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GENERALIZED HERMITE–HADAMARD TYPE INEQUALITIES

FOR DIFFERENTIABLE HARMONICALLY–CONVEX

AND HARMONICALLY QUASI–CONVEX FUNCTIONS

MUHAMMAD AMER LATIF, SABIR HUSSAIN AND YU-MING CHU ∗

(Communicated by R. Oinarov)

Abstract. Some new Hermite-Hadamard type inequalities for differentiable harmonically-convex
and harmonically quasi-convex functions have been discussed, generalizing some existing results
in literature. For validity of the results some numerically examples are given.

1. Introduction

In recent years, the Hermite-Hadamard inequality, which is the first fundamental
result for convex functions with a natural geometrical interpretation and many applica-
tions, has drawn attention much interest in elementary mathematics. The inequality was
discovered by C. Hermite and J. Hadamard for convex functions, having considerable
attention in Literature is stated as follows [19, p.137]:

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
, (1.1)

provided that f : I ⊆ R → R is a convex function on an interval I of reals with a,b ∈ I
defined by:

f (tx+(1− t)y) � t f (x)+ (1− t) f (y) (1.2)

for x,y ∈ I and t ∈ [0,1]. For concave function, f , the inequalities in (1.1) hold in
reverse direction. On the other hand the mathematicians are trying to generalize the
definition of convex functions by replacing the weighted arithmetic mean tx+(1− t)y
of x,y with the weighted geometric mean and weighted harmonic mean of x,y on
the left side of the inequality (1.2) and/or by swapping the weighted arithmetic mean
t f (x) + (1− t) f (y) of f (x) , f (y) with the weighted geometric mean and weighted
harmonic mean f (x) , f (y) on the right side of the inequality (1.2), where x,y ∈ I
and t ∈ [0,1]. Over the last two decades these types of swapping of means have led
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to many novel testimonies, stimulating extensions, conspicuous generalizations, inno-
vative Hermite-Hadamard-type inequalities and a lot of applications of the inequalities
(1.1) in the literature of mathematical inequalities and in other branches of pure and ap-
plied mathematics [3, 4, 5, 8, 12, 13, 16, 17] and the references cited therein. This paper
is organized in the following way. After this Introduction, in Section 2 some assump-
tions and auxiliary results have been discussed, and in Section 3 some new weighted
left and right Hermite-Hadamard type integral inequalities have been discussed. The
results of Section 3 are believed to supply weighted variant of the findings obtained so
far in the field of mathematical inequalities for differentiable harmonically-convex and
harmonically quasi-convex functions.

2. Some preliminaries and auxiliary results

DEFINITION 1. [9] A function f : I ⊆ R \ {0} → R is said to be harmonically-
convex function on I if

f

(
xy

tx+(1− t)y

)
� t f (y)+ (1− t) f (x)

holds for all x , y ∈ I and t ∈ [0,1] .

DEFINITION 2. [18] A function f : I ⊆ (0,∞) → R is said to be harmonically
qausi-convex function on I if

f

(
xy

tx+(1− t)y

)
� sup{ f (x), f (y)}

holds for all x , y ∈ I , t ∈ [0,1] .

For more about harmonically-convex functions and harmonically quasi-convex
functions, we refer the readers [1, 2, 6, 7] and the references cited therein.

DEFINITION 3. [10] A function g : [a,b]⊆R\{0}→R is said to be harmonically
symmetric with respect to 2ab

a+b if

g(x) = g

(
1

1
a + 1

b − 1
x

)

holds for all x ∈ [a,b] .

In what follows we use the followings:

G(w,u,v,y;Xy) :=
∫ Xy(u,v)

a

(x−a)w(x)
ax3 dx−

∫ b

Xy(u,v)

(b− x)w(x)
bx3 dx. (2.1)

Let w : [a,b] ⊆ (0,∞) → [0,∞) be a continuous function such that:∫ b

a

w(x)
x2 dx = 1;

1
a1

=
∫ b

a

w(x)
x3 dx. (2.2)
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Mi(w;x,a,a1,b) :=

{
w(x)
xi , x ∈ [a,a1] ,

−w(x)
xi , x ∈ (a1,b] .

