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ON THE FURTHER REFINEMENT OF SOME OPERATOR

INEQUALITIES FOR POSITIVE LINEAR MAP

CHANGSEN YANG AND YU LI ∗

(Communicated by M. Krnić)

Abstract. In this paper, some further improvements of operator inequalities are given at the base
of Yang et al.’s recent work [Filomat 32:12 (2018), 4333–4340] and [Math. Slovaca 69 (2019),
919–930] for positive linear map. Besides, the corresponding multiple-term refinements for
scalars and operators are shown as well.

1. Introduction

Throughout the paper, B(H ) denotes the C∗ -algebra of all bounded linear op-
erators on a complex Hilbert space H . A operator A ∈ B(H ) is called positive,
if

〈Ax,x〉 � 0

for all x ∈ H , and we write A � 0. The set of all positive operators on a complex
Hilbert space H is denoted by B+(H ) . Also, the set of all positive invertible oper-
ators on a complex Hilbert space H is denoted with B++(H ) . If A ∈ B++(H ) ,
in symbols A > 0. For the notations adopted in this paper, we defined v−weighted
arithmetic mean, geometric mean for operator

A∇vB = (1− v)A+ vB, A�vB = A
1
2

(
A− 1

2 BA− 1
2

)v
A

1
2

where A,B ∈ B++(H ) , v ∈ [0,1] . If v = 1
2 , we write A∇B and A�B for brevity,

respectively.
A linear map Φ : B(H ) → B(K ) , where H and K are complex Hilbert

space, is called positive(strictly positive) if Φ(A) � 0 (Φ(A) > 0) whenever A � 0
(A > 0) and Φ is said to be unital or normalized if Φ(IH ) = IK . The relative operator

entropy of A and B , where A,B∈B(H ) , is defined as S(A|B)= A
1
2 log(A− 1

2 BA− 1
2 )A

1
2 .

The Kantorovich constants is defined by K(h,2) = (h+1)2
4h , h > 0.

It’s well known to us all that the classical Young inequality for scalars says that if
a,b � 0 and v ∈ [0,1], then

avb1−v � va+(1− v)b (1.1)
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with equality if and only if a = b . Simple as it is, what the inequality (1.1) conveys to
us is not only interesting in itself but also meaningful in operator theory. For example,
refining this inequality has taken the attention of many researchers, where adding one
or two even many positive terms or multiplying a coefficient which is greater than the
number 1 to the left side of the inequality becomes possible.

Recently, Kórus in [8] gave a new refinement of inequality (1.1) in the form that
if a,b > 0, t ∈ [0,1] , then

ta+(1− t)b� (1+ φ(t)(loga− logb)2)atb1−t , (1.2)

where the function φ(t) is defined by

φ(t) =

{
t2
2 ( 1−t

t )2t if t ∈ (0,1),

0 if t = 0,1.
(1.3)

In order to facilitate the calculation, we extend the function φ(t) to a periodic function
whose period is one. So the function φ(t) has the following basic properties:

i) φ(t ±1) = φ(t) for any t ∈ [0,1] .
ii) φ(t) = φ(1− t) for any t ∈ [0,1] .
In the same paper, the operator version of (1.2) was obtained as well: if A,B ∈

B+(H ) , t ∈ [0,1] , K =
√

φ(t)A−1S(A|B) , then

A�tB+K∗(A�tB)K � A∇tB, (1.4)

where φ(t) is defined by (1.3) .
Furthermore, Yang et al. in [13] first presented a refinement of (1.2) and obtained

the operator form of it as follows:

pa+(1− p)b � r(
√

a−
√

b)2 +
(
1+

φ(2p)
4

(
log

a
b

)2)
apb1−p (1.5)

A�pB+G∗(A�pB)G � A∇pB−2r(A∇B−A�B), (1.6)

for a,b > 0, A,B∈B+(H ) , G =
√

φ(2p)
2 A−1S(A|B) , p∈ [0,1] , where r = min{p,1−

p} and φ(p) is the form of (1.3) .
On the other hand, Lin in [9] showed that the reverse-type of AG-GM inequality

for operator can be squared: for 0 < mI � A,B � MI with h = M
m , then for any unital

positive linear map Φ ,

Φ2
(A+B

2

)
� K2(h,2)Φ2(A�B), (1.7)

and

Φ2
(A+B

2

)
� K2(h,2)(Φ(A)�Φ(B))2, (1.8)

where K(h,2) = (h+1)2
4h for h > 0.
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The results of (1.7) and (1.8) has been refined or generalized by a considerable
number of researchers in different forms. And one of the recent work was presented
by Yang and Lu in [14], who gave a better result which is both a refinement and a
generalization: for 0 < mI � A � m′I < M′I � B � MI and p � 1, then for any unital
positive linear map Φ ,

Φ2p(A∇tB) �
(

K(h,2)

