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VOLUMES OF SUB–LEVEL SETS AND THE

DECAY OF OSCILLATORY INTEGRALS

TA LÊ LOI

(Communicated by T. Burić)

Abstract. In this paper, we present estimates for the volumes of sub-level sets and the decay
of oscillatory integrals with phase functions in a family of functions definable in an o-minimal
structure with compact domains.

1. Introduction

In this note, we are interested in the following problems:
– The estimate for the volumes of sub-level sets of a family of functions ( fp)p∈P

Vol({x : | fp(x)| � t}), when t → 0.

– The estimate for the decay of the oscillatory integrals with phase functions in a
family ( fp)p∈P ∣∣∣∣

∫
A
eiλ fp(x)g(x)dx

∣∣∣∣ , when λ → ∞,

where g is called the amplitude function.
These two estimates have a very close relationship with each other, and have been

considered by many authors, especially in Harmonic Analysis and Asymptotic Analy-
sis. Here we only refer to some of them: Stein in his book [18] (for smooth functions
in one-dimensional and classical cases), [1] and the references therein (for results on
asymptotic expansions, uniform estimates, ... for smooth functions), [3] (for the mul-
tidimensional van der Corput Lemma and sublevel sets of smooth functions on boxes),
[5] and [4] (for the case when the phase functions being globally subanalytic, and the
amplitude functions being constructible), [9] (for estimating the volumes of sublevels
of subanalytic maps), [12] (for estimating the volumes of sublevels of definable maps).
In this note we give the estimates for families of functions definable in o-minimal struc-
tures with compact domains. These classes of functions have many nice properties and
they are widely applicable due to their generality. For the definition and properties of
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functions definable in o-minimal structures, we refer the readers to [6] (see also [2], [7]
and [16]). We fix an o-minimal structure on (R,+, ·) that contains all semialgebraic
sets. “Definable” means definable in the structure. Let Φ denote the set of all odd,
strictly increasing continuous definable bijections from R onto R . Vol(X) denotes the
Lebesgue measure of the subset X of R

n . Our main results are the followings.

THEOREM 1.1. Let f : P×A → R be a definable function. Set fp(x) = f (p,x) ,
(p,x) ∈ P×A. Suppose that A is compact, fp is continuous and int({x ∈ A : fp(x) =
0}) = /0 , for all p ∈ P. Then there exist ϕ ∈ Φ and C : P → R , being a positive
definable function, such that

Vol({x ∈ A : | fp(x)| � t}) � C(p)ϕ(t), for all t � 0, p ∈ P.

In particular, when the structure is polynomially bounded, then

Vol({x ∈ A : | fp(x)| � t}) � C(p)tα , for all t � 0, p ∈ P,

for some α > 0 .

For g : R
n → R being C1 function with compact support, set

‖g‖∞ = sup
Rn

|g|, and ‖∇g‖1 =
∫

Rn
‖∇g‖.

THEOREM 1.2. Let f : P×A → R be a definable function. Suppose that A is
compact, fp is continuous and int({x ∈ A : fp(x) = t}) = /0 , for all p ∈ P and t ∈ R .
Then there exist ϕ ∈ Φ and C : P → R being a positive definable function such that for
any C1 function g : R

n → R with compact support contained in A, we have∣∣∣∣
∫

A
eiλ f (p,x)g(x)dx

∣∣∣∣� C(p)ϕ(λ−1)(‖g‖∞ +‖∇g‖1), for all λ > 0.

In particular, when the structure is polynomially bounded, then∣∣∣∣
∫

A
eiλ f (p,x)g(x)dx

∣∣∣∣� C(p)λ−ε(‖g‖∞ +‖∇g‖1), for all λ > 0,

for some ε > 0 .

Note that the supposition on the emptiness of the interior of the level-sets in the
theorems is necessary (see remark 3.9 below).

