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Abstract. In this paper, we study the complete consistency for the estimator of nonparametric
regression models based on extended negatively dependent random errors by using the exponen-
tial inequalities and the truncation method. In particular, if E|X |1+p < ∞ for some p > 1 , then
the result also holds, which improves the corresponding one in the literature. As an application,
the complete consistency for the nearest neighbor estimator is obtained. Finally, the simulation
study is provided to verify the validity of the theoretical result.

1. Introduction

Consider the following nonparametric regression model:

Yni = g(xni)+ εni, i = 1,2, . . . ,n, n � 1, (1.1)

where g(·) is an unknown regression function defined on A , A⊂R
d is a given compact

set for some d � 1, xni are known fixed design points and εni are random errors. As
an estimator of g(·) , the following general weighted linear regression estimator was
proposed:

gn(x) =
n

∑
i=1

Wni(x)Yni, x ∈ A ⊂ R
d , (1.2)

where Wni(x) = Wni(x;xn1,xn2, . . . ,xnn) , i = 1,2, . . . ,n are the weight functions.
The above estimator was first proposed by Stone (1977) and adapted by Georgiev

(1985) to the fixed design case, and then constantly studied by many authors. For
instance, when εni are assumed to be independent, the consistency and asymptotic
normality have been studied by Georgiev and Greblicki (1986), Georgiev (1988) and
Müller (1987) among others. When εni are assumed to be dependent, the consistency
and asymptotic normality have also been studied by many authors in recent years. For
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example, Roussas (1989) discussed strong consistency and quadratic mean consistency
for gn(x) under mixing conditions; Fan (1990) established some asymptotic properties
for the estimator based on Lq -mixingale sequence for some 1 � q � 2; Roussas et al.
(1992) established the asymptotic normality of gn(x) based on the strictly stationary
and strong mixing errors; Tran et al. (1996) discussed again the asymptotic normal-
ity of gn(x) under weakly stationary linear processes based on a martingale difference
sequence; Liang and Jing (2005) proved some consistencies and asymptotic normality
for the estimator gn(x) based on negatively associated (NA, for short) errors; Shen et
al. (2015) established the Rosenthal-type inequality for negatively superadditive de-
pendent (NSD, for short) random variables and applied it to nonparametric regression
models; Wang et al. (2015) and Wu et al. (2017) obtained the complete consistency
for the weighted estimator based on extended negatively dependent (END, for short)
and ρ∗ -mixing errors, respectively; Shen (2016) presented some results on complete
convergence for weighted sums of END random variables, and gave its application to
nonparametric regression models; Yang et al. (2018) provided the complete consistency
and the convergence rate for the estimator based on END errors; Chen et al. (2019) es-
tablished the complete consistency for the weighted estimator based on asymptotically
negatively associated (ANA, for short) random errors; Yan (2019) provided some suf-
ficient conditions for the complete convergence for the maximum of weighted sums
of END random variables and gave some applications to the nonparametric regression
models, and so forth.

Now let us recall the concepts of stochastic domination and END random vari-
ables.

DEFINITION 1.1. An array {Xni,1 � i � n,n � 1} of random variables is said to
be stochastically dominated by a random variable X if there exists a positive constant
C such that

P(|Xni| > x) � CP(|X | > x)

for all x � 0, i � 1 and n � 1.

DEFINITION 1.2. A finite collection of random variables {Xi,1 � i � n} is said
to be END if there exists a constant M > 0 such that both

P(X1 > x1,X2 > x2, . . . ,Xn > xn) � M
n

∏
i=1

P(Xi > xi)

and

P(X1 � x1,X2 � x2, . . . ,Xn � xn) � M
n

∏
i=1

P(Xi � xi)

hold for all real numbers x1 , x2 , . . . , xn . An infinite sequence {Xn,n � 1} is said to be
END if every finite subcollection is END.

An array {Xni,1 � i � n,n � 1} of random variables is called END if for every
n � 1, {Xni,1 � i � n} is a sequence of END random variables.