4
1
p−1(1+ φ(t) log M′

m′
)2
)2p

Φ2p(A�tB), (1.9)

and

Φ2p(A∇tB) �
(

K(h,2)

4
1
p−1(1+ φ(t) log M′

m′
)2
)2p(

Φ(A)�tΦ(B)
)2p

, (1.10)

where t ∈ [0,1] , h = M
m and φ(t) is the form of (1.3) . The other was obtained by Yang

et al. as well in [13]: let 0 < mI � A,B � MI , Φ be a unital positive linear map on
B(H ) , p ∈ [0,1] , s > 0, then

Φs
(
A∇pB+Mm

(
G(A−1�pB

−1)G∗ +2r(A−1∇B−1−A−1�B−1)
))

� αsΦs(A�pB).
(1.11)

Φs
(
A∇pB+Mm

(
G(A−1�pB

−1)G∗+2r(A−1∇B−1−A−1�B−1)
))

� αs
(

Φ(A)�pΦ(B)
)s

,

(1.12)

where r = min{p,1− p} , α = max
{

(M+m)2
4Mm , (M+m)2

4
2
s Mm

}
, G =

√
φ(2p)
2 A−1S(A|B) and

φ(t) is the form of (1.3) .
Also, Lin in [10] established the following operator results

|Φ(A−1)Φ(A)+ Φ(A)Φ(A−1)| � (M +m)2

2Mm
I, (1.13)

and

Φ(A−1)Φ(A)+ Φ(A)Φ(A−1) � (M +m)2

2Mm
I, (1.14)

for 0 < mI � A � MI and Φ is unital positive linear map.
Likewise, the recent research is showed by Yang et al., the reader can refer to [14]

to get the detailed form.
Considering the above refinements and generalizations, now, we present some

multiple-term refinements of (1.2) , (1.4)–(1.6) and (1.9)–(1.14) in this paper.

2. Main results

In this section, we give a complete refinement of (1.2) , (1.4)–(1.6) for scalars
and operators. Moreover, the further improvement of (1.9)–(1.14) is also proved. In
order to better connect with the former and the later of this article, we first give the case
of (2.3) for N = 2.
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LEMMA 2.1. For a,b > 0 , τ ∈ [0,1] and F(τ) = φ(4τ)
16 (log a

b)2 with φ(τ) =
τ2

2 ( 1−τ
τ )2τ .
i) If τ ∈ [0, 1

2 ], then

τa+(1− τ)b � (1+F(τ))aτb1−τ + τ(
√

a−
√

b)2 + r0(
4
√

ab−
√

b)2, (2.1)

where r0 = min{2τ,1−2τ} .
ii) If τ ∈ [ 1

2 ,1] , then

τa+(1− τ)b � (1+F(τ))aτb1−τ +(1− τ)(
√

a−
√

b)2 + r0(
4
√

ab−√
a)2, (2.2)

where r1 = min{2τ −1,2−2τ} .

Proof. i) When τ ∈ [0, 1
4 ] , then r0 = 2τ . By simple calculation and (1.2) , then

τa+(1− τ)b− τ(
√

a−
√

b)2 −2τ( 4
√

ab−
√

b)2

= (1−4τ)b+4τa
1
4 b

3
4

�
[
1+ φ(4τ)

(
log(a

1
4 b

3
4 )− logb

)2]
(a

1
4 b

3
4 )4τb1−4τ

=
[
1+

φ(4τ)
16

(
log

a
b

)2]
aτb1−τ

= (1+F(τ))aτb1−τ .

And when τ ∈ [ 1
4 , 1

2 ] , then r0 = 1−2τ . By the periodicity of φ(τ) , we have

τa+(1− τ)b− τ(
√

a−
√

b)2 − (1−2τ)( 4
√

ab−
√

b)2

= (4τ −1)
√

ab+(2−4τ)a
1
4 b

3
4

�
[
1+

φ(4τ −1)
16

(
log

a
b

)2]
aτb1−τ

=
[
1+

φ(4τ)
16

(
log

a
b

)2]
aτb1−τ

= (1+F(τ))aτb1−τ .

So (2.1) as desired.
ii) When τ ∈ [ 1

2 , 3
4 ] , then r1 = 2τ −1. By the periodicity of φ(τ) and (1.2) , we

have

τa+(1− τ)b− (1− τ)(
√

a−
√

b)2 − (2τ −1)( 4
√

ab−√
a)2

= (3−4τ)
√

ab+(4τ −2)a
3
4 b

1
4

�
[
1+

φ(4τ −2)
16

(
log

a
b

)2]
aτb1−τ

=
[
1+

φ(4τ)
16

(
log

a
b

)2]
aτb1−τ

= (1+F(τ))aτb1−τ .
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Similarly, when τ ∈ [ 3
4 ,1] , then r1 = 2−2τ . So we have

τa+(1− τ)b− (1− τ)(
√

a−
√

b)2 − (2−2τ)( 4
√

ab−√
a)2

= (4τ −3)a+(4−4τ)a
3
4 b

1
4

�
[
1+

φ(4−4τ)
16

(
log

b
a

)2]
aτb1−τ

=
[
1+

φ(4τ)
16

(
log

a
b

)2]
aτb1−τ

= (1+F(τ))aτb1−τ .