Now we give a succinct explanation of our proofs of the theorems. Theorem 1.1 is
a version with parameters of [12, Theorem 3.3], where the volumes of the pre-images
of segments under a definable map are estimated via the lengths of the segments. To
estimate volumes of sub-level sets, first, we partition the sets into submanifolds, so that
along each of which the level sets are transverse to one of the coordinate axes. Then,
using Fubini’s theorem, we need to estimate the lengths of the cuts of the sub-levels
sets by the projections, and the problem is reduced to the case where the maps have
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0-dimensional fibers. In this case, we can partition the domains into finite parts so
that on each of them the maps are invertible. Relying on the Hölder-Łojasiewicz type
inequalities for the family of the inverses of these maps, we get the estimates for the
lengths of the cuts needed in Fubini’s theorem. From that Theorem 1.1 is proved. To
estimate the oscillatory integrals in Theorem 1.2, by the Stationary Phase Principle, we
treat the behavior of the phase functions fp, p ∈ P , nearby their critical points. Since
each definable function on bounded sets has only finite asymptotic critical values (see
3.2) and for a definable family the numbers of these values are uniformly bounded,
we can divide the domain of each of the phase functions into certain finite subsets.
On the first subset, that contains the points ‘far from’ the critical set, the (generalized)
derivative of fp is bounded from below, by the Scaling Principle, using the van der
Corput Lemma (see 3.7) we can estimate the integral. On each of the remaining subsets,
fp is related to one of the asymptotic critical values. For the points close to the critical
points we apply the Bochnak-Lojasiewicz inequality (which says that the norm of the
derivative of a function is greater than its value, see 3.1) to return to the case where the
van der Corput Lemma can be applied. For the points ‘very close to’ the critical points
(with the same critical value) we use the estimate for the volume of sub-level sets given
in Theorem 1.1. In some sense, the spirit of the proof is the same as that of the van der
Corput Lemma presented in [18, Ch. VIII, Proposition 2]. The details of the proofs are
presented in the next two sections.

Notations and conventions: Throughout this note we fix an o-minimal structure on
(R,+, ·) that contains all semialgebraic sets. “Definable” means definable in the struc-
ture. Let Φ denote the set of all odd, strictly increasing continuous definable bijections
from R onto R .

Let X be a subset of P×A and f : X →R be a function. Then we set Xp = {x∈A :
(p,x) ∈ X} for the fiber of X over p , and fp : Xp → R , is defined by fp(x) = f (p,x) .

For a subset X in R
n , we write χX for the characteristic function of X , H k(X)

for the k -dimensional Hausdorff measure of X (see [8]), and Vol (X) for H n(X) .
Let ∇g,∂kg denote the gradient, the partial derivative with respect to the k -th

variable of the multivariable function g , respectively.

2. Proof of theorem 1.1

To prove the theorem, we prepare some lemmas. Most of them are related to
definable families of functions.

LEMMA 2.1. (The Hölder-Łojasiewicz inequality) Let P be a definable set and D
be a definable subset of P×B, where B is a bounded set. Let g : D→R

m be a definable
mapping. Suppose that (Dp)p∈P is a family of compact sets and gp is continuous for
all p ∈ P. Then there exist ϕ ∈ Φ and a positive definable function C : P → R , such
that

‖g(p,x)−g(p,y)‖� C(p)ϕ(‖x− y‖), for all x,y ∈ Dp, p ∈ P.

Proof. By [17, Th. 3], there is a cell partition of P , such that g|D∩(C×B) is con-
tinuous for each of the cell C . So the proof is reduced to case g being continuous.
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Moreover, by Trivialization Theorem [6, Ch. 9 (1.2)], there exists a finite partition
P = ∪iTi , where each Pi is a cell, such that

DPi = {(p,x) ∈ D : p ∈ Pi} is definably homeomorphic to Pi×Dpi, for some pi ∈ Pi.

Since each cell is locally closed, so is DPi , and the proof is reduced to the case P
being locally closed. In the case where g is continuous and P is locally closed, ap-
plying the Łojasiewicz inequality [11, Theorem 2] to G(p,x,y) = g(p,x)− g(p,y) ,
F(p,x,y) = x− y on D2

P = {(p,x,y) : (p,x),(p,y) ∈ Dp} (being locally closed and
F−1(0) ⊂ G−1(0)), we get ϕ ,ψ ∈ Φ , such that