The above concept of END sequence was introduced by Liu (2009). If M = 1,
then the notion of END random variables reduces to the well-known notion of so-
called negatively dependent (ND, for short) random variables, which was introduced
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by Lehmann (1966). It is not that the concept of the END seems to be a simple gen-
eralization of the concept of negative correlation, but the extended negative correlation
structure is actually more comprehensive. As Liu (2009) mentioned, the terminal struc-
ture can reflect not only the negative correlation structure, but also the positive correla-
tion structure (the inequality defined by the ND random variable also has the opposite
direction), and some extensions. Since the concept of END sequence was proposed
by Liu (2009), many authors were devoted to studying the probability limit theorems
and statistical large sample properties for END random variables, including the prob-
ability inequalities, moment inequalities and applications. For example, Liu (2009)
obtained the precise large deviations for dependent random variables with heavy tails;
Chen et al. (2010) proved the strong law of large numbers for END random variables
and gave its applications to risk theory and renewal theory; Wu and Guan (2012), Qiu
et al. (2013) and Hu et al. (2015) studied complete convergence for weighted sums and
arrays of rowwise END random variables; Wu et al. (2014) established the complete
convergence and complete moment convergence for arrays of rowwise END random
variables; Wang et al. (2015) studied the complete consistency for the estimator of
nonparametric regression models based on END errors; Yang et al. (2018) established
the complete consistency for the estimator based on END errors, and so on.

In this paper, the complete consistency for the weighted estimator (1.2) in the
model (1.1) based on extended negatively dependent errors is investigated under some
mild conditions, especially the moment condition E|X |1+p < ∞ for some p � 1. This
moment condition is weaker than the corresponding one of Wang et al. (2015), which
needs the moment condition E|X |2p < ∞ for some p � 1.

The work is organized as follows. In next section, we list our preliminaries. The
main results and the simulation are presented in Section 3. In Section 4, we provide the
proofs of main results.

Throughout the paper, C denotes a positive constant not depending on n , which
may be different in various places. Let �x� denote the integer of x and I(A) be the
indicator function of set A . Denote logx = logmax(x,e) , x+ = xI(x � 0) and x− =
−xI(x � 0) . Unless other specified, we assume throughout the paper that gn(x) is
defined by (1.2). For any function g(x) , we assume c(g) to denote all continuity points
of the function g on A . The norm ||x|| means the Euclidean norm.

2. Preliminaries

In this section, we will present some important lemmas which will be used to prove
the main results. The first one is a basic property for END random variables, which was
presented by Liu (2009).

LEMMA 2.1. Let random variables X1 , X2 , · · · , Xn be END.

(i) If f1 , f2 , · · · , fn are all nondecreasing (or nonincreasing) functions, then
random variables f1(X1) , f2(X2) , . . . , fn(Xn) are END.



728 H. WANG, Y. FANG, L. CHEN, M. XI AND X. WANG∗

(ii) For each n � 1 , there exists a constant λ > 0 such that

E

(
n

∏
j=1

X+
j

)
� λ

n

∏
j=1

EX+
j . (2.1)

The following lemma can be referred to Wang et al. (2015)

LEMMA 2.2. Let {Xni,1 � i � n,n � 1} be an array of rowwise END random
variables with EXni = 0 and {bn,n � 1} be a sequence of positive constants. Suppose
that

(i) max1�i�n |Xni| = O(bn) a.s. ,
(ii) ∑n

i=1 EX2
ni = o(bn) ,

(iii) ∑∞
n=1 e−α/bn < ∞ f or some α > 0 .

Then ∑n
i=1 Xni converges completely to zero.

The last one is a basic property for stochastic domination. For the proof, one can
refer to Wu (2006, 2010), or Shen (2013).

LEMMA 2.3. Let {Xni,1 � i � n,n � 1} be an array of random variables which
is stochastically dominated by a random variable X . For any α > 0 and b > 0 , the
following two statements hold:

E|Xni|α I(Xni � b) � C1[E|X |α I(|X | � b)+bαP(|X | > b)], (2.2)

and

E|Xni|α I(Xni > b) � C2E|X |α I(|X | > b), (2.3)

where C1 and C2 are positive constants. Consequently, E|Xni|α � CE|X |α .