So (2.2) as desired.

This completes the proof. �

It’s necessary for us to recall the lemma below for the sake of generalizing (1.5)
and the result of Lemma 2.1 into the general form.

LEMMA 2.2. ([12]) Let a,b > 0 and τ ∈ [0,1] . Given N ∈ N , consider the
integers km(τ) = [2m−1τ] and rm(τ) = [2mτ] , m = 1,2, . . . ,N . Then

τa+(1− τ)b−
N

∑
m=1

sm(τ)
(

2m√
b2m−1−km(τ)akm(τ) − 2m√

akm(τ)+1b2m−1−km(τ)−1
)2

,

= ([2Nτ]+1−2Nτ)
2N√

a[2Nτ]b2N−[2Nτ] + (2Nτ − [2Nτ])
2N√

a[2Nτ]+1b2N−[2Nτ]−1,

where sm(τ) = (−1)rm(τ)2m−1τ +(−1)rm(τ)+1[ rm(τ)+1
2 ] .

Now, we give a complete refinement of (1.2) and (1.5) for any N ∈ N .

LEMMA 2.3. Let a,b > 0 , τ ∈ [0,1] and N ∈ N , then

τa+(1− τ)b �
[
1+

φ(2Nτ)
4N

(
log

a
b

)2]
aτb1−τ

+
N

∑
m=1

sm(τ)
(

2m√
b2m−1−km(τ)akm(τ)− 2m√

akm(τ)+1b2m−1−km(τ)−1
)2

,

(2.3)

where sm(τ)= (−1)rm(τ)2m−1τ +(−1)rm(τ)+1[ rm(τ)+1
2 ] , rm(τ)= [2mτ] , km(τ)= [2m−1τ] ,

m = 1,2, . . . ,N . [x] is the greatest integer less than or equal to x and φ(t) is defined
by (1.3) .
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Proof. By the periodicity of φ(t) , Lemma 2.2 and (1.2) , then it follows that

τa+(1− τ)b−
N

∑
m=1

sm(τ)
( 2m√

b2m−1−km(τ)akm(τ) − 2m√
akm(τ)+1b2m−1−km(τ)−1

)2
= (2Nτ − [2Nτ])

2N√
a[2Nτ]+1b2N−[2Nτ]−1 +([2Nτ]+1−2Nτ)

2N√
a[2Nτ]b2N−[2Nτ]

�
[
1+ φ(2Nτ − [2Nτ])

(
log
(
a

[2Nτ]+1
2N b

2N−[2Nτ]−1
2N

)
− log

(
a

[2N τ]
2N b

2N−[2N τ]
2N

))2
]

× ( 2N√
a[2Nτ]+1b2N−[2Nτ]−1

)2Nτ−[2Nτ]( 2N√
a[2Nτ]b2N−[2Nτ]

)[2Nτ]+1−2Nτ

=
[
1+

φ(2Nτ)
4N

(
log

a
b

)2]
aτb1−τ .

So (2.3) holds. This completes the proof. �
REMARK 2.4. For one thing, it’s obvious that (1.2) and (1.5) are two special

cases of the inequality (2.3) if N = 0 and N = 1, respectively, which implies that
(2.3) is a generalization of those in the literature. For another, the inequality (2.3)
becomes an equality as N → ∞ , which indicates that (2.3) is a complete refinement of
(1.2) and (1.5) .

LEMMA 2.5. ([4]) For X ∈ B(H ) be self-adjoint and f , g be continuous real
functions such that f (t) � g(t) for all t ∈ Sp(X) (the Spectrum of X ). Then f (X) �
g(X) .

Next, the operator version of (2.3) are gained as well.

THEOREM 2.6. Assume that A,B ∈ B++(H ) , τ ∈ [0,1] and

J =

√
φ(2Nτ)
2N A−1S(A|B).

Then

A�τB+ J∗(A�τB)J

� A∇τB−
N

∑
m=1

sm(τ)
[
A�αm(τ)B+A�21−m+αm(τ)B−2(A�2−m+αm(τ)B)

]
, (2.4)

where sm(τ)= (−1)rm(τ)2m−1τ +(−1)rm(τ)+1[ rm(τ)+1
2 ] , rm(τ)= [2mτ] , km(τ)= [2m−1τ] ,

m = 1,2, . . . ,N . [x] is the greatest integer less than or equal to x , αm(τ) = km(τ)
2m−1 and

φ(t) is defined by (1.3) .