A (w;a,a1,b) :=
∫ b

a

b ln( x
a1

)−a1 + x

b
M2(w;x,a,a1,b)dx. (2.3)

B (w;a,a1,b) :=
∫ b

a

a1− x+a ln
( a1

x

)
a

M2(w;x,a,a1,b)dx. (2.4)

A1 (w;u,v) :=
∫ b

a

x− v lnx
v

M2

(
w;x,u,

2uv
u+ v

,v

)
dx. (2.5)

B1 (w;u,v) :=
∫ v

u

u lnx− x
v

M2

(
w;x,u,

2uv
u+ v

,v

)
dx. (2.6)

C (a,a1,b) := a1

∫ b

a
M2(w;x,a,a1,b)dx−

∫ b

a
M1(w;x,a,a1,b)dx. (2.7)

D (u,v) :=
∫ u

v
M1

(
w;x,u,

2uv
u+ v

,v

)
dx. (2.8)

Zy (u,v) =
2uv

(1− y)u+(1+ y)v
; Xy (u,v) :=

uv
(1− y)u+ yv

. (2.9)

DEFINITION 4. A function σ : R → [0,1] defined by:

σ(u) :=
{

0, u < 0;
1, u > 0

is called Heavyside function.

LEMMA 1. Let w : [a,b] ⊆ (0,∞) → [0,∞) be harmonically symmetric with re-
spect to 2ab

a+b , then a1 = 2ab
a+b .

Proof. By definition 3 and the relation (2.2), we have

∫ b

a

w(x)
x3 dx =

∫ b

a

(
1
a

+
1
b
− 1

x

)3

w(x)
dx

x2
(

1
a + 1

b − 1
x

)2
=
∫ b

a

(
1
a

+
1
b
− 1

x

)
w(x)dx

x2

=
a+b
ab

∫ b

a

w(x)
x2 dx−

∫ b

a

w(x)
x3 dx,

which yields the desired result. �
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LEMMA 2. Let f : I ⊆ (0,∞)→R be a differentiable function on I◦, interior of I,
and f ′ ∈ L([a,b]) , where [a,b]⊆ I◦ with a < b. Let w : [a,b]→ [0,∞) be a continuous
function, then

ϕ(w, f ) :=
1

b−a

[
a f (a)

∫ b

a

(b− x)w(x)
x3 dx

+b f (b)
∫ b

a

(x−a)w(x)
x3 dx

]
−
∫ b

a

f (x)w(x)
x2 dx

=
b(a1−a)
a1 (b−a)

∫ 1

0
X2

y (a,a1)G(w,a,a1,y;Xy) f ′ (Xy (a,a1))dy

+
a(b−a1)
a1 (b−a)

∫ 1

0
X2

y (b,a1)G(w,b,a1,y;Xy) f ′ (Xy (b,a1))dy, (2.10)

where G(w,u,v,y;Xy) and Xy (u,v) are defined by (2.1) and (2.9) respectively.

Proof. According to Definition 4, the following identity holds:

f (x)− f (a) =
∫ b

a
σ (x− t) f ′ (t)dt. (2.11)

Equivalently,

∫ b

a

(b− x)w(x) f (x)
bx3 dx− f (a)

∫ b

a

(b− x)w(x)
bx3 dx

=
∫ b

a

∫ b

t

(b− x)w(x)
bx3 f ′(t)dxdt. (2.12)

Analogously, from the following identity (2.13), relation (2.14) holds:

f (x)− f (a) =
∫ b

a
σ (x− t) f ′ (t)dt. (2.13)

∫ b

a

(x−a)w(x) f (x)
ax3 dx− f (b)

∫ b

a

(x−a)w(x)
ax3 dx

= −
∫ b

a

∫ t

a

(x−a)w(x)
ax3 f ′(t)dxdt. (2.14)

Combining the relations (2.12) and (2.14) yields:

1
b−a

[
a f (a)

∫ b

a

(b− x)w(x)
x3 dx+b f (b)

∫ b

a

(x−a)w(x)
x3 dx

]
−
∫ b

a

f (x)w(x)
x2 dx

=
ab

b−a

∫ b

a

[∫ t

a

(x−a)w(x)
ax3 dx−

∫ b

t

(b− x)w(x)
bx3 dx

]
f ′(t)dt

=
ab

b−a

∫ a1

a

[∫ t

a

(x−a)w(x)
ax3 dx−

∫ b

t

(b− x)w(x)
bx3 dx

]
f ′(t)dt

+
ab

b−a

∫ b

a1

[∫ t

a

(x−a)w(x)
ax3 dx−

∫ b

t

(b− x)w(x)
bx3 dx

]
f ′(t)dt. (2.15)
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Setting aa1
(1−y)a+ya1

and ba1
(1−y)b+ya1

, respectively, in the first and second integral of the

last identity in (2.15), yields the desired identity (2.10) . �
It is remarkable to note