‖g(p,x)−g(p,y)‖� ϕ(C(p,x,y)‖x− y‖), for all (p,x),(p,y) ∈ DP,

where C(p,x,y) = 1 + ψ(‖(p,x,y)‖+ d((p,x,y),D2
P \D2

P)−1) . Moreover, by the p -
flatness of ϕ−1 , ϕ can be chosen to be concave on R+ . Since B is bounded, C(p) =
supx,y∈BC(p,x,y) � 1 + ψ(maxx,y∈B ‖x,y‖+ ‖p‖+ d(p,P \ P)−1) < +∞ . From the
concavity of ϕ and C(p) � 1, we get ϕ(C(p)t) � C(p)ϕ(t),∀t � 0. �

LEMMA 2.2. Under the same notation in Lemma 2.1, let (St)t∈T be a definable
family of subsets of B with dimSt � 1 , for all t ∈ T . Then there exist ϕ ∈ Φ and a
positive definable function C1 : P → R , such that

H 1(gp(St ∩Dp)) � C1(p)ϕ((diam(St)), for all t ∈ T, p ∈ P.

Proof. By Lemma 2.1, there exist ϕ ∈ Φ and C : P → R being positive definable
function such that

diam(gp(St ∩Dp)) � C(p)ϕ(diam(St)),

i.e. gp(St ∩Dp) is contained in a ball of radius C(p)ϕ(diamSt) . By [15, Corollary 3.1],
there exists M = M(g,(St)t∈T ) > 0, such that

H 1(gp(St ∩Dp)) � MπC(p)ϕ(diamSt) = C1(p)ϕ(diam(St)), for all t ∈ T, p ∈ P,

where C1(p) = MπC(p) . �

LEMMA 2.3. Let h : K → R
n be a definable map, where K ⊂ R

m . Suppose that
dim(h−1(y)) � 0 for all y ∈ R

n . Let A be a finite collection of definable subsets of K .
Then there exists a finite partition C of K into definable sets which is compatible with
A such that for each Δ ∈ C , h is one-to-one on the closure of Δ in K .

Proof. See [12, Lemma 3.6]. �

LEMMA 2.4. Let E be a subset of P×A, where A is a compact subset of R
n .

Suppose that (Ep)p∈P is a family of compact sets. Let h : E → R
m be a continuous

definable map. Let B be a compact subset of Fhp(0) = {y ∈ R
m : dimh−1

p (y) � 0} , for
all p ∈ P. Then there exists ϕ ∈ Φ and a positive definable function C : P → R such
that for any definable family (St)t∈T of subsets of R

m with dimSt � 1 , for all t ∈ T ,
we have

Vol(h−1
p (St ∩B)) � C(p)ϕ(diam(St)), for all t ∈ T, p ∈ P.
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Proof. Let C Let be the partition of E obtained by applying Lemma 2.3 to the
function h : E → P×R

m defined by h(p,x) = (p,h(p,x)) . Note that, by compactness
of Ep and continuity of h , for each Δ ∈ C , the fiber Δp is compact and hp|Δp

: Δp →
hp(Δp) is a definable homeomorphism, for all p ∈ π(Δ) , where π : P×R

n → P is the
natural projection. Set DΔ = {(p,y) : p ∈ π(Δ),y ∈ hp(Δp)} and gΔ : DΔ → A defined
by gΔ(p,y) = (hp|Δp

)−1(y) . Applying Lemma 2.2 to each gΔ , for Δ ∈ C , we get

ϕΔ ∈ Φ and CΔ : P → R being positive definable function, such that

H 1((gΔ)p(St ∩ (DΔ)p)) � CΔ(p)ϕΔ((diam(St))),∀t ∈ T, p ∈ π(Δ).

Therefore,

H 1(h−1
p (St ∩B)) � ∑

Δ∈C

H 1((gΔ)p(St ∩ (DΔ)p)) � C(p)ϕ((diam(St))),∀t ∈ T, p ∈ P,

where C = card(C )max
Δ∈C

CΔ and ϕ = max
Δ∈C

ϕΔ . �

Note that, for any definable function f : A → R with A ⊂ R
n , we have

int({x ∈ A : f (x) = t}) 	= /0 ⇔ dim f−1(t) = n.

Moreover, for a definable family of functions, we have:

LEMMA 2.5. Let f : P×A → R be a definable functions, where A ⊂ R
n . Set

Ff (n) = {(t, p) ∈ R×P : dim f−1
p (t) = n} . Then Ff (n) is a definable family of sets

whose the fibers Ff (n)p , for p ∈ P, are finite, and there exists N ∈ N such that
card(Ff (n)p) � N , for all p ∈ P.

