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MONOTONICITY, CONVEXITY AND BOUNDS INVOLVING

THE BETA AND RAMANUJAN R–FUNCTIONS

TI-REN HUANG, LU CHEN, SHEN-YANG TAN AND YU-MING CHU ∗

(Communicated by G. Nemes)

Abstract. In the article, we provide several new asymptotical sharp bounds for the functions
involving the Beta function and Ramanujan R -functions via the monotonicity and convexity
properties of certain combinations defined in terms of polynomials, Beta and Ramanujan R -
functions.

1. Introduction

Let x,y > 0. Then the Ramanujan R-function R(x,y) and Beta function B(x,y)
are defined by

R(x,y) = −2γ −ψ(x)−ψ(y)

and

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

,

respectively, where γ = lim
n→∞

(
1+ 1

2 + 1
3 + · · ·+ 1

n − logn
)

= 0.5772 · · · is the Euler-

Mascheroni constant, and

Γ(x) =
∫ ∞

0
tx−1e−t dt, ψ(x) =

Γ′(x)
Γ(x)

.

In particular, if y = 1− x , then we denote

R(x) = R(x,1− x) = −2γ −ψ(x)−ψ(1− x) (1.1)

and
B(x) = B(x,1− x) = Γ(x)Γ(1− x) =

π
sin(πx)

. (1.2)

From (1.1) and (1.2) we clearly see that both the functions R(x) and B(x) are
symmetry with respect to x = 1/2. Therefore, we only need to assume that x ∈ (0,1/2]
in what follows. It is easy to know that R(1/2) = log16 by (1.1).
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Let a,b,c ∈ R with c �= 0,−1,−2, · · · . Then the Gaussian hypergeometric func-
tion F(a,b;c;x) [1, 2, 6, 7, 8, 9] is defined by

F(a,b;c;x) =2 F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
(−1 < x < 1), (1.3)

where (a,n) denotes the shifted factorial function (a,n) ≡ a(a+ 1) · · ·(a+ n− 1) for
n ∈ N , and (a,0) = 1 for a �= 0. It is well known that F(a,b;c;x) has wide applica-
tions in mathematics and physics, and many elementary and special functions are the
particular or limiting cases of the Gaussian hypergeometric function. In particular, if
c = a+b , then F(a,b;c;x) is said to be zero-balanced. As the special case of the Gaus-
sian hypergeometric function, the generalized elliptic integral Ka(r) [3, 5] of the first
kind can be expressed by

Ka(r) =
π
2

F
(
a,1−a;1;r2) , Ka(0+) =

π
2

, Ka(1−) = ∞ (1.4)

for r ∈ (0,1) and a ∈ (0,1/2] .
The Ramanujan R-function and Beta function are closely related to the Guassian

hypergeometric function F(a,b;c;x) and the generalized elliptic integral Ka(r) of the
first kind. For example, F(a,b;a+b;x) satisfies the asymptotic formula [4]

B(a,b)F(a,b;a+b;x)+ log(1− x) = R(a,b)+O((1− x) log(1− x)) (x → 1),

and Ka(r) has the sharp asymptotical inequalities [20]

π
{

1+
[
B(x)
R(x)

−1

]
(1− r2)

}
<

B(x)Ka(r)
log(eR(x)/2/

√
1− r2)

< π
[
1+a(1−a)(1− r2)

]

and

π
R(x)+ [B(x)−R(x)]r2 <

Ka(r)
log(eR(x)/2/

√
1− r2)

<
π

B(a) [1−a(1−a)+a(1−a)r2]

for all a ∈ (0,1/2] and r ∈ (0,1) . More properties for B(x) and R(x) can be found
in the literature [2, 4, 10, 13, 14, 15, 16, 17, 18, 20, 23], in which they used to study
the generalized ηk -distortion function ηa

k (t) and the generalized λ -distortion function
λ (a,K) = ηa

K(1) .
Recently, the properties and bounds for B(x) and R(x) have attracted the atten-

tion of many researchers [17, 23]. Qiu, Ma, and Huang [18] found the power series
expansions of the function R(x)−B(x) at x = 0 and x = 1/2, and proved that