3. Main results and simulation

3.1. Main results

First, we give the following assumptions on weight functions Wni(x) for any fixed
design point x ∈ A :
(A1) ∑n

i=1Wni(x) → 1 as n → ∞ ;
(A2) ∑n

i=1 |Wni(x)| � C < ∞ for all n ;
(A3) ∑n

i=1 |Wni(x)| · |g(xni)−g(x)|I(||xni− x|| � a) → 0 as n → ∞ for all a > 0.
Let {εni,1 � i � n,n � 1} be an array of rowwise END random variables with the

same constant M > 0 in each row. Based on the assumptions above, we can get the
following complete consistency for the nonparametric regression estimator gn(x) .

THEOREM 3.1. Let {εni,1 � i � n,n � 1} be an array of rowwise END random
variables, which is stochastically by a random variable X with E|X |1+p < ∞ for some
p � 1 and Eεni = 0 . Assume that (A1)− (A3) hold. If

max
1�i�n

|Wni(x)| = O(n−1/p), (3.1)
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then for any x ∈ c(g) ,

gn(x) → g(x) completely, as n → ∞. (3.2)

REMARK 3.2. In the case of E|X |2p < ∞ for some p � 1, Wang et al. (2015) got
the same result as Theorem 3.1. Hence our result improves the corresponding one of
Wang et al. (2015).

As an application of Theorem 3.1, we give the complete consistency for the nearest
neighbour estimator of g(x) . Put A = [0,1] and take xni = i/n, i = 1,2, . . . , n . For any
x ∈ A , we rewrite

|xn1− x|, |xn2− x|, . . . , |xnn− x|
as follows:

|x(n)
R1(x)

− x|� |x(n)
R2(x)

− x|� · · · � |x(n)
Rn(x)

− x|, (3.3)

if |xni − x| = |xn j − x| , then |xni − x| is permuted before |xn j − x| when xni < xn j . Let
1 � kn � n and define the nearest neighbor weight function as follows:

W̃ni(x) =

{
1
kn

, if |xni − x|� |x(n)
Rkn (x) − x|,

0, otherwise.

It is easy to check that conditions (A1)−(A3) and (3.1) are satisfied, where Wni(x)
is replaced by W̃ni(x) .

For any x ∈ [0,1] , if follows from the definitions of Ri(x) and W̃ni(x) that

n

∑
i=1

W̃ni(x) =
n

∑
i=1

W̃nRi(x) =
kn

∑
i=1

1
kn

= 1, (3.4)

and

max
1�i�n

W̃ni(x) =
1
kn

, W̃ni(x) � 0. (3.5)

Assume that g is continuous on the compact set A , and thus {|g(xni)−g(x)| : 1 �
i � n,n � 1} is bounded on set A . Hence,

n

∑
i=1

|W̃ni(x)| · |g(xni)−g(x)|I(|xni− x| > a)

� C
n

∑
i=1

(xni − x)2|W̃ni(x)|
a2 = C

kn

∑
i=1

(x(n)
Ri(x)

− x)2

kna2

� C
kn

∑
i=1

(i/n)2

kna2 � C
( kn

na

)2
, ∀a > 0. (3.6)

If we take kn = �n1/p� for some p > 1, then the conditions (A1)− (A3) and (3.1)
are satisfied.

Based on the notations above, we can get the following result by using Theorem
3.1.
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COROLLARY 3.3. Let {εni,1 � i � n,n � 1} be an array of rowwise END ran-
dom variables with mean zero, which is stochastically dominated by a random variable
X . Assume that g is continuous on the compact set A. If there exists some p > 1 such
that kn = �n1/p� and E|X |1+p < ∞ , then

gn(x) → g(x) completely, as n → ∞, (3.7)

where gn(x) = ∑n
i=1W̃ni(x)Yni.