• for w ≡ ab
b−a (2.10) reduces to the identity:

ϕ
(

ab
b−a

, f

)
=

f (a)+ f (b)
2

− ab
b−a

∫ b

a

f (x)
x2 dx (2.16)

=
b−a
4ab

[∫ 1

0
yZ2

y (a,b) f ′ (Zy (a,b))dy−
∫ 1

0
yZ2

y (b,a) f ′ (Zy (b,a))dy

]
,

where Zy (u,v) is defined by (2.9) .

• for w to be harmonically symmetric with respect to 2ab
a+b (2.10) reduces to the

identity:

f (a)+ f (b)
2

−
∫ b

a

f (x)w(x)
x2 dx

=
1
2

∫ 1

0
Z2

y (a,b)G(w,a,b,y;Zy) f ′ (Zy (a,b))dy

+
1
2

∫ 1

0
Z2

y (b,a)G(w,b,a,y;Zy) f ′ (Zy (b,a))dy, (2.17)

where G(w,u,v,y;Zy) and Zy (u,v) are defined by (2.1) and (2.9) respectively.

• Lemma 2 is a generalization of [11, Lemma 2.1].

LEMMA 3. Let A : C ([a,b])→ R be a positive linear functional on C ([a,b]) and
ei be monomials ei (x) = xi , x ∈ [a,b] , i ∈ N let g be harmonically-convex function on
[a,b] , then

A(g(e1)) � ab
b−a

[
A

(
1
e1

− 1
b

)
g(a)+A

(
1
a
− 1

e1

)
g(b)

]
. (2.18)

Proof. By harmonically-convexity of g on [a,b]

g(e1) = g

⎛
⎜⎜⎝ 1

1
e1
− 1

b
1
a− 1

b
. 1
a +

1
a− 1

e1
1
a− 1

b
. 1
b

⎞
⎟⎟⎠= g

⎛
⎜⎜⎝ ab

1
e1
− 1

b
1
a− 1

b
.b+

1
a− 1

e1
1
a− 1

b
.a

⎞
⎟⎟⎠ (2.19)

� ab
b−a

[(
1
e1

− 1
b

)
g(a)+

(
1
a
− 1

e1

)
g(b)

]

Application and positivity of the linear functional A on (2.18) yields the desired result
(2.19). �
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3. Main results

THEOREM 1. Let f : I ⊆ (0,∞) → R be a differentiable function on I◦ and f ′ ∈
L([a,b]) , where [a,b] ⊆ I◦ with a < b. If w : [a,b] → [0,∞) is a continuous mapping
and | f ′| is harmonically-convex on [a,b] , then∣∣∣∣
∫ b

a

f (x)w(x)
x2 dx− f (a1)

∣∣∣∣� ab
A (w;a,a1,b) | f ′ (a)|+B (w;a,a1,b) | f ′ (b)|

b−a
, (3.1)

where A (w;a,a1,b) and B (w;a,a1,b) are given by the relations (2.3) and (2.4).

Proof. By definition 4 and the relation (2.2), following holds:

f (x)− f (a1) =
∫ b

a
[σ (x− t)−σ (a1− t)] f ′ (t)dt,

that is ∫ b

a

f (x)w(x)
x2 dx− f (a1) =

∫ b

a

(∫ b

t

w(x)
x2 dx−σ (a1− t)

)
f ′ (t)dt (3.2)

holds.
Application of Lemma 3 and the properties of modulus yield:∣∣∣∣

∫ b

a

f (x)w(x)
x2 dx− f (a1)

∣∣∣∣
�
∫ b

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−σ (a1− t)

∣∣∣∣ ∣∣ f ′ (t)∣∣dt

� ab
b−a

[∣∣ f ′ (a)
∣∣∫ b

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−σ (a1− t)

∣∣∣∣
(

1
t
− 1

b

)
dt

+
∣∣ f ′ (b)

∣∣∫ b

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−σ (a1− t)

∣∣∣∣
(

1
a
− 1

t

)
dt

]
.