Proof. By [6, Ch. 4 (1.6)], Ff (n) is definable and the dimension of the fiber over
p ∈ P satisfies

dimFf (n)p = dim{t ∈ R : dim f−1
p (t) = n} = dim f−1

p (Ff (n)p)−n � 0,

and hence the fibers are finite sets. The uniform finiteness of card(Ff (n)p) , p ∈ P , is
followed from [6, Ch. 3 (2.13)]. �

LEMMA 2.6. If the structure is polynomially bounded, then for every ϕ ∈Φ , there
exists α ∈ Λ satisfying the following:

For every τ0 > 0 , there exist C1,C2 > 0 , such that

C1|t|α � ϕ(|t|) � C2|t|α , whenever |t| � τ0.

Proof. See [12, Proposition 1.2]. �

Before proving Theorem 1.1, we fix some more notations that will be used.
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For d � n , let Gd(Rn) denote the Grassmannian of d -dimensional linear sub-
spaces of R

n . Let (e1, · · · ,en) denote the standard basis of R
n and πi : R

n → R
n−1 the

orthogonal projection along ei . Put

δ (L,ei) = inf{‖x− ei‖ : x ∈ L,‖x‖ = 1}, for L ∈ Gn−1(Rn).

Proof of Theorem 1.1. The proof is an adaptation of that of [12, Theorem 3.3]
(see also [9]).

By [17, Th. 3], there is a cell partition of P , such that f |C×A is continuous for
each cell C . So the proof is reduced to the case f being continuous. Choose δ > 0,
so that for each L ∈ Gn−1(Rn) , there exists i ∈ {1, · · · ,n} so that δ (L,ei) > δ . By
[13, Theorem 1.1], there exists a definable finite partition P = ∪ jPj , such that for each
j , there exists a definable Whitney stratification of X of Pj × A by cells over Pj

satisfying the following conditions for each p ∈ Pj :

(1) Xp = {Γp;Γ ∈ X } is also a Whitney stratification of A .

(2) For each Γ ∈ X , rank fp|Γp is constant.

(3) When dimΓp = n, rank fp|Γp = 1, then

d(Γp,ei)(x) = δ (Tx(Γp ∩ f−1
p ( fp(x))),ei)− δ

has a constant sign for x ∈ Γp , for all i ∈ {1, · · · ,n} .

Therefore, the proof is reduced to the case where f is continuous and P = Pj .
Using Lemma 2.5 and the notation therein, for p ∈ P , we put

τ(p) =
{ 1

2 minF| f |(n)p if F| f |(n)p 	= /0,
maxA | fp| if F| f |(n)p = /0.

Then, by the assumption, we have τ : P → R being definable and positive. For each
p ∈ P , and Γ ∈ X , we consider the volumes of ( fp|Γp)

−1(It)∩Γp of the definable
family of the intervals (It = [−t,t] : 0 � t � τ(p)) . Since int({x ∈ A : fp(x) = 0}) = /0 ,
for all p ∈ P , there are two cases to consider:

Case 1: dimΓp < n,∀p ∈ P . In this case H n( f−1
p (It)∩Γp) = 0 for all 0 � t <

τ(p) .
Case 2: dimΓp = n and rank fp|Γp = 1,∀p∈P . In this case, there is i∈{1, · · · ,n} ,

such that d(Γp,ei)(x) > δ ,∀x ∈ Γp. Note that, from this fact and the Whitney condition
(a), we have dim( f−1

p (t)∩π−1
i (w)∩Γp) � 0, for all 0 � |t|< τ(p) and w ∈ R

n−1 . For
each i ∈ {1, · · · ,n} , set

Ai = {(p,x) : ∃Γ ∈ X ,x ∈ Γp,dimΓp = n, rank fp|Γp = 1, d(Γp,ei) > δ}.