2(2c2n + α2n−1)x2n+1 � B(x)−R(x)+2
n

∑
k=1

ckx
k � (2c2n + α2n−1)x2n

and

(2c2n+1 + α2n)x2n+1 � B(x)−R(x)+2
2n+1

∑
k=1

ckx
k � 2(2c2n+1 + α2n)x2(n+1),
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where

cn =
{
(−1)n +[1+(−1)n+1]2−n−1}ζ (n+1), αn = 2n+1(π − log16+2

n

∑
k=1

2−kck)

and

ζ (s) =
∞

∑
k=1

1
ks (Re s > 1) (1.5)

is the Riemann zeta function.
In [13], Huang, Qiu, and Ma discussed the monotonicity and convexity properties

of the functions x(1−x)B(x) and R(x)− [1−x(1−x)]B(x) , and discovered new bounds
for the complete integral Ka(r) of the first kind.

The main purpose of the article is to provide new monotonicity and convexity
properties involving the Ramanujan R-function R(x) and Beta function B(x) .

2. Lemmas and definition

In order to prove our main results, we need two lemmas and one definition which
we present in this section.

Let n ∈ N . Then the the special sums of reciprocal powers λ (n+ 1) , η(n) and
β (n) [1] are defined by

λ (n+1) =
∞

∑
k=0

1
(2k+1)n+1 , η(n) =

∞

∑
k=1

(−1)k−1 1
kn , β (n) =

∞

∑
k=0

(−1)k 1
(2k+1)n .

(2.1)
It follows from [1, 23.2.20] that

λ (n+1) =
(
1−2−n−1)ζ (n+1), η(n) =

(
1−21−n)ζ (n). (2.2)

LEMMA 2.1. The following two conclusions can be found in the literature [13]:
(1) If x ∈ (0,1/2] , then one has

B(x) =
1
x

+
∞

∑
n=1

[1− (−1)n]η(n+1)xn = 4
∞

∑
n=0

β (2n+1)(1−2x)2n (2.3)

and

R(x) =
1
x

+
∞

∑
n=1

[1+(−1)n]ζ (n+1)xn = log16+4
∞

∑
n=1

λ (2n+1)(1−2x)2n. (2.4)

(2) The function λ (n) is strictly decreasing for n ∈ N \ {1} with λ (2) = π2/8
and λ (n)→ 1 as n →+∞ , and the function β (n) is strictly increasing for n ∈ N with
β (1) = π/4 and β (n) → 1 as n → +∞ .
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LEMMA 2.2. (See [2]) Let −∞ < a < b < ∞ , f ,g : [a,b] → R be continuous
on [a,b] and differentiable on (a,b) such that g′(x) �= 0 on (a,b) . If f ′(x)/g′(x) is
increasing (decreasing) on (a,b) , then so are the functions

[ f (x)− f (a)]/[g(x)−g(a)] and [ f (x)− f (b)]/[g(x)−g(b)].

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

DEFINITION 2.1. (See [11], [12], [22]) A real-valued function f is said to be
strictly completely monotonic on an interval I ⊆ R if (−1)n f (n)(x) > 0 for all x ∈ I
and n = 0,1,2,3 · · · . If (−1)n f (n)(x) � 0 for all x ∈ I and n = 0,1,2,3 · · · , then f is
said to be completely monotonic on I .

3. Main results

For the convenience of narration, we denote

f (x) = x(1− x)B(x)

and
g(x) = R(x)− [1− x(1− x)]B(x)

throughout this section.

THEOREM 3.1. Both the functions f (x) and g(x) are completely monotonic on
(0,1/2] .

Proof. It follows from (2.3) that

f (x) = x(1− x)B(x)

=
[
1− (1−2x)2] ∞

∑
n=0

β (2n+1)(1−2x)2n

=
π
4

+
∞

∑
n=1

[β (2n+1)−β (2n−1)](1−2x)2n

and
β (2n+1)−β (2n−1)> 0.

Elaborated computations lead to

f (k)(x) =
∞

∑
n=[k/2]

(−1)k 2k(2n)!
(2n− k)!

[β (2n+1)−β (2n−1)](1−2x)2n−k.