Proof. From (2.3) , we get

τt +1− τ � tτ +
φ(2Nτ)

4N (log t)tτ(log t)+
N

∑
m=1

sm(τ)
(
t

km(τ)
2m−1 + t

km(τ)+1
2m−1 −2t

2km(τ)+1
2m

)
,
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for any t > 0.
For the operator X = A− 1

2 BA− 1
2 has a positive spectrum, I be the identity operator,

then it can be deduced from Lemma 2.5 and the above inequality that

τA− 1
2 BA− 1

2 +(1− τ)I

� (A− 1
2 BA− 1

2 )τ +

√
φ(2Nτ)
2N log(A− 1

2 BA− 1
2 )(A− 1

2 BA− 1
2 )τ
√

φ(2Nτ)
2N log(A− 1

2 BA− 1
2 )

+
N

∑
m=1

sm(τ)
[
(A− 1

2 BA− 1
2 )

km(τ)
2m−1 +(A− 1

2 BA− 1
2 )

km(τ)+1
2m−1 −2(A− 1

2 BA− 1
2 )

2km(τ)+1
2m

]
.

(2.5)

Finally, by multiplying A
1
2 on both sides of the inequality (2.5) , then it follows that

A∇τB � A�τB+

√
φ(2Nτ)
2N S(A|B)A−1(A�τB)

√
φ(2Nτ)
2N A−1S(A|B)

+
N

∑
m=1

sm(τ)
[
A� km(τ)

2m−1
B+A� km(τ)+1

2m−1
B−2(A� 2km(τ)+1

2m
B)
]
,

which is equivalent to

A∇τB−
N

∑
m=1

sm(τ)
[
A�αm(τ)B+A�21−m+αm(τ)B−2(A�2−m+αm(τ)B)

]
� A�τB+ J∗(A�τB)J.

So (2.4) holds. Here the proof is completed. �
REMARK 2.7. Clearly, the result (2.4) is not only a generalization but also a

complete refinement of (1.4) and (1.6) .
In order to get further results for operator, it’s imperative for us to recall the fol-

lowing lemma.

LEMMA 2.8. ([15]) If A,B are positive operators on a Hilbert space and τ,ω ∈
[0,1] , then

A∇τ(A�ωB) = A∇τωB− τ(A∇ωB−A�ωB).

THEOREM 2.9. Suppose that A,B ∈ B++(H ) , τ ∈ [0,1] and

K =

√
φ(2N+1τ)
2N+1 A−1S(A|B).

i) If τ ∈ [0, 1
2 ], then

A�τB+K∗(A�τB)K +
N

∑
m=1

sm(2τ)
[
A�βm(τ)B+A�2−m+βm(τ)B−2(A�2−m−1+βm(τ)B)

]
� A∇τB−2r(A∇B−A�B). (2.6)
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ii) If τ ∈ [ 1
2 ,1] , then

A�τB+K∗(A�τB)K +
N

∑
m=1

sm(2−2τ)
[
A�γm(τ)B+A�γm(τ)−2−mB−2(A�γm(τ)−2−m−1B)

]
� A∇τB−2r(A∇B−A�B) (2.7)

where βm(τ) = 2−mkm(2τ) , γm(τ) = 1−βm(1− τ) , r = min{τ,1− τ} .

Proof. If τ ∈ [0, 1
2 ] , then 2τ ∈ [0,1] and r = τ . By substituting B by A�B and τ

by 2τ in (2.4) , then it becomes that

A�2τ(A�B)+

√
φ(2N+1τ)
2N+1 S(A|B)A−1(A�2τ(A�B))

√
φ(2N+1τ)
2N+1 A−1S(A|B)

� A∇2τ(A�B)−
N

∑
m=1

sm(2τ)
[
A� km(2τ)

2m−1
(A�B)+A� km(2τ)+1

2m−1
(A�B)−2(A� 2km(2τ)+1

2m
(A�B))

]
.

On account of Lemma 2.8, we have

A�τB+K∗(A�τB)K +
N

∑
m=1

sm(2τ)
[
A� km(2τ)

2m
B+A� km(2τ)+1

2m
B−2(A� 2km(2τ)+1

2m+1
B)
]

� A∇τB−2τ(A∇B−A�B),

which is equivalent to

A�τB+K∗(A�τB)K +
N

∑
m=1

sm(2τ)
[
A�βm(τ)B+A�2−m+βm(τ)B−2(A�2−m−1+βm(τ)B)

]
� A∇τB−2r(A∇B−A�B).