Applying Fubini’s theorem or the coarea formula, see [8, (3.2.22)], then Lemma 2.4
with (A,h,(St)t∈T ) replaced by (Ai,( f ,πi),(It ×w)0�t<τ(p),w∈Rn−1) , we get ϕ1 ∈ Φ
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and C1 : P → R+ being definable, such that, for all 0 � t < τ(p), p ∈ P ,

Vol({x : | fp(x)| � t}) = H n( f−1
p (It))

�
n

∑
i=1

H n(Ai
p∩ f−1

p (It))

=
n

∑
i=1

∫
Rn−1

H 1(Ai
p∩ f−1

p (It)∩π−1
i (w))dw

=
n

∑
i=1

∫
πi(Ai)

H 1(Ai
p∩ ( fp,πi)−1(It ×{w}))dw

�
n

∑
i=1

∫
πi(Ai)

C1(p)ϕ1(H 1(diam(It ×{w}))dw

�
n

∑
i=1

H n−1(πi(A))C1(p)ϕ1(2t)

= C2(p)ϕ(t) ,

where C2(p) = nmax1�i�n H n−1(πi(A))C1(p) and ϕ(t) = ϕ1(2t) . Since ϕ is increas-

ing and Vol({x ∈ A : | fp(x)| � t}) � Vol(A),∀t , taking C(p) = max(C2(p), Vol(A)
ϕ(τ(p)) ) ,

we get
Vol({x ∈ A : | fp(x)| � t}) � C(p)ϕ(t), for all t � 0, p ∈ P.

When the structure is polynomially bounded, from this inequality and Lemma 2.6, we
get the last inequality of the theorem. �

REMARK 2.7. For the case where P is compact, f is continuous, and there exists
τ0 > 0, such that int({x ∈ A : fp(x) = t}) = /0 , for all p ∈ P and t ∈ [0,τ0] , the proof
of Theorem 1.1 is much easier:

Let f : P×A→ P×R defined by f (p,x) = (p, | f (p,x)|) . Then f is a continuous
definable map on compact set. Applying [12, Theorem 3.3] to f and the family of sets
Sp,t = {p}× [0, t],(p,t)∈ P× [0,τ0] , we get ϕ ∈ Φ , such that

Vol({x∈A : | fp(x)|� t})= Vol({(p,x)∈P×A : f
−1

(Sp,t)})� ϕ(t), for all 0 � t � τ0.

In this case, we get a uniform estimate for the volumes of the sub-level sets of the family
( fp)p∈P , i.e. C(p) , in the estimate of the theorem, can be chosen to be constant.

REMARK 2.8. In general, we do not have any uniform estimate in Theorem 1.1,
i.e. C can be unbounded. For example, let fp(x) = p, for (p,x) ∈ (0,1)× [0,1] . Then

Vol({x : | fp(x)| � t}) =
{

1, if p � t � 1,
0, if 0 < t < p.

Therefore, for any ϕ ∈ Φ and C : (0,1) → R+ , so that

Vol({x : | fp(x)| � t}) � C(p)ϕ(t), for all t � 0, p ∈ (0,1),

we have C(p) � 1
ϕ(p)

→ ∞, when p → 0+ .
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3. Proof of Theorem 1.2

As noted in the introduction, to estimate the oscillatory integrals, according to the
Stationary Phase Principle and the Scaling Principle, we need to investigate the sets of
critical points of the phase functions and where their gradients are bounded from below.
Some useful information for a definable family of functions are given in the following
lemmas.

LEMMA 3.1. (the Bochnak-Łojasiewicz inequality) Let f : P×A → R be a de-
finable function, where A is a bounded subset of R

n of dimension n. Let C1( fp) =
{x ∈ intA : fp ∈C1 on a neighborhood of x}, p ∈ P. Then

1. (C1( fp))p∈P is a definable family.

2. dim(A\C1( fp)) < n, for all p ∈ P.

3. There exists a positive definable function τ : P → R , such that

‖∇ fp(x)‖ � | fp(x)|, whenever | fp(x)| � τ(p),x ∈C1( fp).

Proof. The arguments are similar to that of [11, Theorem 3].
Since (C1( fp))p∈P is the the family of fibers of the following definable set

{(p,x) ∈ P×A : p ∈ P,x ∈ intA, fp ∈C1 on a neighborhood of x},
it is a definable family. Statement (2) is followed from C1 -Cell Decomposition (see [6,
Ch. 7 (3.2)]).

To prove (3), for p ∈ P and t > 0, let

F(p,t) = {x ∈C1( fp) : | fp(x)| = t}.
By o-minimality, two cases are to be considered.