Therefore, (−1)k f (k)(x) � 0 for all x ∈ (0,1/2] and k = 0,1,2,3 · · · and f (x) is com-
pletely monotonic on (0,1/2] . It is easy to verify that f (x) is decreasing, f (2n)(x) is
decreasing and f (2n+1)(x) is strictly increasing on (0,1/2] for n ∈ N .
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It follows from 2.1(2) that

g(x) = R(x)− [1− x(1− x)]B(x)

= log16+4
∞

∑
n=1

λ (2n+1)(1−2x)2n−4[1− x(1− x)]
∞

∑
n=0

β (2n+1)(1−2x)2n

= log16+4
∞

∑
n=1

λ (2n+1)(1−2x)2n− [(1−2x)2 +3]
∞

∑
n=0

β (2n+1)(1−2x)2n

= log16− 3π
4

+
∞

∑
n=1

[4λ (2n+1)−β (2n−1)−3β (2n+1)](1−2x)2n, (3.1)

4λ (2n+1)−β (2n−1)−3β (2n+1)> 4[λ (2n+1)−β (2n−1)]> 0

and

g(k)(x) =
∞

∑
n=[k/2]

(−1)k 2k(2n)!
(2n− k)!

[4λ (2n+1)−β (2n−1)−3β (2n+1)](1−2x)2n−k.

Therefore, (−1)kg(k)(x) � 0 for all x ∈ (0,1/2] and k = 0,1,2,3 · · · , and g(x) is
completely monotonic on (0,1/2] . It is easy to check that g(x) is decreasing, g(2n)(x)
is decreasing and g(2n+1)(x) is strictly increasing on (0,1/2] for n ∈ N . �

Let
⎧⎪⎨
⎪⎩

A1(1) = −1,A1(2) = 2η(2),
A1(2k−1) = −2η(2k−2), A1(2k) = 2η(2k) (k � 2),
A2(0) = β (1) = π

4 , A2(k) = β (2k+1)−β (2k−1) (k � 1).
(3.2)

THEOREM 3.2. Let n ∈ N . Then the following statements are true:
(1) The function H1

n (x) defined by

H1
n (x) =

f (x)−P1
n (x)

x2n+1

with P1
n (x) = 1 + ∑2n

k=1 A1(k)xk is strictly increasing and concave from (0,1/2] onto
(−2η(2n),H1

n (1/2)] . In particular, the double inequality

2

[
H1

n

(
1
2

)
+2η(2n)

]
x2n+2 � x(1− x)B(x)−P1

n (x)+2η(2n)x2n+1

�
[
H1

n

(
1
2

)
+2η(2n)

]
x2n+1 (3.3)

holds for all n ∈ N and x ∈ (0,1/2] , and each inequality of (3.3) becomes equality if
and only if x = 1/2 .
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(2) The function H2
n (x) defined by

H2
n (x) =

f (x)−P2
n (x)

x2n

with P2
n (x) = 1 + ∑2n−1

k=1 A1(k)xk is strictly decreasing and convex from (0,1/2] onto
[H2

n (1/2),2η(2n)) . In particular, the two-sided inequality

[
H2

n

(
1
2

)
−2η(2n)

]
x2n � x(1− x)B(x)−P2

n (x)−2η(2n)x2n

� 2

[
H2

n

(
1
2

)
−2η(2n)

]
x2n+1 (3.4)

takes place for all n ∈ N and x ∈ (0,1/2] , and each inequality of (3.4) reduces to
equality if and only if x = 1/2 .

(3) The function In(x) defined by

In(x) =
f (x)−P3

n (x)
(1−2x)2n+2 ,

with P3
n (x) = ∑n

k=0 A2(k)(1−2x)2k is strictly decreasing and convex from (0,1/2) onto
(A2(n+1), In(0+)) . In particular, the double inequality

0 � x(1− x)B(x)−P3
n (x)−A2(n+1)(1−2x)2n+2

�
(
In(0+)−A2(n+1)

)
(1−2x)2n+3 (3.5)

is valid for all n ∈ N and x ∈ (0,1/2) , and each inequality of (3.5) becomes equality if
and only if x = 1/2 .

Proof. (1) Let h1(x)= f (x)−P1
n (x) and h2(x)= x2n+1 . Then H1

n (x)= h1(x)/h2(x) ,
h(m)

1 (0+) = h(m)
2 (0+) = 0 for all m ∈ N ∪{0} with 0 � m � 2n , and

h(2n+1)
1 (x)

h(2n+1)
2 (x)

=
f (2n+1)(x)
(2n+1)!

.