But,

∫ b

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−σ (a1− t)

∣∣∣∣
(

1
t
− 1

b

)
dt

=
∫ a1

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−1

∣∣∣∣
(

1
t
− 1

b

)
dt +

∫ b

a1

(∫ b

t

w(x)
x2 dx

)(
1
t
− 1

b

)
dt

=
∫ a1

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−

∫ b

a

w(x)
x2 dx

∣∣∣∣
(

1
t
− 1

b

)
dt

+
∫ b

a1

(∫ b

t

w(x)
x2 dx

)(
1
t
− 1

b

)
dt

=
∫ a1

a

(∫ t

a

w(x)
x2 dx

)(
1
t
− 1

b

)
dt +

∫ b

a1

(∫ b

t

w(x)
x2 dx

)(
1
t
− 1

b

)
dt



HARMONICALLY-CONVEX AND QUASI-CONVEX FUNCTIONS 761

=
(
lna1− a1

b

)∫ a1

a

w(x)
x2 dx−

∫ a1

a

(
lnx− x

b

) w(x)
x2 dx

−
(
lna1− a1

b

)∫ b

a1

w(x)
x2 dx+

∫ b

a1

(
lnx− x

b

) w(x)
x2 dx.

Analogously,
∫ b

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−σ (a1− t)

∣∣∣∣
(

1
a
− 1

t

)
dt

=
(a1

a
− lna1

)[∫ a1

a

w(x)
x2 dx−

∫ b

a1

w(x)
x2 dx

]

+
∫ b

a1

( x
a
− lnx

) w(x)
x2 dx−

∫ a1

a

( x
a
− lnx

) w(x)
x2 dx.

This concludes the proof. �

COROLLARY 1. Let the conditions of Theorem 1 be satisfied for w to be harmon-
ically symmetric with respect to 2ab

a+b on [a,b] , then∣∣∣∣
∫ b

a

f (x)w(x)
x2 dx− f

(
2ab
a+b

)∣∣∣∣�ab
A1 (w;a,b) | f ′ (a)|+B1 (w;a,b) | f ′ (b)|

b−a
, (3.3)

where A1 (w;a,b) and B1 (w;a,b) are given by the relations (2.5) and (2.6).

Proof. The proof is a direct consequence of Theorem 1 for w to be harmonically
symmetric with respect to 2ab

a+b on [a,b] so that a1 = 2ab
a+b . �

COROLLARY 2. Let the conditions of Theorem 1 be satisfied for w to be a con-
tinuous function and g harmonically symmetric with respect to 2ab

a+b on [a,b] , then

∣∣∣∣
∫ b

a

f (x)g(x)
x2 dx− f

(
2ab
a+b

)∫ b

a

g(x)
x2 dx

∣∣∣∣
� ab

A1 (g;a,b) | f ′ (a)|+B1 (g;a,b) | f ′ (b)|
b−a

, (3.4)

where A1 (g;a,b) and B1 (g;a,b) are given by the relations (2.5) and (2.6).

Proof. The proof is a direct consequence of Theorem 1 for w(x) = g(x)∫ b
a

g(x)
x2

dx
and g

harmonically symmetric with respect to 2ab
a+b on [a,b] . �

EXAMPLE 1. Let f :
[

1
2 , 2

3

]→ [
3
2 ,2
]

be two functions defined by f (x) = w(x) =
1
x so that | f ′ (x)| = 1

x2 is harmonically-convex on
[ 1

2 , 2
3

]
. By using the software Math-

ematica, we observe that

LHS of (3.3) = 0.893018
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RHS of (3.3) = 3.60811

and the deviation between these values is 2.967793.

THEOREM 2. Let f : I ⊆ (0,∞) → R be a differentiable function on I◦ and f ′ ∈
L([a,b]) , where [a,b] ⊆ I◦ with a < b. If w : [a,b] → [0,∞) is a continuous function
and | f ′|q is harmonic-convex on [a,b] for q � 1, then

∣∣∣∣
∫ b

a

f (x)w(x)
x2 dx− f (a1)

∣∣∣∣
� q

√
ab

A (a,a1,b) | f ′ (a)|q +B (a,a1,b) | f ′ (b)|q
(b−a)[C (a,a1,b)]1−q , (3.5)

where A (a,a1,b) , B (a,a1,b) and C (a,a1,b) are given by the relations (2.3), (2.4)
and (2.7).