3.2. Simulation

The data are generated from the following model:

Yni = g(xni)+ εni, i = 1,2, . . . ,n, n � 1. (3.8)

For any fixed n � 3, let (εn1,εn2, . . . ,εnn) ∼ N(0,Σ) , where 0 is a zero vector, and

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ θ 2 −θ 0 . . . 0 0 0
−θ 1+ θ 2 −θ . . . 0 0 0
0 −θ 1+ θ . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 1+ θ 2 −θ 0
0 0 0 . . . −θ 1+ θ 2 −θ
0 0 0 . . . 0 −θ 1+ θ 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 0 < θ < 1. It is obvious that εn1,εn2, . . . ,εnn generated as the above method
are NA by Joag-Dev and Proschan (1983). We choose θ = 0.5 and kn = �n0.48� in
Corollary 3.3. It’s easy to check that conditions (A1)− (A3) are satisfied. Taking the
points x = 0.2, 0.5, 0.8 and the sample sizes n as n = 100, 200, 400, and then we
use Matlab to compute gn(x) and g(x) with g(x) = sin(2πx) for 500 times and obtain
the fitting plots of gn(x) and g(x) in Figures 1-3 and the mean square errors (MSE) of
gn(x) in Table 1.

Table 1: MSE of the estimator gn(x).

x
n 0.2 0.5 0.8

100 0.0454 0.0492 0.0408
200 0.0310 0.0306 0.0316
400 0.0198 0.0209 0.0230

It can be seen that the predicted and actual values fit well. Table 1 reflects that
MSE of gn(x) decreases as n increases. These show a good fit of our theoretical result.
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Figure 1: fitting plots of g(x) and gn(x) with n=100
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Figure 2: fitting plots of g(x) and gn(x) with n=200



732 H. WANG, Y. FANG, L. CHEN, M. XI AND X. WANG∗

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
ed

ic
te

d 
an

d 
tu

re
 v

al
ue

s

Figure 3: fitting plots of g(x) and gn(x) with n=400

4. Proofs of main results

Proof of Theorem 3.1. For x ∈ c(g) and a > 0, we have by equations (1.1) and
(1.2) that

|Egn(x)−g(x)| �
n

∑
i=1

|Wni(x)| · |g(xni)−g(x)|I(‖xni− x‖ � a)

+
n

∑
i=1

|Wni(x)| · |g(xni)−g(x)|I(‖xni− x‖ > a)

+ |g(x)| ·
∣∣∣∣∣ n

∑
i=1

Wni(x)−1

∣∣∣∣∣.
(4.1)

Since x ∈ c(g) , for any ε > 0, there exists a δ > 0 such that |g(x∗)− g(x)| < ε
when ‖x∗ − x‖ < δ . Setting a ∈ (0,δ ) in (4.1) , we can get that

|Egn(x)−g(x)|� ε
n

∑
i=1

|Wni(x)|+ |g(x)| ·
∣∣∣∣∣ n

∑
i=1

Wni(x)−1

∣∣∣∣∣
+

n

∑
i=1

|Wni(x)| · |g(xni)−g(x)|I(‖xni− x‖ > a),

(4.2)



WEIGHTED LINEAR ESTIMATOR OF NONPARAMETRIC REGRESSION MODELS 733

which together with conditions (A1)− (A3) yields that

lim
n→∞

Egn(x) = g(x), x ∈ c(g). (4.3)

Without loss of generality, we assume that Wni(x) > 0 in what follows. Other-
wise, we will use W+

ni (x) and W−
ni (x) instead of W+

ni (x) , respectively, since Wni(x) =
W+

ni (x)−W−
ni (x).

In view of (4.3) , in order to prove (3.2) , it suffices to show that for any x ∈ c(g) ,

gn(x)−Egn(x) =
n

∑
i=1

Wni(x)εni(x)=̇
n

∑
i=1

Rni → 0 completely, as n → ∞, (4.4)

where Rni(x) = Wni(x)εni . That is to say, we only need to show that for all ε > 0,

∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

Rni

∣∣∣∣∣> 4ε

)
< ∞. (4.5)