From Lemma 2.2 we know that H1
n (x) has the same monotonicity with the function

f (2n+1)(x) if f (2n+1)(x) is monotonic. Therefore, it follows from Theorem 3.1 that
H1

n (x) is increasing on (0,1/2] .
Elaborated computations lead to

(H1
n (x))′ =

(
h1(x)
h2(x)

)′
=

x
(
f (x)−P1

n (x)
)′ − (2n+1)

(
f (x)−P1

n (x)
)

x2n+2

=
∑∞

k=n

[
(2n−2k+2)η(2k)x2k+1+(2k−2n−1)η(2k+2)x2k+2

]
2x2n+2 .
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Let h3(x) = x2n+2 and

h4(x) =
∞

∑
k=n

[
(2n−2k+2)η(2k)x2k+1 +(2k−2n−1)η(2k+2)x2k+2

]
.

Then we clearly see that h(m)
3 (0+) = h(m)

4 (0+) = 0 for all m∈N∪{0} with 0 � m � 2n ,
and

h(2n+1)
3 (x)

h(2n+1)
4 (x)

=
f (2n+2)(x)
(2n+2)!

.

From Lemma 2.2 we know that (H1
n (x))′ has the same monotonicity with the function

f (2n)(x) if f (2n)(x) is monotonic. It follows from Theorem 3.1 that the desired mono-
tonicity of the function (H1

n (x))′ is obtained and the desired concavity of the function
H1

n (x) is proved.
Note that H1

n (0+) = −2η(2n) . Therefore, inequalities (3.3) follows from the
monotonicity and concavity of the function H1

n (x) .
(2) Let h5(x)= f (x)−P2

n (x) and h6(x)= x2n . Then H2
n (x)= h5(x)/h6(x) , h(m)

5 (0+)
= h(m)

6 (0+) = 0 for all m ∈ N ∪{0} with 0 � m � 2n−1, and

h(2n)
5 (x)

h(2n)
6 (x)

=
f (2n)(x)
(2n)!

.

From Lemma 2.2 we know that H2
n (x) has the same monotonicity with the function

f (2n)(x) . Making use of Theorem 3.1, we know that H2
n (x) is decreasing on (0,1/2] .

Simple computations give

(H2
n (x))′ =

x
(
f (x)−P2

n (x)
)′ − (2n+1)

(
f (x)−P2

n (x)
)

x2n−1

=
∑∞

k=n

[
(2k−2n)η(2k)x2k +(2n−2k−1)η(2k)x2k+1

]
2x2n−1 .

Let h7(x) = x2n−1 and

h8(x) =
∞

∑
k=n

[
(2k−2n)η(2k)x2k +(2n−2k−1)η(2k)x2k+1

]
.

Then h(m)
7 (0+) = h(m)

8 (0+) = 0 for all m ∈ N ∪{0} with 0 � m � 2n−1, and

h(2n)
7 (x)

h(2n)
8 (x)

=
f (2n−1)(x)
(2n−1)!

.

According to Theorem 3.1 and Lemma 2.2, we can get the desired convexity of H2
n (x) .

Using the monotonicity and concavity of H2
n (x) , we obtain inequality (3.4).
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(3) It follows from (2.3) that

In(x) =
f (x)−P3

n (x)
(1−2x)2n+2 =

∞

∑
k=0

A2(k+n+1)(1−2x)2k.

Lemma 2.1(2) leads to the conclusion that A2(k + n + 1) > 0 for all k,n ∈ N . By
the monotonicity of (1− 2x)2k , we can know that In(x) is decreasing on (0,1/2] .
Simple computations lead to I′′n (x) > 0, which implies that In(x) is convex. Therefore,
inequality (3.5) follows from the monotonicity and convexity of the function In(x) . �

Let n = 1. Then inequality (3.3) leads to Corollary 3.3 immediately.

COROLLARY 3.3. The double inequality

1− x+
π2

6
x2− π2

6
x3 +2

(
2π −4− π2

6

)
x4 � x(1− x)B(x)

� 1− x+
π2

6
x2 +

(
2π −4− π2

3

)
x3 (3.6)

holds for all x ∈ (0,1/2] .

REMARK 3.4. Corollary 3.3 provide new lower and upper bounds for x(1−x)B(x)
in term of cubic and quartic polynomials, respectively.