Proof. Applications of Lemma 3 and power mean inequality to the inequality
(3.2) yield:

∣∣∣∣
∫ b

a

f (x)w(x)
x2 dx− f (a1)

∣∣∣∣ �
∫ b

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−σ (a1− t)

∣∣∣∣ ∣∣ f ′ (t)∣∣dt (3.6)

� q

√[∫ b

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−σ (a1− t)

∣∣∣∣dt

]q−1

× q

√∫ b

a

∣∣∣∣
∫ b

t

w(x)
x2 dx−σ (a1− t)

∣∣∣∣ | f ′ (t)|q dt

�
[∫ a1

a

∫ t

a

w(x)
x2 dxdt +

∫ b

a1

∫ b

t

w(x)
x2 dxdt

]

× q

√
ab

A (a,a1,b) | f ′ (a)|q +B (a,a1,b) | f ′ (b)|q
b−a

.

This completes the proof. �

COROLLARY 3. Let the conditions of Theorem 2 be satisfied for w(x) to be har-
monically symmetric with respect to 2ab

a+b on [a,b] , then

∣∣∣∣
∫ b

a

f (x)w(x)
x2 dx− f

(
2ab
a+b

)∣∣∣∣� q

√
ab

A1 (a,b) | f ′ (a)|q +B1 (a,b) | f ′ (b)|q
(b−a)[D (a,b)]1−q ,

where A1 (a,b) and B1 (a,b) are defined by (2.5) and (2.6).
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COROLLARY 4. Let the conditions of Theorem 2 be satisfied for w to be a con-
tinuous function and g harmonically symmetric with respect to 2ab

a+b on [a,b] , then

∣∣∣∣
∫ b

a

f (x)g(x)
x2 dx− f

(
2ab
a+b

)∫ b

a

g(x)
x2 dx

∣∣∣∣
� q

√
ab

A1 (a,b) | f ′ (a)|q +B1 (a,b) | f ′ (b)|q
(b−a)[D (a,b)]1−q , (3.7)

where A1 (a,b) and B1 (a,b) are defined by (2.5) and (2.6).

EXAMPLE 2. Suppose f (x)= q

(q−2)x
2
q−1

, w(x)= 1
x , x∈ [ 1

2 , 2
3

]
. Then w :

[ 1
2 , 2

3

]→
[0,∞) is continuous function and | f ′ (x)|q = 1

x2 is harmonically-convex on
[

1
2 , 2

3

]
for

q = 3. By using the software Mathematica, we observe that

LHS of (3.5) = 1.52799

RHS of (3.5) = 1.7642

and the error between the actual and the upper bound is 0.23621.

THEOREM 3. Let f : I ⊆ (0,∞) → R be a differentiable function on I◦ and f ′ ∈
L([a,b]) , where [a,b]⊆ I◦ with a < b; let w : [a,b]→ [0,∞) be a continuous function
and | f ′| is harmonically quasi-convex on [a,b] , then

|ϕ (w, f )| � b(a1−a)
a1 (b−a)

(
sup
{∣∣ f ′ (a)

∣∣ , ∣∣ f ′ (a1)
∣∣}) 1∫

0

X2
y (a,a1)

∣∣G(w,a,a1,y;Xy)
∣∣dy

+
a(b−a1)
a1 (b−a)

(
sup
{∣∣ f ′ (a1)

∣∣ , ∣∣ f ′ (b)
∣∣}) 1∫

0

X2
y (b,a1)

∣∣G(w,a1,b,y;Xy)
∣∣dy,

(3.8)

where G(w,u,v,y;Xy) and Xy (u,v) are defined by (2.1) and (2.9) respectively.

Proof. The proof is followed by Lemma 2 and the harmonically-quasi convexity
of | f ′| on [a,b] . �

EXAMPLE 3. Let f :
[

1
2 , 2

3

]→ [
3
2 ,2
]

be two functions defined by f (x) = w(x) =
1
x so that | f ′ (x)| = 1

x2 is harmonically quasi-convex on
[ 1

2 , 2
3

]
. By using the software

Mathematica, we observe that

LHS of (3.8) = 0.0202165

RHS of (3.8) = 2.89896

and the deviation between these values is 2.8787435.
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THEOREM 4. Let f : I ⊆ (0,∞) → R be a differentiable mapping on I◦ and f ′ ∈
L([a,b]) , where [a,b] ⊆ I◦ with a < b. If w : [a,b] → [0,∞) is a continuous mapping
harmonically symmetric with respect to 2ab

a+b and | f ′| is harmonically quasi-convex on
[a,b] , then the following inequality holds

