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COMBINATION OF GEOMETRIC AND ARITHMETIC MEANS

WEI-MAO QIAN, CHUN-LIN MA AND HUI-ZUO XU ∗
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Abstract. In this paper, we prove that λ = 1/2−
√

1− e−2/p/2 and μ = 1/2−√
6p/(6p) are

the best possible parameters on the interval (0,1/2) such that the double inequalities

Gp [λa+(1−λ)b,λb+(1−λ )a]A1−p (a,b) < X (a,b)

< Gp [μa+(1−μ)b,μb+(1−μ)a]A1−p (a,b)

hold for all p ∈ [1,∞) and a,b > 0 with a �= b , where G(a,b) is the geometric mean, A(a,b)
is the arithmetic mean, and X (a,b) is the Sándor mean.

1. Introduction

Let r ∈ R and a,b > 0 with a �= b . Then the geometric mean G(a,b) , the arith-
metic mean A(a,b) , first Seiffert mean P(a,b) [4], Sándor mean X (a,b) [6] and r th
power mean Mr (a,b) are defined by

G(a,b) =
√

ab, A(a,b) =
a+b

2

P(a,b) =
a−b

2arcsin [(a−b)/(a+b)]
, X (a,b) = A(a,b)eG(a,b)/P(a,b)−1, (1.1)

and

Mr (a,b) =
(

ar +br

2

)1/r

(r �= 0) , M0 (a,b) = a1/2b1/2.

It is well known the r th power mean is continuous and strictly increasing with respect
to r ∈ R for fixed distinct positive real numbers a and b , and the inequalities

H (a,b) = M−1 (a,b) < G(a,b) = M0 (a,b) < A(a,b) = M1 (a,b) (1.2)
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hold for all a,b > 0 with a �= b , where H (a,b) = 2ab/(a+b) is the harmonic mean of
a and b . Recently, the Sándor mean has attracted the attention of several researchers.
In [7], Sándor established the inequalities

X (a,b) <
P2 (a,b)
A(a,b)

,
A(a,b)G(a,b)

P(a,b)
< X (a,b) <

A(a,b)P(a,b)
2P(a,b)−G(a,b)

,

A(a,b) [P(a,b)+G(a,b)]
3P(a,b)−G(a,b)

< X (a,b) < A(a,b)
[
1
e

+
(

1− 1
e

)
G(a,b)
P(a,b)

]
,

A(a,b)+G(a,b)−P(a,b) < X (a,b) < A−1/3 (a,b)
[
A(a,b)+G(a,b)

2

]4/3

,

P1/[log(π/2)] (a,b)A1−1/[log(π/2)] (a,b) < X (a,b) < P−1 (a,b)
[
A(a,b)+G(a,b)

2

]2

hold for all a,b > 0 with a �= b .
Chu, Yang and Wu [3] proved that the double inequality

Mα (a,b) < X (a,b) < Mβ (a,b) (1.3)

hold for all a,b > 0 with a �= b if and only if α � 1/3 and β � log2/(1+ log2) =
0.4903 · · ·.

In [8], Zhou et al. proved that the double inequality

Hλ (a,b) < X (a,b) < Hμ (a,b)

hold for all a,b > 0 with a �= b if and only if λ � 1/2 and μ � log3/(1+ log2) =

0.6488 · · ·, where Hq (a,b) =
[(

aq +(ab)q/2 +bq
)

/3
]1/q

(q �= 0) and H0 (a,b) =
√

ab

is the q th power-type Heronian mean of a and b .
Qian, Chu and Zhang [5] proved that the double inequalities

α1A(a,b)+ (1−α1)H (a,b) < X (a,b) < β1A(a,b)+ (1−β1)H (a,b) ,
α2A(a,b)+ (1−α2)G(a,b) < X (a,b) < β2A(a,b)+ (1−β2)G(a,b)

hold for all a,b > 0 with a �= b if and only if α1 � 1/e , β1 � 2/3, α2 � 1/3 and
β2 � 1/e .