So (2.6) holds.
ii) If τ ∈ [ 1

2 ,1] , then 1− τ ∈ [0, 1
2 ] and r = 1− τ . By interchanging A for B and

replacing τ with 1− τ in the above inequality, then we have

B�1−τA+ K̂∗(B�1−τA)K̂ +
N

∑
m=1

sm(2−2τ)
[
B�βm(1−τ)A+B�2−m+βm(1−τ)A

−2(B�2−m−1+βm(1−τ)A)
]

� B∇1−τA−2r(B∇A−B�A),

where K̂ =
√

φ(2N+1(1−τ))
2N+1 B−1S(B|A) . By the properties of the function φ(t) , we get

φ(2N+1(1−τ)) = φ(2N+1τ +1−2N+1) = φ(2N+1τ) . And by simple calculation, it can
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be deduced that

K̂ =

√
φ(2N+1(1− τ))

2N+1 B−1S(B|A) =

√
φ(2N+1τ)
2N+1 B− 1

2 log(B− 1
2 AB− 1

2 )B
1
2

=

√
φ(2N+1τ)
2N+1 log(B−1A) = −

√
φ(2N+1τ)
2N+1 log(A−1B)

= −
√

φ(2N+1τ)
2N+1 A−1A

1
2 log(A− 1

2 BA− 1
2 )A

1
2

= −
√

φ(2N+1τ)
2N+1 A−1S(A|B) = −K.

And then, it is shown in [4] that B�1−τA = A�τB . So the above inequality becomes

A�τB+K∗(A�τB)K +
N

∑
m=1

sm(2−2τ)
[
A�1−βm(1−τ)B+A�1−2−m−βm(1−τ)B

−2(A�1−2−m−1−βm(1−τ)B)
]

� A∇τB−2r(A∇B−A�B),

which implies the desired result (2.7) . Here the proof is completed. �

Now we are at the position to state our main results for positive linear map. Before
these, some lemmas are needed.

LEMMA 2.10. i) ([6]) Let Φ be a unital positive linear map, ω ∈ [0,1] and
A,B be two positive operator, then

Φ(A�ωB) � Φ(A)�ω Φ(B). (2.8)

ii) ([4]) (Choi inequality) For Φ be a unital positive linear map and A > 0 , then

Φ−1(A) � Φ(A−1). (2.9)

LEMMA 2.11. i) ([2]) Let A,B � 0 , then the following norm inequality holds:

||AB|| � 1
4
||A+B||2. (2.10)

ii) ([3]) For A,B � 0 , then for 1 � k < +∞ ,

||Ak +Bk|| � ||(A+B)k||. (2.11)

LEMMA 2.12. ([4]) (L-H inequality) If 0 � A � B and k ∈ [0,1] , then

Ak � Bk.
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THEOREM 2.13. Suppose that A,B ∈ B+(H ) , τ ∈ [0,1] and z,Z are constants
with h = Z

z such that 0 < zI � A,B � ZI . If λ > 0 , then for any positive unital linear
map Φ on B(H ) , it holds

i)

Φλ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

� ζ λ Φλ (A�τB), (2.12)

ii)

Φλ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

� ζ λ (Φ(A)�τ Φ(B))λ , (2.13)

where ζ = max{K(h,2), K(h,2)

4
2
λ −1

} , K(.,2) is Kantorovich constants, SN(A−1,B−1) =

N
∑

m=1
sm(τ)

[
A−1�αm(τ)B

−1+A−1�21−m+αm(τ)B
−1−2(A−1�2−m+αm(τ)B

−1)
]
, αm(τ)= km(τ)

2m−1 ,

J =
√

φ(2Nτ)
2N A−1S(A|B) and φ(t) is defined by (1.3) .

Proof. Under the condition 0 < zI � A,B � ZI , we have

(A− zI)(ZI−A)A−1 � 0, (B− zI)(ZI−B)B−1 � 0,

which imply that

(1− τ)A+ zZ(1− τ)A−1 � (1− τ)(z+Z)I, τB+ zZτB−1 � τ(z+Z)I,

for τ ∈ [0,1] .
By summing up the two operator inequalities above, one can have

A∇τB+ zZ(A−1∇τB
−1) � z+Z

Then for any positive unital linear map Φ on B(H ) , it follows from the properties of
positive unital linear map and the above inequality that

Φ(A∇τB)+ zZΦ(A−1∇τB
−1) � z+Z. (2.14)

And then, by direct calculation, we have√
φ(2Nτ)
2N AS(A−1|B−1) =

√
φ(2Nτ)
2N A

1
2 log(A

1
2 B−1A

1
2 )A− 1

2

=

√
φ(2Nτ)
2N log(AB−1) = −

√
φ(2Nτ)
2N log(BA−1)

= −
√

φ(2Nτ)
2N A

1
2 log(A− 1

2 BA− 1
2 )A

1
2 A−1

= −
√

φ(2Nτ)
2N S(A|B)A−1 = −J∗.
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Hence on account of (2.4) , we have

A−1�τB
−1 + J(A−1�τB

−1)J∗ +SN(A−1,B−1) � A−1∇τB
−1, (2.15)

where
N
∑

m=1
sm(τ)

[
A−1�αm(τ)B

−1 + A−1�21−m+αm(τ)B
−1 − 2(A−1�2−m+αm(τ)B

−1)
]

is de-

noted by SN(A−1,B−1) .
i) If 0 < λ � 2, now, by taking (2.14) and (2.15) into consideration together,

one can have

||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)
zZΦ−1(A�τB)||

� 1
4
||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+ zZΦ−1(A�τB)||2

� 1
4
||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+ zZΦ((A�τB)−1)||2

=
1
4
||Φ(A∇τB)+ zZΦ(A−1�τB

−1 + J(A−1�τB
−1)J∗ +SN(A−1,B−1))||2

� 1
4
||Φ(A∇τB)+ zZΦ(A−1∇τB

−1)||2

� (z+Z)2

4
,

where the first inequality is by (2.10) , the second one is due to (2.9) , the third one is
by (2.15) , and the last one follows from (2.14) . Namely,

||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

Φ−1(A�τB)|| � (z+Z)2

4zZ
.