∣∣∣∣∣∣
f (a)+ f (b)

2
−

b∫
a

f (x)w(x)
x2 dx

∣∣∣∣∣∣
� sup

{∣∣ f ′ (a)
∣∣ , ∣∣∣∣ f ′

(
2ab
a+b

)∣∣∣∣
}(

a
2
−
∫ 2ab

a+b

a

w(x)
x

dx

)

+ sup

{∣∣∣∣ f ′
(

2ab
a+b

)∣∣∣∣ , ∣∣ f ′ (b)
∣∣}(b

2
−
∫ b

2ab
a+b

w(x)
x

dx

)
. (3.9)

Proof. It may be observed that:

b(a1−a)
a1 (b−a)

1∫
0

X2
y (a,a1)

∣∣G(w,a,a1,y;Xy)
∣∣dy

=
ab

b−a

∫ a1

a

∣∣∣∣
∫ t

a

(x−a)w(x)
ax3 dx−

∫ b

t

(b− x)w(x)
bx3 dx

∣∣∣∣dt. (3.10)

a(b−a1)
a1 (b−a)

1∫
0

X2
y (b,a1)

∣∣G(w,a1,b,y;Xy)
∣∣dy

=
ab

b−a

∫ b

a1

∣∣∣∣
∫ t

a

(x−a)w(x)
ax3 dx−

∫ b

t

(b− x)w(x)
bx3 dx

∣∣∣∣dt. (3.11)

Consider the function p : [a,b] → R defined by:

p(t) =
∫ t

a

(x−a)w(x)
ax3 dx−

∫ b

t

(b− x)w(x)
bx3 dx,

so that p′(t) = b−a
ab

w(t)
t2

> 0, that is, p(t) is an increasing function on [a,b] with
p(a1) = 0; hence in this case (3.10) and (3.11) reduce to

b(a1−a)
a1 (b−a)

1∫
0

X2
y (a,a1)

∣∣G(w,a,a1,y;Xy)
∣∣dy

=
a2

b−a

∫ b

a

(b− x)w(x)
x3 dx−

∫ a1

a

w(x)
x

dx

=
a
2
−
∫ 2ab

a+b

a

w(x)
x

dx. (3.12)
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a(b−a1)
a1 (b−a)

1∫
0

X2
y (b,a1)

∣∣G(w,a1,b,y;Xy)
∣∣dy

=
b2

b−a

∫ b

a

(x−a)w(x)
x3 dx−

∫ b

a1

w(x)
x

dx

=
b
2
−
∫ b

2ab
a+b

w(x)
x

dx. (3.13)

A combination of (3.12), (3.13) and (3.8) yields the desired inequality (3.9). �

EXAMPLE 4. Let f ,w :
[

1
2 , 2

3

]→ [0,∞) be two functions defined by f (x) = 2
3x

3
2

and w(x) =
(

7
4 − 1

x

)2
so that | f ′ (x)| = √

x. Then, obviously w is continuous and har-
monically symmetric with respect to 4

7 and | f ′ (x)|=√
x is harmonically quasi-convex

on
[

1
2 , 2

3

]
. By using the software Mathematica, we observe that

LHS of (3.9) = 0.159613

RHS of (3.9) = 0.46639

and the deviation between these values is 0.296777.

NOTE 1. It may be noted that

• Theorem 1 is a generalization of [10, Corollary 2.1].

• Corollary 2 is a generalization of [10, Corollary 2.1]

• Theorem 2 is a generalization of [10, Theorem 2.1].

• Theorems 3 and 4 are some generalizations in [14].

• For w(x) → g(x)∫ b
a

g(x)
x2

dx
and g harmonically symmetric with respect to 2ab

a+b on

[a,b] , then Corollary 3 reduces to [10, Theorem 2.1].

RE F ER EN C ES

[1] F. X. CHEN AND S. H. WU, Some Hermite-Hadamard type inequalities for harmonically s -convex
functions, The Scientific World Journal, (2014), Article ID 279158.

[2] F. CHEN AND S. WU, Fejér and Hermite-Hadamard type inequalities for harmonically convex func-
tions, J. Appl. Math., (2014), Article ID 386806, 6.

[3] J. HADAMARD, Étude sur les Propriétés des Fonctions Entières en Particulier d’une Fonction Con-
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