Let a,b > 0, p ∈ [1,∞) , t ∈ (0,1/2) and

GAt,p (a,b) = Gp [ta+(1− t)b, tb+(1− t)a]A1−p (a,b) . (1.4)

It is not difficult to verify that (See [2])

GAt,1 (a,b) = G [ta+(1− t)b,tb+(1− t)a] , (1.5)

GAt,2 (a,b) = H [ta+(1− t)b,tb+(1− t)a] (1.6)

and GAt,p (a,b) is strictly increasing with respect to t ∈ (0,1/2) for fixed a,b > 0 with
a �= b .
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From (1.2)–(1.6) and monotonicity of the function, we clearly see that

GA1,2 (a,b) = H (a,b) = M−1 (a,b) < GA1,1 (a,b) = G(a,b) = M0 (a,b)
< X (a,b) < M1 (a,b) = A(a,b) = GAt,0 (a,b) = GA1/2,1/2 (a,b) (1.7)

hold for all a,b > 0 with a �= b .
Motivated by inequality (1.7), it is natural to ask, for fixed p∈ [1,∞) , what are the

best possible parameters λ ,μ ∈ (0,1/2) such that the double inequality

GAλ ,p (a,b) < X (a,b) < GAμ,p (a,b)

holds and a,b > 0 with a �= b? The aim of this paper is to answer this question.

2. Lemmas

In order to prove the desired theorems we need following five Lemmas, which we
present in this section.

LEMMA 2.1. (See [1, Theorem 1.25]) For −∞ < a < b < +∞ , let f ,g : [a,b] →
R be continuous on [a,b] and differentiable on (a,b) , and g′ (x) �= 0 on (a,b) . If
f ′ (x)/g′ (x) is increasing (decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′ (x)/g′ (x) is strictly monotone, then the monotonicity in the conclusion is also
strict.

LEMMA 2.2. The inequality

2
3p

+ e−2/p < 1 (2.1)

hold for all p ∈ [1,∞) .

Proof. It is easy to check that inequality t/3+ e−t < 1 for t ∈ (0,2] . By substi-
tuting t = 2/p , we obtain Lemma 2.2 immediately. �

LEMMA 2.3. The function

φ (x) =
x3
√

1− x2

arcsin(x)− x
√

1− x2

decreases on the interval (0,1) from 3/2 to 0 .
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Proof. Let φ1 (x) = x3
√

1− x2 , φ2 (x) = arcsin(x)− x
√

1− x2 . Then elaborated
computations lead to φ ′

2(x) = 2x2/
√

1− x2 > 0 for x ∈ (0,1) , and

φ (x) =
φ1 (x)
φ2 (x)

=
φ1 (x)−φ1 (0)
φ2 (x)−φ2 (0)

, (2.2)

φ ′
1 (x)

φ ′
2 (x)

= −2x2 +
3
2
. (2.3)

It is well known that the function x �→ −2x2 + 3/2 is strictly decreasing on (0,1) ,
hence (2.3) leads to the conclusion that the function φ ′

1 (x)/φ ′
2 (x) is strictly decreasing

on (0,1) .
Note that

φ
(
0+)

= lim
x→0+

φ ′
1(x)

φ ′
2(x)

=
3
2
, φ

(
1−

)
= 0. (2.4)

Therefore, Lemma 2.3 follows from (2.2), (2.4) and Lemma 2.1 together with the mono-
tonicity of φ ′

1 (x)/φ ′
2 (x) . �

LEMMA 2.4. The function

ϕ (x) =
x2 arcsin(x)

arcsin(x)− x
√

1− x2

decreases on the interval (0,1) from 3/2 to 1 .