Therefore,

Φ2
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

�
(

(z+Z)2

4zZ

)2

Φ2(A�τB).

Since 0 < λ � 2, so 0 < λ
2 � 1. Then the above inequality can be deduced from

Lemma 2.12 (L-H inequality) that

Φλ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

�
(

(z+Z)2

4zZ

)λ

Φλ (A�τB) = (K(h,2))λ Φλ (A�τB)

for any 0 < λ � 2.
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If λ � 2, by simple calculation, one can have

||Φ λ
2 (A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1)))(zZ)
λ
2 Φ− λ

2 (A�τB)||
� 1

4
||Φ λ

2

(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+(zZ)
λ
2 Φ− λ

2 (A�τB)||2

� 1
4
||
(

Φ(A∇τB+ zZ(J(A−1�τB
−1)J∗ +SN(A−1,B−1)))+ zZΦ−1(A�τB)

) λ
2 ||2

� 1
4
||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+ zZΦ((A�τB)−1)||λ

=
1
4
||Φ(A∇τB)+ zZΦ(A−1�τB

−1 + J(A−1�τB
−1)J∗ +SN(A−1,B−1))||λ

� 1
4
||Φ(A∇τB)+ zZΦ(A−1∇τB

−1)||λ

� (z+Z)λ

4
,

where the first inequality is by (2.10) , the second one is deduced by (2.11) , the third
one is due to (2.9) , the forth one is by (2.15) , and the last one follows from (2.14) .
That is,

||Φ λ
2 (A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1)))Φ− λ
2 (A�τB)|| � (z+Z)λ

4(zZ)
λ
2

Therefore, for any λ � 2, we have

Φλ (A∇τB+ zZ(J(A−1�τB
−1)J∗ +SN(A−1,B−1)))

� 4λ−2
(

(z+Z)2

4zZ

)λ

Φλ (A�τB) =
(

K(h,2)

4
2
λ −1

)λ
Φλ (A�τB).

In summary, we can come to the conclusion that (2.12) holds for any λ > 0.
ii) If 0 < λ � 2, utilizing the same method presented in i), we have

||Φ(A∇τB+ zZ(J(A−1�τB
−1)J∗ +SN(A−1,B−1)))zZ(Φ(A)�τ Φ(B))−1||

� 1
4
||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+ zZ(Φ(A)�τ Φ(B))−1||2

� 1
4
||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+ zZΦ−1(A�τB)||2

� 1
4
||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+ zZΦ(A−1�τB
−1)||2

=
1
4
||Φ(A∇τB)+ zZΦ(A−1�τB

−1 + J(A−1�τB
−1)J∗ +SN(A−1,B−1))||2

� 1
4
||Φ(A∇τB)+ zZΦ(A−1∇τB

−1)||2

� (z+Z)2

4
,
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where the first inequality is by (2.10) , the second one is due to (2.8) , the third one is
deduced by (2.9) , the forth one is by (2.15) , and the last one follows from (2.14) . So
by Lemma 2.12, for any 0 < λ � 2, we have

Φλ (A∇τB+ zZ(J(A−1�τB
−1)J∗ +SN(A−1,B−1))) � (K(h,2))λ

(
Φ(A)�τ Φ(B)

)λ
.

If λ � 2, by direct calculation, we have

||Φ λ
2 (A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1)))(zZ)
λ
2

(
Φ(A)�τ Φ(B)

)− λ
2 ||

� 1
4
||Φ λ

2

(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+(zZ)
λ
2

(
Φ(A)�τ Φ(B)

)− λ
2 ||2

� 1
4
||
(

Φ(A∇τB+ zZ(J(A−1�τB
−1)J∗ +SN(A−1,B−1)))+ zZ

(
Φ(A)�τ Φ(B)

)−1) λ
2 ||2

� 1
4
||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+ zZΦ−1(A�τB)||λ

� 1
4
||Φ
(
A∇τB+ zZ(J(A−1�τB

−1)J∗ +SN(A−1,B−1))
)

+ zZΦ((A�τB)−1)||λ

=
1
4
||Φ(A∇τB)+ zZΦ(A−1�τB

−1 + J(A−1�τB
−1)J∗ +SN(A−1,B−1))||λ

� 1
4
||Φ(A∇τB)+ zZΦ(A−1∇τB

−1)||λ

� (z+Z)λ

4
,

where the first inequality is due to (2.10) , the second one is by (2.11) , the third one is
deduced by (2.8) , the forth one is by (2.9) , the fifth one and the last one are by (2.15)
and (2.14) , respectively. Thus for λ � 2, we have

Φλ (A∇τB+ zZ(J(A−1�τB
−1)J∗ +SN(A−1,B−1))) �

(
K(h,2)

4
2
λ −1

)λ(
Φ(A)�τ Φ(B)

)λ
.

