t,1)|r(t)||u(r)|dt
/Gtt )| - max |u(r)], @.7)
a<t<b
S0,

Therefore, (2.5) holds. [

Let =1, =0, y=1, 6§ =0 in Theorem 2.2, we obtain the Theorem 2.1 in
[2].

COROLLARY 2.3. [fthe problem

(@' (1)) +r()u(t)=0, a<t<b, (2.8)
u(a) =0=u(b), '
has a nontrivial continuous solution, then one has
b
/ (t—a)(b—1)|r(t)|di > b—a. (2.9)
a

Let « =1, B =0, y=0, 6§ =1 in Theorem 2.2, we obtain the following
Lyapunov-type inequality.

COROLLARY 2.4. [fthe problem

{ (0@ (1)) +r()ur)=0, a<t<b,

2.10
u(a) =0=1u(b), 10

has a nontrivial continuous solution, then one has

b
/ (t—a)|r(0)]di > 1. 2.11)
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Let 0 =0, B =1, y=1, § =0 in Theorem 2.2, we obtain the following
Lyapunov-type inequality.

COROLLARY 2.5. [fthe problem

{ (0@ (1)) +r()u(t)=0, a<t<b,

2.12
u'(a) =0=u(b), =12

has a nontrivial continuous solution, then one has

/b(b—t)\r(t)ldt> L. (2.13)

3. Lyapunov inequalities for cycled system
In this section, we deal with the cycled system

(0 () +ri(ua(t) =0, a<t<b,
us(t) , a<t<b,
..................... (31)

=0
=0

under anti-periodic boundary conditions
ui(a) +ui(b) =0 =ui(a) +ui(b), i=1,2,---,n, (3.2)
and Sturm-Liouville boundary conditions
ojui(a) — Bui(a) = 0 = yui(b) + Sul(b), i=1,2,---,n, (3.3)

where weight function r;(¢) is continuous on |[a,b], o4, Bi, ¥, 6 =0, Bivi+ o6 +
oY(b—a)>0,i=1,2,--- n.

We say (uy,uz,--,u,) a solution of problem (3.1)-(3.2) (or (3.1)—(3.3)) if u; €
C'la,b],||u}]|- < 1,and ¢ (u()) is absolutely continuous in any compact subinterval of
(a,b), and u; satisfies the equation and the boundary conditions in problem (3.1)—(3.2)
(or (3.1)—(3.3)).

We first deal with a cycled system under anti-periodic boundary conditions.

THEOREM 3.1. Ifthe problem (3.1)—(3.2) has a nontrivial continuous solution,
then one has

n b 4 n
H/ |ri(2)|dt > <m> . (3.4)
=174
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Proof. Denote M; = max,<;<p |ui(t)|, as in (2.3), repeating this procedure to each
equation in (3.1), for i = 2,3,--- n, we obtain

b—a (b
My <Mz-— / |r1(2)|dt
a

Mn <M1'

4 Ja
Multiplying all inequalities, we arrive at (3.4). [

‘We now deal with a cycled system involving Sturm-Liouville boundary conditions.

THEOREM 3.2. [f the problem (3.1)—(3.3) has a nontrivial continuous solution,
then one has

n

ﬁ/b[%‘(’ —a)+Bily(b—1)+ &)|ri(t)|dt = [[1Bivi + 06 + oivi(b—a)].  (3.5)
i—1/a

i=1
Proof. Define
[oi(s —a) + Bil[%(b — 1) + 6]
Biy: + 046 + o yi(b — a)

lai(t —a) + Bil[vi(b—s) + &
Bivi + 036 + 0y:(b — a)

,a<s<t<b
Gi(l7S):

,as<t<s<b.

and denote M; = max,<;<p [ui(f)|, as in (2.7), repeating this procedure to each equation
in (3.1), for i =2,3,---,n, we obtain

b
My <M, / Gy (1,) | (1) |dt
a

b
My <Ms- / Go(t,1)|ra 1)t

b
Moy <M, / Gt (t,0) a1 ()]t
a

b
Mn <M1 / Gn(l‘7t)|l"n(l)‘dl

Multiplying all inequalities, we arrive at (3.5). [

Let oy =1, B; =0, %, =1, 8§ =0 in Theorem 3.2, we obtain the Theorem 4.1 in
[2].
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COROLLARY 3.3. [fthe problem