Let n = 2. Then inequality (3.4) becomes Corollary 3.5.

COROLLARY 3.5. The two-sided inequality

1− x+
π2

6
x2 − π2

6
x3 +

(
4π −8− π2

3

)
x4 � x(1− x)B(x)

� 1− x+
π2

6
x2 − π2

6
x3 +

7π4

360
x4 +2

(
4π −8− π2

3
− 7π4

360

)
x5 (3.7)

takes place for x ∈ (0,1/2] .

REMARK 3.6. Inequality (3.7) provide new lower and upper bounds for x(1−
x)B(x) in term of quartic and quintic polynomials, respectively.

Let n = 1. Then inequality (3.5) reduces to Corollary 3.7.

COROLLARY 3.7. The double inequality

P3
1 (x)+A2(2)(1−2x)4 � x(1− x)B(x)

� P3
1 (x)+A2(2)(1−2x)4 +

(
I1(0+)−A2(2)

)
(1−2x)5 (3.8)

is valid for x ∈ (0,1/2] , where

A2(2) =
5π5

1536
− π3

32
= 0.02722 · · ·, I1(0+) = −π2

32
+1 = 0.69157 · · ·,
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P3
1 (x) =

π
4

+
π
32

(
π2−8

)
(1−2x)2 ,

and each inequality of (3.8) becomes equality if and only if x = 1/2 .

REMARK 3.8. Inequality (3.8) provide new asymptotic sharp lower and upper
bounds for the function x(1− x)B(x) by the polynomial function of (1−2x) .

Next, we present several new properties the function g(x) = R(x)− [1− x(1−
x)]B(x) . Let

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

B1(0) = 1, B1(1) = −
(
1+ π2

6

)
= −2.6450 · · ·,

B1(2k) = 2ζ (2k+1)+2η(2k), B1(2k+1) = − [2η(2k+2)+2η(2k)] (k � 1),

B2(0) = 4log2− 3π
4 = 0.4164 · · ·,

B2(k) = 4λ (2k+3)−β (2k+1)−3β (2k+3) (k � 1).
(3.9)

THEOREM 3.9. Let n ∈ N . Then the following statements are true:
(1) Then function G1

n(x) defined by

G1
n(x) =

g(x)−R1
n(x)

x2n

with R1
n(x)= ∑2n−1

k=0 B1(k)xk is strictly decreasing and convex from (0,1/2] into [G1
n(1/2),

B1(2n)) . In particular, the double inequality

[
G1

n

(
1
2

)
−B1(2n)

]
x2n � g(x)−R1

n(x)−B1(2n)x2n

� 2

[
G1

n

(
1
2

)
−B1(2n)

]
x2n+1 (3.10)

holds for all n ∈ N and x ∈ (0,1/2] , and each inequality of (3.10) becomes equality if
and only if x = 1/2 .

(2) The function G2
n(x) defined by

G2
n(x) =

g(x)−R2
n(x)

x2n+1

with R2
n(x)= ∑2n

k=0 B1(k)xk is strictly increasing and concave from (0,1/2] into (B1(2n+
1),G2

n(1/2)] . In particular, the two-sided inequality

2

[
G2

n

(
1
2

)
−B1(2n+1)

]
x2n+2 � g(x)−R2

n(x)−B1(2n+1)x2n+1

�
[
G2

n

(
1
2

)
−B1(2n+1)

]
x2n+1 (3.11)
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is valid for all n ∈ N and x ∈ (0,1/2] , and each inequality of (3.11) becomes equality
if and only if x = 1/2 .

(3) The function Kn(x) defined by

Kn(x) =
g(x)−R3

n(x)
(1−2x)2n ,

with R3
n(x) = ∑n−1

k=0 B2(k)(1−2x)2k is strictly decreasing and convex from (0,1/2) onto
(B2(n),Kn(0+)) . In particular, the double inequality

0 � g(x)−R3
n(x)−B2(n)(1−2x)2n

�
[
Kn

(
0+)−B2(n)

]
(1−2x)2n+1 (3.12)

takes place for all n ∈ N and x ∈ (0,1/2] , and each inequality of (3.12) becomes
equality if and only if x = 1/2 .