By (3.1), we assume that max
1�i�n

Wni(x) � n−1/p . For any ε > 0, choose p < q <

1+ p and some positive integer N (to be specified later), and denote that

Xni(1) = −n1/qI(εni < −n1/q)+ εniI(|εni| � n1/q)+n1/qI(εni > n1/q),

Xni(2) = (εni −n1/q)I(n1/q < εni � εn
2

1+p

N
),

Xni(3) = (εni +n1/q)I
(−εn

2
1+p

N
� εni < −n1/q

)
,

Xni(4) = (εni −n1/q)I
(

εni >
εn

2
1+p

N

)
+(εni +n1/q)I

(
εni < −εn

2
1+p

N

)
,

where 1 � i � n . Noting that Xni(1)+Xni(2)+Xni(3)+Xni(4) = εni , we have

∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

Rni

∣∣∣∣∣> 4ε

)

�
∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

Wni(x)Xni(1)

∣∣∣∣∣> ε

)
+

∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

Wni(x)Xni(2)

∣∣∣∣∣> ε

)

+
∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

Wni(x)Xni(3)

∣∣∣∣∣> ε

)
+

∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

Wni(x)Xni(4)

∣∣∣∣∣> ε

)
.= I1 + I2 + I3 + I4. (4.6)

In order to prove (4.5) , we only need to show that I1 < ∞ , I2 < ∞ , I3 < ∞ and I4 < ∞ .
Note that

E|εni|1+pI(|εni| > n1/q) = E|εni|p · |εni|I(|εni| > n1/q)

� np/qE|εni|I(|εni| > n1/q), (4.7)
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which together with Eεni = 0, Markov’s inequality, equation (4.7) and E|X |1+p < ∞ ,
yields that∣∣∣∣∣ n

∑
i=1

Wni(x)EXni(1)

∣∣∣∣∣ � n1/q
n

∑
i=1

Wni(x)P(|εni| > n1/q)+
n

∑
i=1

Wni(x)

∣∣∣∣∣EεniI(|εni| � n1/q)

∣∣∣∣∣
= n1/q

n

∑
i=1

Wni(x)P(|εni| > n1/q)+
n

∑
i=1

Wni(x)

∣∣∣∣∣EεniI(|εni| > n1/q)

∣∣∣∣∣
� n1/q

n

∑
i=1

Wni(x)P(|εni| > n1/q)+
n

∑
i=1

Wni(x)E|εni|I(|εni| > n1/q)

� n−p/q
n

∑
i=1

Wni(x)E|εni|1+p

+n−p/q
n

∑
i=1

Wni(x)E|εni|1+pI(|εni| > n1/q)

� CE|X |1+pn−p/q −→ 0, as n → ∞. (4.8)

Hence, to prove I1 < ∞ , we only need to show that

∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

Wni(x)(Xni(1)−EXni(1))

∣∣∣∣∣> ε
2

)
< ∞.

By Lemma 2.1, we can see that {Wni(x)(Xni(1)− EXni(1)),1 � i � n} are still
END random variables for fixed n � 1 and x ∈ c(g) . In the following, Lemma 2.2
will be applied to the array {Wni(x)(Xni(1)−EXni(1)),1 � i � n} and the sequence
{(logn)−1,n � 1}.

Noting that p < q , we obtain

max
1�i�n

|Wni(x)(Xni(1)−EXni(1))| � Cn1/q

n1/p
= O((logn)−1), (4.9)

which yields the condition (i) of Lemma 2.2.
By Lemma 2.3 and condition (A2) , we obtain

n

∑
i=1

E
∣∣∣Wni(x)(Xni(1)−EXni(1))

∣∣∣2 �
n

∑
i=1

W 2
ni(x)E|Xni(1)|2

� max
1�i�n

Wni(x)
n

∑
i=1

Wni(x)Eε2
ni

� Cn−1/pEX2 = o((logn)−1), (4.10)

which yields the condition (ii) of Lemma 2.2. It is easy to see that condition (iii) of
Lemma 2.2 is satisfied by choosing α > 1. Hence, we can see that I1 < ∞ follows
immediately from Lemma 2.2.
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Next, we will show that I2 < ∞ . Noting that 0 < Xni(2) < εn2/(1+p)