So (2.13) holds for any λ > 0.
Here the proof is completed. �
REMARK 2.14. On the one hand, (2.12) and (2.13) are better than (1.7) and

(1.8) if N = 0, τ = 1
2 , λ = 2. On the other hand, (2.12) reduces to (1.11) and (2.13)

gives to (1.12) when N = 1. And when N > 1, they are multiple-term refinements of
those any in the literature.

LEMMA 2.15. Let A,B ∈ B+(H ) , τ ∈ [0,1] and z,Z are constants such that
0 < zI � B � z′I < Z′I � A � ZI , then

A∇τB+ zZSN(A−1,B−1)+ zZ

[
1+

φ(2Nτ)
4N (logh′)2

]
(A�τB)−1 � (z+Z)I, (2.16)
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where h = Z
z , h′ = Z′

z′ , SN(A−1,B−1) are as in Theorem 2.13 , N ∈ N and φ(t) is
defined by (1.3) .

Proof. From the proof of Theorem 2.13, we have

A∇τB+ zZ(A−1∇τB
−1) � z+Z. (2.17)

By (2.3) , we get

τt +1− τ �
[
1+

φ(2Nτ)
4N (logt)2

]
tτ +

N

∑
m=1

sm(τ)
(
t

km(τ)
2m−1 + t

km(τ)+1
2m−1 −2t

2km(τ)+1
2m

)
,

for any t > 0.
For X ∈ B+(H ) such that 0 < αI � X � β I . Then it can be deduced from

Lemma 2.5 that

τX +(1− τ)I � min
α�t�β

[
1+

φ(2Nτ)
4N (logt)2

]
X τ

+
N

∑
m=1

sm(τ)
(
X

km(τ)
2m−1 +X

km(τ)+1
2m−1 −2X

2km(τ)+1
2m

)
.

By the condition 0 < zI � B � z′I < Z′I � A � ZI , we have I < h′I = Z′
z′ I � A

1
2 B−1A

1
2 �

Z
z I = hI . Here we put X = A

1
2 B−1A

1
2 , then the above inequality becomes that

τ(A
1
2 B−1A

1
2 )+ (1− τ)I � min

h′�t�h

[
1+

φ(2Nτ)
4N (logt)2

]
(A

1
2 B−1A

1
2 )τ

+
N

∑
m=1

sm(τ)
[
(A

1
2 B−1A

1
2 )

km(τ)
2m−1 +(A

1
2 B−1A

1
2 )

km(τ)+1
2m−1 −2(A

1
2 B−1A

1
2 )

2km(τ)+1
2m

]
.

Now, by applying the monotonicity of logarithmic function and multiplying A− 1
2 on

both sides of the operator inequality nearby, then it can be deduced that

A−1∇τB
−1 �

[
1+

φ(2Nτ)
4N (logh′)2

]
(A−1�τB

−1)+SN(A−1,B−1), (2.18)

where
N
∑

m=1
sm(τ)

[
A−1�αm(τ)B

−1 + A−1�21−m+αm(τ)B
−1 − 2(A−1�2−m+αm(τ)B

−1)
]

is de-

noted by SN(A−1,B−1) and αm = km(τ)
2m−1 .

Finally, by simple calculation, we have

A∇τB+ zZSN(A−1,B−1)+ zZ

[
1+

φ(2Nτ)
4N (logh′)2

]
(A�τB)−1

= A∇τB+ zZ
((

1+
φ(2Nτ)

4N (logh′)2
)
(A−1�τB

−1)+SN(A−1,B−1)
)

� A∇τB+ zZ(A−1∇τB
−1) by (2.18)

� (z+Z)I. by (2.17)
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This completes the proof. �

Applying Lemma 2.15 and the same method presented by Theorem 2.13, we
obtain the following theorem.

THEOREM 2.16. Assume that A,B ∈ B+(H ) , τ ∈ [0,1] , Φ be a positive unital
linear map on B(H ) and positive real numbers z,z′,Z,Z′ satisfy 0 < zI � B � z′I <

Z′I � A � ZI with h = Z
z , h′ = Z′

z′ . If s > 0 , then
i)

Φs
(
A∇τB+ zZSN(A−1,B−1)

)
� ξ sΦs(A�τB), (2.19)

ii)

Φs
(
A∇τB+ zZSN(A−1,B−1)

)
� ξ s(Φ(A)�τ Φ(B))s, (2.20)

where ξ = max

{
K(h,2)

1+ φ (2N τ)
4N (logh′)2

, K(h,2)

4
2
s −1
(

1+ φ (2Nτ)
4N (logh′)2

)
}

, N ∈N , K(.,2) is Kantorovich

constants, SN(A−1,B−1) are as in Theorem 2.13 and φ(t) is defined by (1.3) .