Case 1: p ∈ P1 = {p′ ∈ P : there is δ > 0,F(p,t) = /0, for all t ∈ (0,δ )} . In this
case, let τ1(p) = min(sup{δ > 0 : F(p,t) = /0,∀t ∈ (0,δ )},1) . Then τ1 : P1 → R is
definable, and F(p, t) = /0 for all t ∈ (0,τ1(p)) . Therefore, the desired inequality holds
for τ(p) = τ1(p) .

Case 2: p ∈ P2 = {p′ ∈ P : there is δ > 0,F(p,t) 	= /0, for all t ∈ (0,δ )} . Let
τ2(p) = min(sup{δ > 0 : F(p,t) 	= /0,∀t ∈ (0,δ )},1) . Then τ2 : P2 → R is definable,
and F(p, t) 	= /0 for all t ∈ (0,τ2(p)) . Let

v(p, t) = inf{‖∇ fp(x)‖ : x ∈ F(p,t)},t ∈ (0,τ2(p)), p ∈ P2.

By [11, Lemma 2.4], there exists δ > 0 such that v(p,t) > t , for all t ∈ (0,δ ) . Let
τ3(p) = min(τ2(p),sup{δ > 0 : v(p,t) > t,∀t ∈ (0,δ )}).

Finally, let τ : P = P1 ∪P2 → R , defined by τ(p) = τ1(p) if p ∈ P1 , and τ(p) =
τ3(p) if p ∈ P2 . Then τ is definable and ‖∇ fp(x)‖ � | fp(x)|, whenever | fp(x)| �
τ(p). �
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DEFINITION 3.2. Let g : A → R be a definable function on a subset A of R
n .

The set of the asymptotic critical values of g is defined by

Ka(g) = {c : there exists a sequence (xk)k∈N in C1(g),g(xk) → c,∇g(xk) → 0,

when k → ∞}.

LEMMA 3.3. Let f : P×A → R be a definable function, where A is a bounded
subset of R

n . Then

1. (Ka( fp))p∈P is a definable family.

2. There exists M ∈ N such that card(Ka( fp)) < M, for all p ∈ P.

3. There exists a positive definable function τ : P → R , such that for all p ∈ P,c ∈
Ka( fp) , we have

‖∇ fp(x)‖ � | fp(x)− c|, whenever | fp(x)− c|� τ(p),x ∈C1( fp).

Proof. The family (Ka( fp))p∈P is the fibers of the following set

K( f )= {(p,c) : p∈P, there exists a sequence (xk)k∈N in C1( fp),g(xk)→ c,∇g(xk)→ 0}.

It is easy to express K( f ) by (ε -δ ) formulas on definable sets, and hence (1) follows.
By Lemma 3.1 (see also [10] or [11]), Ka( fp) is discrete, and hence, from the

definability, it is finite. By Uniform Finiteness Property [6, Ch 3. (2.13)], we get (2).
For each c ∈ Ka( fp) , applying Lemma 3.1, we get the τc(p) corresponding to fp − c .
Taking τ(p) = minc∈Ka( fp) τc(p) , we obtain the desired inequalities in (3). �

REMARK 3.4. If A is not bounded or f is not definable, then Ka( fp) can be
infinite. See the following examples.

EXAMPLE 3.5. Let f (x,y) =
x
y
, for (x,y) ∈ A = R× (0,∞) . Then Ka( f ) = R .

EXAMPLE 3.6. Let f (x) = xsin 1
x , for x 	= 0. Then Ka( f ) is infinite.

LEMMA 3.7. (van der Corput) Let f : (a,b) → R be a C1 function. Fix t > 0 .
Suppose that | f ′(x)| � t,∀x ∈ (a,b) ,and f ′ is monotonic. Then∣∣∣∣

∫ b

a
eiλ f (x)dx

∣∣∣∣� 3(λ t)−1, for all λ > 0.

Proof. See, for example, [18, Ch. VIII, Proposition 2]. �
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LEMMA 3.8. Let f : P×A → R be a definable function. Write x = (x′,xn) ∈ A ⊂
R

n−1×R . Set V denote the set of all (x′,xn, p,t) ∈ A×P×R+ such that

fp(x′, ·) ∈C1,∂n fp(x′, ·) is monotonic, and |∂n f (x′, ·)| � t, on a neighborhood of xn.