N − n1/q and
0 <Wni(x) � n−1/p , we can see that |∑n

i=1 Xni(2)| = ∑n
i=1 Xni(2) > ε implies that there

exist at least N i’s such that Xni(2) �= 0. Hence, we have by Lemma 2.3 that

P

(∣∣∣∣∣ n

∑
i=1

Xni(2)

∣∣∣∣∣> ε

)
� ∑

1�i1<i2<···<iN�n

P(Xni1(2) �= 0, · · · ,XniN (2) �= 0)

� ∑
1�i1<i2<···<iN�n

P(εni1 > n1/q, · · · ,εniN > n1/q)

� C ∑
1�i1<i2<···<iN�n

P(εni1 > n1/q) · · ·P(εniN > n1/q)

� C
( n

∑
i=1

P(εni > n1/q)
)N

� C
(
nP(|X | > n1/q)

)N

� C
(
(nE|X |1+p)/(n(1+p)/q)

)N

� Cn−(−1+(1+p)/q)N, (4.11)

which is summable if we choose N > q
1+p−q such that (−1+(1+ p)/q)N > 1. There-

fore, we can get that I2 < ∞ .

Noting that n1/q− εn2/(1+p)

N < Xni(3) < 0, we can see that

|
n

∑
i=1

Xni(3)| = −
n

∑
i=1

Xni(3) > ε

implies that there exist at least N i’s such that Xni(3) �= 0. Similar to proof of I2 < ∞ ,
we can obtain that I3 < ∞ .

At last, we will show that I4 < ∞ . It follows by E|X |1+p < ∞ that

I4 =
∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

Wni(x)Xni(4)

∣∣∣∣∣> ε

)

�
∞

∑
n=1

n

∑
i=1

P
(
|εni| > εn2/(1+p)

N

)
� C

∞

∑
n=1

n
∞

∑
k=n

P
(εk2/(1+p)

N
< |X | < ε(k+1)2/(1+p)

N

)
= C

∞

∑
k=1

P
(εk2/(1+p)

N
< |X | < ε(k+1)2/(1+p)

N

) k

∑
n=1

n

� C
∞

∑
k=1

k2P
(εk2/(1+p)

N
< |X | < ε(k+1)2/(1+p)

N

)
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� C
∞

∑
k=1

E|X |1+pI
(εk2/(1+p)

N
< |X | < ε(k+1)2/(1+p)

N

)
� CE|X |1+p < ∞. (4.12)

This completes the proof of the theorem. �

Acknowledgements. The authors are most grateful to the Editor and anonymous
referee for carefully reading the manuscript and valuable suggestions which helped in
improving an earlier version of this paper.

RE F ER EN C ES

[1] Y. CHEN, A. CHEN, K. W. NG, The strong law of large numbers for extend negatively dependent
random variables, Journal of Applied Probability, 47, 908–922, 2010.

[2] Z. CHEN, C. LU, Y. SHEN, R. WANG, X. J. WANG, On the complete and complete moment conver-
gence for weighted sums of ANA random variables and applications, Journal of Statistical Computa-
tion and Simulation, 89 (15), 2871–2898, 2019.

[3] Y. FAN, Consistent nonparametric multiple regression for dependent heterogeneous processes, Journal
of Multivariate Analysis, 33(1), 2-88, 1990.

[4] A. A. GEORGIEV, Local properties of function fitting estimates with applications to system identifi-
cation, In: Grossmann W., Pflug G., Vincze I., Wertz W. (Eds.), Mathematical Statistics and Appli-
cations, Volume B, Proceedings of the 4th Pannonian Symposium on Mathematical Statistics, 4–10,
September, 1983, Bad Tatzmannsdorf, Austria, Reidel, Dordrecht, 141–151, 1985.

[5] A. A. GEORGIEV, W. GREBLICKI,Nonparametric function recovering from noisy observations, Jour-
nal of Statistical Planning and Inference, 13 (1), 1–14, 1986.

[6] A. A. GEORGIEV, W. GREBLICKI, Consistent nonparametric multiple regression, Journal of Multi-
variate Analysis, 25 (1), 100–110, 1988.

[7] T.-C. HU, K. L. WANG, A. ROSALSKY, Complete convergence theorems for extended negatively
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