REMARK 2.17. Firstly, (1.9) and (1.10) are special cases of (2.19) and (2.20)
if s is even with s � 2, N = 0. Secondly, (2.19) and (2.20) are further refinements of
the corresponding results if s is even with s � 2, N � 1.

LEMMA 2.18. ([5]) For any bounded operator X ,

|X | � tI ⇔ ||X || � t ⇔
[
tI X
X∗ tI

]
� 0 (t � 0).

THEOREM 2.19. For 0 < zI � B � z′I < Z′I � A � ZI with h = Z
z ,h′ = Z′

z′ and
s � 1 , then for any positive unital linear map Φ , it holds

i)

|Φs(A∇τB+ zZSN(A−1,B−1))Φs((A�τB)−1)

+ Φs((A�τB)−1)Φs(A∇τB+ zZSN(A−1,B−1))|

� 2

(
K(h,2)

4
1
s−1(1+ φ(2Nτ)

4N (logh′)2)

)s

I, (2.21)

ii)

Φs(A∇τB+ zZSN(A−1,B−1))Φs((A�τB)−1)

+ Φs((A�τB)−1)Φs(A∇τB+ zZSN(A−1,B−1))

� 2

(
K(h,2)

4
1
s −1(1+ φ(2Nτ)

4N (logh′)2)

)s

I, (2.22)
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where SN(A−1,B−1) are as in Theorem 2.13 , K(.,2) is Kantorovich constants, N ∈ N

and φ(t) is defined by (1.3) .

Proof. By simple calculation, we have

||Φs(A∇τB+ zZSN(A−1,B−1))(zZ)s
(
1+

φ(2Nτ)
4N (logh′)2

)s
Φs((A�τB)−1)||

� 1
4
||Φs(A∇τB+ zZSN(A−1,B−1))+ (zZ)s

(
1+

φ(2Nτ)
4N (logh′)2

)s
Φs((A�τB)−1)||2

� 1
4
||
(

Φ(A∇τB+ zZSN(A−1,B−1))+ zZ
(
1+

φ(2Nτ)
4N (logh′)2

)
Φ((A�τB)−1)

)s||2

=
1
4
||Φ(A∇τB+ zZSN(A−1,B−1))+ zZ

(
1+

φ(2Nτ)
4N (logh′)2

)
Φ((A�τB)−1)||2s

� (z+Z)2s

4
,

where the first inequality is by (2.10) , the second one is due to (2.11) , and the last one
follows from (2.16) . Therefore,

||Φs(A∇τB+ zZSN(A−1,B−1))Φs((A�τB)−1)|| �
(

K(h,2)

4
1
s−1(1+ φ(2Nτ)

4N (logh′)2)

)s

.

And then, it can be deduced from Lemma 2.18 that⎡
⎢⎢⎢⎢⎣

(
K(h,2)

4
1
s −1(1+ φ (2Nτ)

4N (logh′)2)

)s

I X1

X∗
1

(
K(h,2)

4
1
s −1(1+ φ (2N τ)

4N (logh′)2)

)s

I

⎤
⎥⎥⎥⎥⎦� 0,

where X1 = Φs(A∇τB+ zZSN(A−1,B−1))Φs((A�τB)−1) .
Similarly, we also have⎡

⎢⎢⎢⎢⎣

(
K(h,2)

4
1
s −1(1+ φ (2Nτ)

4N (logh′)2)

)s

I X2

X∗
2

(
K(h,2)

4
1
s −1(1+ φ (2N τ)

4N (logh′)2)

)s

I

⎤
⎥⎥⎥⎥⎦� 0,

where X2 = Φs((A�τB)−1)Φs(A∇τB+ zZSN(A−1,B−1)) .
Let X = X1 +X2 , then it’s clear that the operator X is self-adjoint. Summing up

the two operator matrices above, we have⎡
⎢⎢⎢⎢⎣

2

(
K(h,2)

4
1
s −1(1+ φ (2Nτ)

4N (logh′)2)

)s

I X

X∗ 2

(
K(h,2)

4
1
s −1(1+ φ (2Nτ)

4N (logh′)2)

)s

I

⎤
⎥⎥⎥⎥⎦� 0.
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By utilizing Lemma 2.18 again, finally, we get (2.21) and (2.22) . �
REMARK 2.21. For one thing, (2.21) and (2.22) give to (2.5) and (2.6) in [14]

when N = 0, respectively. For another, (2.21) and (2.22) are multiple-term refine-
ments of them when N � 1.
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