Proof. Let ϕ1 (x) = x2 arcsin(x) , ϕ2 (x) = arcsin(x)− x
√

1− x2 . Then simple
computations lead to ϕ ′

2(x) = 2x2/
√

1− x2 > 0 for x ∈ (0,1) , and

ϕ (x) =
ϕ1 (x)
ϕ2 (x)

=
ϕ1 (x)−ϕ1 (0)
ϕ2 (x)−ϕ2 (0)

, (2.5)

ϕ ′
1 (x)

ϕ ′
2 (x)

=

√
1− x2 arcsin(x)

x
+

1
2
. (2.6)

Note that x < arcsin(x) for x ∈ (0,1) , and

d

[√
1−x2 arcsin(x)

x

]

dx
=

x
√

1− x2− arcsin(x)
x2
√

1− x2
< 0

for all x ∈ (0,1) . Thus the function x �→ √
1− x2 arcsin(x)/x is strictly decreasing on

(0,1) and so is ϕ ′
1 (x)/ϕ ′

2 (x) by (2.6). Moreover,

ϕ
(
0+)

= lim
x→0+

ϕ ′
1(x)

ϕ ′
2(x)

=
3
2
, ϕ

(
1−

)
= 1. (2.7)

Therefore, Lemma 2.4 follows from (2.5), (2.7) and Lemma 2.1 together with the mono-
tonicity of ϕ ′

1 (x)/ϕ ′
2 (x) . �
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LEMMA 2.5. Let 0 < u < 1 , p ∈ [1,∞) and

g(u, p;x) =
1
2

p log
(
1−ux2)−

√
1− x2 arcsin(x)

x
+1. (2.8)

Then the following statements are true:

1. g(u, p;x) > 0 for x ∈ (0,1) if and only if u � 2/(3p) ;

2. g(u, p;x) < 0 for x ∈ (0,1) if and only if u � 1− e−2/p .

Proof. From (2.8) and elaborated computations one has

lim
x→0+

g(u, p;x) = 0, (2.9)

lim
x→1−

g(u, p;x) =
1
2

p log(1−u)+1, (2.10)

∂g(u, p;x)
∂x

=
arcsin(x)− x

√
1− x2

x2
√

1− x2
− pux

1−ux2

=
(p−1)x

√
1− x2 + arcsin(x)√

1− x2 (1−ux2)
[gp (x)−u] , (2.11)

where

gp (x) =
1

(p−1) x3
√

1−x2

arcsin(x)−x
√

1−x2
+ x2 arcsin(x)

arcsin(x)−x
√

1−x2

. (2.12)

Lemma 2.3 and 2.4 together with (2.12) show that the function x �→ gp (x) is
strictly increasing on (0,1) , and

lim
x→0+

gp (x) =
2
3p

, lim
x→1−

gp (x) = 1. (2.13)

From Lemma 2.2 we know that the interval on (0,1) can be expressed by

(0,1) =
(

0,
2
3p

]
∪

(
2
3p

,1− e−
2
p

)
∪

[
1− e−

2
p ,1

)
.

Following we divide the proof into three cases.
Case 1. 0 < u � 2/(3p) . Then from (2.11) and (2.13) together with the mono-

tonicity of the function gp (x) lead to the conclusion that the function x �→ g(u, p;x) is
strictly increasing on (0,1) . Therefore, g(u, p;x) > 0 for all x ∈ (0,1) follows from
(2.9).

Case 2. 1− e−2/p � u < 1. Then from (2.10), (2.11), (2.13), and Lemma 2.2
together with the monotonicity of the function x �→ gp (x) , we clearly see that

lim
x→1−

g(u, p;x) � 0, (2.14)
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and there exists x0 ∈ (0,1) such that the function x �→ g(u, p;x) is strictly decreasing
on (0,x0) and strictly increasing on (x0,1) . Therefore, g(u, p;x) < 0 for all x ∈ (0,1)
follows easily from (2.9) and (2.14).

Case 3. 2/(3p) < u < 1− e−2/p . Then it follows from (2.10), (2.11), (2.13)
together with the monotonicity of the function x �→ gp (x) that

lim
x→1−

g(u, p;x) > 0, (2.15)

and there exists x1 ∈ (0,1) such that the function x �→ g(u, p;x) is strictly decreasing
on (0,x1) and strictly increasing on (x1,1) . Combining with (2.9), we conclude that
there exists x∗ ∈ (0,1) such that g(u, p;x) < 0 for x ∈ (0,x∗) and g(u, p;x) > 0 for
x ∈ (x∗,1) . �

3. Main results

THEOREM 3.1. Let p ∈ [1,∞) and λ ,μ ∈ (0,1/2) , then the double inequality

GAλ ,p (a,b) < X (a,b) < GAμ,p (a,b)

holds for all a,b > 0 with a �= b if and only if λ � 1/2−
√

1− e−2/p/2 and μ �
1/2−√

6p/(6p) .