, a<t<bhb,
(00, () + 7t (Yua(0) =0, a<1<b, G0
(¢ (un (1)) +ra(t)us (1) =0, a<t<b,
ui(a)=0=u;(b), i=1,2,---.n
has a nontrivial continuous solution, then one has
n_oeb
[1/ (-0l > (b-ay. (3.7)
i=174a

Let o =1, Bi=0, % =0, 6 =1 in Theorem 3.2, we obtain the following
Lyapunov-type inequality.

COROLLARY 3.4. [fthe problem

00y (1)) + ra(e)us(e) =

, a<t<b,
(¢ (1 (1)) + 11 (t)un(t) =0, a<t<b, (3.8)
(@, (1)) +ra(t)us (r) =0, a<t<b,
ui(a) =0= u;(b)7 i=1,2,---,n
has a nontrivial continuous solution, then one has
n b
[1/ (- aln@ar=1. (39)
i=17a

Let o =0, Bi=1, %=1, 6 =0 in Theorem 3.2, we obtain the following
Lyapunov-type inequality.

COROLLARY 3.5. [fthe problem

1(’)))’—|—i’n—1(l‘)lftn(l)=0, a<t<b, (3.10)
r

has a nontrivial continuous solution, then one has

n_ b
H/ (b—1)|ri(t)]dt > 1. (3.11)
i=174a
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4. Lyapunov inequalities for strongly coupled system

In this section, we deal with the strongly coupled system

(@) (1)) +ri(e)(ui(r) +ur(t)+---+un(t)) =0, a<rt<b,
(@(us(2))) + () (ur (6) +ua(t) + -+ un(t)) =0, a<t<b,

..................... (4.1)
(0@, (1)) + 1 (1) (ur (1) + w2 (2) + -+ +un(t)) =0, a <1 <D,
under anti-periodic boundary conditions
ui(a) +ui(b) =0 =ui(a) +ui(b), i=1,2,---,n, 4.2)
and Sturm-Liouville boundary conditions
ou;(a) — Bui(a) = 0 = yui(b) + Sul(b), i=1,2,---,n, 4.3)

where weight function r;(¢) is continuous on [a,b], o4, Bi, ¥, 6 =0, Bivi+ o6 +
oY(b—a)>0,i=1,2,--- n.

We say (uj,uz,--,u,) a solution of problem (4.1)-(4.2) (or (4.1)—(4.3)) if u; €
C'la,b],||u}]|- < 1,and ¢ (u(t)) is absolutely continuous in any compact subinterval of
(a,b), and u; satisfies the equation and the boundary conditions in problem (4.1)—(4.2)
(or (4.1)—(4.3)).

We first deal with the following strongly coupled system under anti-periodic con-
ditions.

THEOREM 4.1. If the problem (4.1)—(4.2) has a nontrivial continuous solution,
then one has

n b 4
> [ inldr> . (4.4)
i=174

Proof. Denote M; = max,<;<p |ui(t)|, as in (2.3), repeating this procedure to each
equation in (4.1), for i =1,2,3,---,n, we obtain

b—a (b
Mlg(M1+M2+-~+Mn)~—4a/ 11 (1)t
a

b—a (b
My <(My+My+ -+ M,) - a/ P2 (2)|dt

4
b—a [
My <My +My+---+M,)- 1 -1 (2)|dt
a
b—a (b
Mng(M1+M2+"'+Mn)' 4 /‘rn(t)‘dt

Adding all inequalities, we obtain (4.4). [

Next, we study the strongly coupled system under Sturm-Liouville boundary con-
ditions
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THEOREM 4.2. [f the problem (4.1)—(4.3) has a nontrivial continuous solution,
then one has

21/ [0i(t — a) + Bil[v:(b — 1) + 6]