Proof. (1) Let g1(x) = g(x)−R1
n(x) and g2(x) = x2n . Then G1

n(x) = g1(x)/g2(x) ,
g(m)

1 (0+) = g(m)
2 (0+) = 0 for all m ∈ N ∪{0} with 0 � m � 2n+1, and

g(2n)
1 (x)

g(2n)
2 (x)

=
g(2n)(x)
(2n)!

.

From Lemma 2.2 we know that the function G1
n(x) has the same monotonicity with the

function g(2n)(x) if g(2n)(x) is monotonic. Therefore, G1
n(x) is decreasing on (0,1/2]

follows from Theorem 3.1.
Elaborated computations lead to

(G1
n(x))

′ =
(

g1(x)
g2(x)

)′
=

x
(
g(x)−R1

n(x)
)′ −2n

(
g(x)−R1

n(x)
)

x2n+1 =
g3(x)
g4(x)

,

where
g3(x) = x

(
g(x)−R1

n(x)
)′ −2n

(
g(x)−R1

n(x)
)
, g4(x) = x2n+1.

Making use of (3.1), g3(x) can be rewritten as

g3(x) =
∞

∑
k=2n

kB1(k)xk−1.

It is easy to check that g(m)
3 (0+) = g(m)

4 (0+) = 0 for all m ∈ N ∪{0} with 0 � m �
2n+2, and

g(2n)
3 (x)

g(2n)
4 (x)

=
g(2n+1)(x)
(2n+1)!

.

It follows from Lemma 2.2 that the function (G1
n(x))

′ has the same monotonicity with
the function g(2n+1)(x) if g(2n+1)(x) is monotonic. Therefore, Theorem 3.1 leads to
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the conclusion that (G1
n(x))

′ is strictly increasing on (0,1/2] and we obtain the desired
convexity of G1

n(x) . Note that G1
n(0

+) = B1(2n) . Hence, inequality (3.10) follows
from the monotonicity and convexity of G1

n(x) .
(2) Let g5(x) = g(x)− R2

n(x) and g6(x) = x2n+1 . Then G2
n(x) = g5(x)/g6(x) ,

g(m)
5 (0+) = g(m)

6 (0+) = 0 for all m ∈ N ∪{0} with 0 � m � 2n , and

g(2n+1)
5 (x)

g(2n+1)
6 (x)

=
g(2n+1)(x)
(2n+1)!

.

Therefore, G2
n(x) is strictly increasing on (0,1/2] follows easily from Lemma 2.2 and

Theorem 3.1.
Simple computations lead to

(G2
n(x))

′ =
(

g5(x)
g6(x)

)′
=

x
(
g(x)−R2

n(x)
)′ − (2n+1)

(
g(x)−R2

n(x)
)

x2n+2 =
g7(x)
g8(x)

,

where

g7(x) = x
(
g(x)−R2

n(x)
)′ − (2n+1)

(
g(x)−R2

n(x)
)
,g8(x) = x2n+2.

From (3.1) we clearly see that g7(x) can be rewritten as

g7(x) =
∞

∑
k=2n+1

kB1(k)xk−1.

It is easy to check that g(m)
7 (0+) = g(m)

8 (0+) = 0 for all m ∈ N∪{0} with 0 � m � 2n ,
and

g(2n+1)
7 (x)

g(2n+1)
8 (x)

=
g(2n+2)(x)
(2n+2)!

.

Therefore, (G2
n(x))′ is strictly decreasing on (0,1/2] follows from Lemma 2.2 and

Theorem 3.1. Note that G2
n(0

+) = B1(2n+1) . Hence, inequality (3.11) can be derived
from the monotonicity and concavity of the function G2

n(x) .
(3) It follows from (3.1) that

g(x)−R3
n(x) =

∞

∑
k=0

[4λ (2k+2n+1)−β (2k+2n−1)−3β (2k+2n+1)](1−2x)2k+2n

and

Kn(x) =
∞

∑
k=0

[4λ (2k+2n+1)−β(2k+2n−1)−3β(2k+2n+1)](1−2x)2k.

According to the monotonicity of β (n) and (1−2x)2k we know that Kn(x) is decreas-
ing on (0,1/2] .

Simple computations show that K′′
n (x) > 0, which implies that Kn(x) is convex.