Proof. Without loss of generality, we can assume that a > b > 0.
Let x = (a−b)/(a+b) . Then x ∈ (0,1) , and equations (1.1) and (1.4) yield

X (a,b) = A(a,b)e

√
1−x2 arcsin(x)

x −1, (3.1)

GAt,p (a,b) = A(a,b)
[
1− (1−2t)2x2

]p/2
. (3.2)

It follows from (3.1) and (3.2) that

log

[
GAt,p (a,b)

X (a,b)

]
= log

[
GAt,p (a,b)

A(a,b)

]
− log

[
X (a,b)
A(a,b)

]

=
1
2

p log
[
1− (1−2t)2x2

]
−

√
1− x2 arcsin(x)

x
+1. (3.3)

Therefore, Theorem 3.1 follows from Lemma 2.5 and (3.3). �

4. Applications

Let p = 1,2 in Theorem 3.1, then we obtain the following Theorem 4.1 immedi-
ately, which provides the sharp one-parameter harmonic and geometric means bounds
for the Sándor mean.
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THEOREM 4.1. ([8, Theorems 3.3 and 3.4]) Let λ1,λ2,μ1,μ2 ∈ (0,1/2) . Then
the double inequalities

H [λ1a+(1−λ1)b,λ1b+(1−λ1)a] < X (a,b) < H [μ1a+(1− μ1)b,μ1b+(1− μ1)a] ,
G [λ2a+(1−λ2)b,λ2b+(1−λ2)a] < X (a,b) < G [μ2a+(1− μ2)b,μ2b+(1− μ2)a]

hold for all a,b > 0 with a �= b if and only if λ1 � 1/2−√
1−1/e/2 , μ1 � 1/2−√

3/6 , λ2 � 1/2−√
1−1/e2/2 and μ2 � 1/2−√

6/6 .

Theorem 3.1 and (1.1) also lead to Theorem 4.2, which gives the sharp bound for
the first Seiffert mean in terms of the combination of geometric and arithmetic means.

THEOREM 4.2. Let p ∈ [1,∞) and α,β ∈ (0,1/2) . Then the double inequality

G(a,b)
log [GAα ,p (a,b)]− log [A(a,b)]+1

< P(a,b) <
G(a,b)

log
[
GAβ ,p (a,b)

]− log [A(a,b)]+1

holds for all a,b > 0 with a �= b if and only if α � 1/2−√
6p/(6p) and β � 1/2−√

1− e−2/p/2 .

Let a > b > 0, x = (a−b)/(a+b) , α = 1/2−√
6p/(6p) and β = 1/2−√

1− e−2/p/2. Then from Theorem 4.2 we obtain the new one-parameter bounds for
the inverse sine function as follows: for all x ∈ (0,1) and p ∈ [1,∞) ,

x√
1− x2

[
1
2

p log
(
1− x2 + e−2/px2

)
+1

]
< arcsin(x)

<
x√

1− x2

[
1
2

p log

(
1− 2

3p
x2

)
+1

]
. (4.1)

Making use of Lemma 2.1, it is not difficult to verify that the function t →
{log[1− x2 +(1/e2)t x2]}/t is strictly increasing on (0,1) for fixed x ∈ (0,1) , while
t → [log(1− tx2)]/t is decreasing. Changing the variables of the above two functions,
we shall find that the function on the left-hand side of (4.1) is strictly decreasing on
p∈ [1,∞) , while the function on the right-hand side is strictly increasing on p∈ [1,∞) .
Therefore, the best estimates in (4.1) are arrived at for p = 1.

THEOREM 4.3. The double inequality

x√
1− x2

[
1
2

log
(
1− x2 +

(
1/e2)x2)+1

]
< arcsin(x)

<
x√

1− x2

[
1
2

log

(
1− 2

3
x2

)
+1

]
.

holds for all x ∈ (0,1) .
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