() |de > 1. 4.5
Bivi + @i + iy (b — a) ri(t)] ()

Proof. Define Gi(t,s) and M; as in Theorem 3.2, as in (2.7), repeating this proce-
dure to each equation in (4.3), for i = 2,3,---,n, we obtain

b
M, <(M1+Mz+---+Mn)-/ Gi(t,1)[ri(t)|dt

b
Mzg(M1+M2+m+Mn)./ Gat,1)|ra (1) |dt

b
M, <(M1+M2+---+Mn)-/ G (1,) | rur (1) d
b
Mng(M1+M2+m+Mn)./ Glt,1) (1)t
a

Adding all inequalities, we arrive at (4.5). U

Let oy =1, B; =0, %=1, 8§ =0 in Theorem 4.2, we obtain the Theorem 4.2 in
[2].

COROLLARY 4.3. [fthe problem

(91, (1)) +r1(1) (ur (1) +102(0) &+ +10a(1)) =0, @< <b,
(O(5(0)) + le) a1 (1) +1o(e) -+ +10(1)) =0, <1 <b,
..................... (4.6)
O, (1)) +ra(0) (w1 (t) +uz(t) + - +un(t)) =0, a<t<b,
ui(a)=0=u;(b), i=1,2,---,n
has a nontrivial continuous solution, then one has
i/b(t—a)(b—tﬂr,-(t)\dt >b—a. @4.7)
=174

Let o; =1, Bi=0, % =0, 6 =1 in Theorem 4.2, we obtain the following
Lyapunov-type inequality.

COROLLARY 4.4. [fthe problem

(@) () +ri(0)(ui (1) +ua(t) + -+ un(t)) =0, a<rt<b,
(95 (2))) +r2(t) (ur () + u2(t) + -+ un(t)) =0, a<t<b,
..................... (4.8)
Oy (1)) 4 ra(t) (i (1) +uz(t) + - +un(r)) =0, a<rt<b,
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has a nontrivial continuous solution, then one has
no b
Z/ (t —a)|ri(r)|dr > 1. 4.9)
=174

Let o =0, Bi=1, %=1, 6 =0 in Theorem 4.2, we obtain the following
Lyapunov-type inequality.

COROLLARY 4.5. [fthe problem

@@y (1)) +r1(0) (ur () + uz(t) + -+ un(t)) =0, a<t<b,

0, a<t<b,
..................... (4.10)
(9 (D)) + (1) (w1 (6) +102(0) + - +un(1)) =0, @ <1<,

A
<
=
<
CNEN
Sh
=
=
=
=
=
-
3
—
-~
=
=
<
£
=
=
=
-
<
5]
—
-~
=
-
-
<
=
=
=
=
=
I

has a nontrivial continuous solution, then one has
n b
Z/ (b—1)ri(1)|dr > 1. .11
=174

5. Applications

Let a=0 and b =1 in (1.1), we now discuss the following problem.

EXAMPLE 5.1. Consider the problem

(0 (1)) +r()u(t)=0, 0<t<1, 5
u(0)+u(1)=0, u'(0)+u'(1)=0, '

2
t01-0(/G=n)
of problem (5.1) satisfying u € C'[0, 1], ||'||.. < 1. Applying Theorem 2.1, we have

where r(t) =

5. Taking u(t) = 3t(1—1), we see that u is a solution

/01 : i 22, (5.2)
1(1—1) ( (3 —t)(%+t)>

Leta=0,b=1and a=B=y=06=1 in(1.2), we now discuss the following
problem.

EXAMPLE 5.2. Consider the problem

{ (0@ (1)) +r(tu(t)=0, 0<t<I,

u(0)—u/(0) =0, wu(l)+u'(1)=0, ©:3)
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2
(1+t—t2)< (B-1)($+1)

solution of problem (5.3) satisfying u € C'[0, 1], ||«/|| < 1. Applying Theorem 2.2, we
have

where r(t) = 5. Taking u(t) = $(1+7—1%), we see that u is a

! 241—12

3
(141—12) ( G-0 +t)>

3
di> 3. (5.4)
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