Then V is a definable set, and there exists N ∈N such that the numbers of the connected
components of the fibers V(p,x′,t) are bounded by N .

Proof. The definability of V is obvious. By Cell Decomposition [6, Ch. 7 (3.2)]
and Monotonicity Theorem [6, Ch. 3 (1.2)], V(x′,p,t) has finite connected components.
The uniform bound for the connected components is followed by Trivialization Theo-
rem [6, Ch. 9 (1.2)]. �

Proof of Theorem 1.2. For each p ∈ P , taking τ as in Lemma 3.3, we set

A =
⋃

c∈Ka( fp)

Ap,c∪A′
p,

where Ap,c = {x ∈ A : | fp(x) − c| � τ(p)},A′
p = {x ∈ A : | fp(x)− c| > τ(p),∀c ∈

Ka( fp)} . We will estimate the integrals on each set of the union.
For each c ∈ Ka( fp) and 0 < t � τ(p) , depending on λ that we will choose later,

let
Ap,c = Ap,c,t ∪Bp,c,t ,

where Ap,c,t = {x ∈ Ap,c : | fp(x)− c|� t},Bp,c,t = {x ∈ Ap,c : | fp(x)− c| > t}.
To estimate the integral on Ap,c,t , we apply Theorem 1.1 to get ϕ1 ∈ Φ and C1 :

P → R being positive definable function, such that∣∣∣∣
∫

Ap,c,t

eiλ f (p,x)g(x)dx

∣∣∣∣ � Vol(Ap,c,t)‖g‖∞ � Vol({x ∈ A : | fp(x)− c|� t})‖g‖∞

� C1(p)ϕ1(t)‖g‖∞, for all t � 0.

Note that, by Lemma 3.1, Bp,c,t = C1( fp|Bp,c,t )∪ (Bp,c,t \C1( fp|Bp,c,t ) , in which the
last set has measure 0. So, to estimate the integral on Bp,c,t , we simply consider it
on C1( fp|Bp,c,t ) . Since on this set t < | fp − c| � τ(p) , by the Bochnak-Łojasiewicz
inequality in Lemma 3.3,

C1( fp|Bp,c,t ) ⊂ {x ∈C1( fp) : ‖∇ fp(x)‖ � t}, when 0 < t � τ(p).

Therefore,

C1( fp|Bp,c,t ) ⊂
n⋃

k=1

{x ∈C1( fp)∩Ap,c : |∂k fp(x)| � t
n},

For k = n , let x = (x′,xn) denote a point in Ap,c ⊂ R
n−1 ×R, I the projection of Ap,c

to the last coordinate, and Ãp,c the projection of Ap,c to the first n− 1 coordinates.
By Lemma 3.8, there exists N ∈ N such that for all p ∈ P and x′ ∈ Ap,c , the set of
xn ∈ Ip,x′ = {s ∈ I : (p,x′,s) ∈ Ap,c} such that

fp(x′, ·) ∈C1,∂n fp(x′, ·) is monotonic, and |∂n fp(x′, ·)| � t
n
, on a neighborhood of xn,
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is the union of N intervals atmost, say I1, · · · , IN (depending on p,x′ and some of them
may be empty). On each of the intervals, say I j = (a,b) , let Fp(x′,xn)=

∫ xn
a eiλ fp(x′,s)ds .

Since |∂n fp(x′,xn)| � t/n on I j , by the van der Corput Lemma 3.7, |Fp(x′,xn)| �
3(λ t

n )−1 . Integrating by parts and using this inequality, we get∣∣∣∣
∫

Ij
eiλ fp(x′,xn)g(x′,xn)dxn

∣∣∣∣ =
∣∣∣∣
∫

Ij
∂nFp(x′,xn)g(x′,xn)dxn

∣∣∣∣
� 3(λ t

n )−12‖g‖∞ +3(λ t
n )−1

∫
Ij
|∂ng(x′,xn)|dxn.