Note that Kn(1/2−) = B2(n) . Therefore, inequality (3.12) can be obtained by using the
monotonicity and convexity of the function Kn(x) . �

Let n = 2. Then inequality (3.10) leads to Corollary 3.10 immediately.
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COROLLARY 3.10. The double inequality

R1
2(x)+B1(4)x4 +

[
G1

2

(
1
2

)
−B1(4)

]
x4 � R(x)− [1− x(1− x)]B(x)

� R1
2(x)+B1(4)x4 +2

[
G1

2

(
1
2

)
−B1(4)

]
x5

holds for all x ∈ (0,1/2] , and each inequality of (3.13) becomes equality if and only if
x = 1/2 , where

B1(4) = 2ζ (5)+
7π4

360
= 3.9678 · · ·,

G1
2

(
1
2

)
= 64ln(2)−12π−8+

2π2

3
−8ζ (3)+

π2(7π2 +60)
180

= 2.7044 · · · ,

R1
2(x) = 1−

(
π2

6
+1

)
x+

(
2ζ (3)+

π2

6

)
x2− π2

(
7π2 +60

)
360

x3.

Let n = 1. Then inequality (3.11) leads to Corollary 3.11.

COROLLARY 3.11. The double inequality

R2
1(x)+B1(3)x3 +2

[
G2

1

(
1
2

)
−B1(3)

]
x4 � R(x)− [1− x(1− x)]B(x) (3.13)

� R2
1(x)+B1(3)x3 +

[
G2

1

(
1
2

)
−B1(3)

]
x3

holds for all x ∈ (0,1/2] , and each inequality of (3.13) becomes equality if and only if
x = 1/2 , where

B1(3) = −7π4

360
− π2

6
= −3.5390 · · ·,

G2
1

(
1
2

)
= 32ln(2)−6π −4+

π2

3
−4ζ (3) = −2.1875 · · ·,

R2
1(x) = 1−

(
π2

6
+1

)
x+

(
2ζ (3)+

π2

6

)
x2.

Let n = 2. Then inequality (3.12) leads to Corollary 3.12.

COROLLARY 3.12. The two-sided inequality

R3
2(x)+B2(2)(1−2x)4 � R(x)− [1− x(1− x)]B(x) (3.14)

� R3
2(x)+B2(2)(1−2x)4 +

[
K2

(
0+)−B2(2)

]
(1−2x)5

takes place for all x ∈ (0,1/2] , and each inequality of (3.14) becomes equality if and
only if x = 1/2 , where

B2(2) = 62ζ (5)− 5π5

32
− π3

2
= 0.969 · · · ,
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K2
(
0+)

=
3π3

32
+ π −4ln(2)− 7ζ (3)

2
+1 = 0.0684 · · · ,

R3
2(x) = 4ln(2)− 3π

4
+

1
4

(
14ζ (3)−π − 3π3

8

)
(1−2x)2.
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Math. J. 1995, 5, 41–60.

[20] M.-K. WANG, Y.-M. CHU, S.-L. QIU, Sharp bounds for generalized elliptic integrals of the first
kind, J. Math. Anal. Appl. 2015, 429, 744–757.

[21] E. T. WHITTAKER, G. N. WASTON, A course of Modern Analysis, Cambridge University Press,
London, 1958.



628 T.-R. HUANG, L. CHEN, S.-Y. TAN AND Y.-M. CHU

[22] J. WIMP, Sequence Transformations and Their Applications, Academic Press, New York, 1981.
[23] P.-G. ZHOU, S.-L. QIU, G.-Y. TU, Y.-L. LI, Some properties of the Ramanujan constant, J. Zhejiang

Sci-Tech Univ. 2010, 27 (5), 835–841.

(Received January 16, 2020) Ti-Ren Huang
Department of Mathematics

Zhejiang Sci-Tech University
Hangzhou 310018, China

e-mail: htiren@zstu.edu.cn

Lu Chen
Department of Mathematics

Zhejiang Sci-Tech University
Hangzhou 310018, China

e-mail: 1456990968@qq.com

Shen-Yang Tan
Taizhou Institute of Sci. & Tech. NJUST.

Taizhou 225300, China
e-mail: tanshenyang@njust.edu.cn

Yu-Ming Chu
Department of Mathematics

Huzhou University, Huzhou 313000, China
and

School of Mathematics and Statistics
Changsha University of Science & Technology

Changsha 410114, China
e-mail: chuyuming2005@126.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