Applying the Fubini Theorem and the above estimation on each of the intervals, we get∣∣∣∣
∫
|∂n fp|� t

n

eiλ fp(x)g(x)χAp,c(x)dx

∣∣∣∣
�
∫

Ãp,c

(
N

∑
j=1

∣∣∣∣
∫

Ij
eiλ fp(x′,xn)g(x′,xn)dxn

∣∣∣∣
)

dx′

�
∫

Ãp,c

(
N

∑
j=1

(
3(λ t

n )−1(2‖g‖∞ +
∫
Ij
|∂ng(x′,xn)|dxn)

))
dx′

� C2(λ t)−1(‖g‖∞ +‖∇g‖1),

where C2 = max1�k�n H n−1(pk(A))N6n , and pk : R
n → R

n−1 is the projection miss-
ing the k -th coordinate.

Using the similar estimations for k = 1,2, · · · , we get∣∣∣∣
∫

Bp,c,t

eiλ f (x,p)g(x)dx

∣∣∣∣ �
n

∑
k=1

∣∣∣∣
∫
|∂k fp|� t

n

eiλ fp(x)g(x)χAp,c(x)dx

∣∣∣∣
� nC2(λ t)−1(‖g‖∞ +‖∇g‖1).

So, for each p ∈ P and c ∈ Ka( f0) , we have∣∣∣∣
∫

Ap,c

eiλ f (p,x)g(x)dx

∣∣∣∣ � C1(p)ϕ1(t)‖g‖∞ +nC2(λ t)−1(‖g‖∞ +‖∇g‖1)

� (C1(p)ϕ1(t)+nC2(λ t)−1)(‖g‖∞ +‖∇g‖1), when 0 < t � τ(p),

To estimate the integral on A′
p , note that, by the definition of Ka( fp) , the function C3 :

P → R , defined by C3(p) = infx∈A′
p∩C1( fp) ‖∇ fp(x)‖ , is a positive definable function.

Therefore, applying the estimation for the integral on Bp,c,t with t = C3(p) , we get∣∣∣∣∣
∫

A′
p

eiλ f (p,x)g(x)dx

∣∣∣∣∣� nC2(λC3(p))−1(‖g‖∞ +‖∇g‖1) = C4(p)λ−1(‖g‖∞ +‖∇g‖1).

Summing up, for each p ∈ P , using cardKa( fp) � M , when 0 < t � τ(p) , we have∣∣∣∣
∫

A
eiλ f (x,p)g(x)dx

∣∣∣∣ � ∑c∈Ka( fp)

∣∣∣∫Ap,c
eiλ f (p,x)g(x)dx

∣∣∣+ ∣∣∣∫A′
p
eiλ f (p,x)g(x)dx

∣∣∣
� (MC1(p)ϕ1(t)+MnC2(λ t)−1 +C4(p)λ−1)(‖g‖∞ +‖∇g‖1)
� C5(p)(ϕ1(t)+ (λ t)−1 + λ−1)(‖g‖∞ +‖∇g‖1),
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where C5(p) = max(MC1(p),MnC2,C4(p)) .
Now we choose t = λ− 1

2 , and take ϕ ∈ Φ , defined by ϕ(s) = ϕ1(
√

s) +
√

s +
s2,s � 0, to get∣∣∣∣

∫
A
eiλ f (p,x)g(x)dx

∣∣∣∣� C5(p)ϕ(λ−1)(‖g‖∞ +‖∇g‖1),when 0 < λ−1 � τ2(p).

Since

∣∣∣∣
∫

A
eiλ f (p,x)dx

∣∣∣∣� Vol(A) for all λ > 0, taking C(p) = max(C5(p), Vol(A)
ϕ(τ2(p)) ) , we

have ∣∣∣∣
∫

A
eiλ f (p,x)g(x)dx

∣∣∣∣� C(p)ϕ(λ−1)(‖g‖∞ +‖∇g‖1), for all λ > 0.

The desired estimate is made.
When the structure is polynomially bounded, the last inequality of the theorem

comes from Lemma 2.6. �

REMARK 3.9. (cf. [5, Remark 3.4]) In Theorem 1.2, the supposition int({x ∈
A : fp(x) = t}) = /0 , for all t , is necessary. Since if there is some c ∈ R such that
C = int({x ∈ A : fp(x) = c}) 	= /0 , then c ∈ Ka( fp) and for g = χC , we have∣∣∣∣

∫
A
eiλ f (p,x)g(x)dx

∣∣∣∣=
∣∣∣∣
∫
C

eiλ cdx

∣∣∣∣= Vol(C) 	→ 0, when λ → ∞.
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