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STEFFENSEN-GRUSS INEQUALITY

SAAD I. BUTT, MILICA KLARICIC BAKULA* AND JOSIP PECARIC

(Communicated by S. Abramovich)

Abstract. Two inequalities for the Jensen difference under Steffensen’s conditions with Griiss
type upper bounds are proved.

1. Introduction

Let I C R be an interval. It is well known that if a function f: 1 — R is convex
then
1 & J L
F\ g 2w ) < 5 Xpif (), (L.1)
=1 n =1
forall neN, xp,...,.x, €I and pi,...,p, =0 suchthat Pb,=p;+---+p,>0. If
f is strictly convex then (1.1) is strict unless all x; are equal [7, p. 43]. This is the
classical Jensen inequality, one of the most important inequalities in convex analysis,
and it has various applications in mathematics, statistics, economics and engineering
sciences.

It is also known that the assumption py,...,p, = 0 can be relaxed at the expense
of restricting xi,...,x, more severely [8]. Namely, if p = (p1,...,p,) is areal n-tuple
such that

0< P <Py, ke{l,....n—1} and P, >0, (1.2)

then for any monotonic n-tuple x = (x1,...,x,) € I" (increasing or decreasing) we get

=

1

X= Fni pix; €1,

1

and for any function f convex on [ inequality (1.1) still holds. Under such assump-
tions inequality (1.1) is called the Jensen-Steffensen inequality for convex functions
and (1.2) are called Steffensen’s conditions due to J. F. Steffensen. Again, for a strictly
convex function f inequality (1.1) remains strict under certain additional assumptions
on x and p [1].
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Another important inequality in analysis is the Griiss inequality. It states that

‘b a/f ds——/f

holds for integrable functions f, g : [a,b] — R such that y< f(s) < T and ¢ < g(s) <
D, forall s € [a,b], where 7,T',¢,® € R [4, p. 296].

In [2, Theorem 1] Budimir and Pecari¢ proved an inequality which they named
the Jensen-Griiss inequality: it gives an upper bound for the difference between the
right hand side and the left hand side of the Jensen inequality in terms of the Griiss
inequality. Their results were recently improved in [3]. The goal of this paper is to prove
inequalities of the same type but now with weights satisfying Steffensen’s conditions
(1.2).

=) (P-9)

4>|~

2. Main results
In this section we assume n € N\ {1}, and we denote / = (¢, ) CR, a < f3,
Pe=pi+-+pe, Po=pit-+pa, ke{l,...,n}.

To prove our main result we need the following theorem (a modification of [6,
Theorem 4)).

THEOREM 2.1. Let a = (ay,...,a,) and b = (by,...,b,) be two real n-tuples
such that
\akH —ak| < 67 ke {1,...,}’1— 1}

Then for all real n-tuples p = (p1,...,pn) satisfying
0<P <Pnke{l,...n—1},

the following inequalities hold

n n n
‘ Z piaib; — Z pid; Z pibi

n—1
m)y <2Pl+1P + 2 PP, ) |air1 —a; (2.1)

i=1 \J=1 Jj=i+1

<8 (M—m) nzl (ZP,HP + Z PP)
i=1

j=1 j=i+1

where m = min{by,...,b,} and M = max{by,...,b,}.

Proof. First note that since

0<Pk:P1++Pk<Pn:P1++Pm ke{l,...,l’l},
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we know that _
Pk:pk++pn>o’ kE{L...,n}.

It can be easily proved (using summation by parts, sometimes called Abel’s transfor-
mation) that for k € {2,...,n—1}

n
Y pixi = ZP — Xit1) -+ P+ P Xer1 + 2 (xi—xi-1), (22
= i=k+2

and in bordercases k=1 ork=n

n n
Y pixi=Pixi+ Y Pi(xi—xi_1)

i=2
n n—1
> pixi = Puxy — 3 P (xi41 — X;). (2.3)
i=1 i=1

In all of the abowe cases we assume

!
Y xi=0, whenk > [.
i—k

The following identities hold (it could be checked directly)
> pi Z piaibi — Z pidi Z pibi
parki : :

pjbi— 2 pidi 2 pjb

j)-

|
-
'Ms T M:

I
M=

3

2

I

~

I
Py
<
w

Using (2.3) with x; = a; and weights p; 3;_, p; (bi—b;) we get
n n
2. piai ), pj(bi—b))
=1 j=1
n n n—1 i n
:“nzpizl’j(bi—b/’)—z< Z (bx—b; )(am ai).
=1 j=1 j=1

i=1

Since

=

n n n n

> pi Y, pj(bi—by) :2 ZP; —>\pi Y, pibj

i=1 =1 =1 j=1

pr/ 2. pi Y, pibj=0
=1 j=1

I
I M: ||
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we obtain

ipiipiaib ZplazZplb = Z (Z pkzp/ ) (air1—ai).
=1 i=1

Using (2.3) with x; =37, p; (b; — b;) we obtain

¥, zpk(zp, SR ROR)

k=1

=Pz<2P1b;—Pb> - P ZPk (bk — by 1),
(2.2

) with x; = b; we get

i1 _ noo_
:Pi< Pj(bj—bjs1) +Pbi+Piiibip+ Y, P; (bj_bjl)_Pnbi>
=1 j=it2

P,

=1
i—1 _ _ n _
:Pi(ij(bj_bjdrl)—Pi+1bi+Pi+1b,‘+1+ Z P; (bj—bjl)>
=1 j=it2
i-1
— Py Y Pi(bj—bjs1)
j=1
i—1 n _ i—1
=P Y Pi(bj—bjr1) +F Y, Pj(bj—bj-1) =Py Y, Pj(bj—bj:1)
j=1 j=i+1 J=1

i—1

n _ —
P Y Pj(bj—bj1)—Piy1 Y, Pi(bj—bjt1).
J

i+1 j=1

Hence

Zpi Zpiaibi - Zpiai > pibi
i=1 i ' i-1
n—1 n
= 2 ( 2 i (bj—bj1) — Py EP bj1 ) (Giv1—a;) (2.4)

j:

”ML

1
(Z i1Pj (aiv1 —ai) (bjs1 — b)) + Z PP (a1 —a;) (bj_bj1)>~
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By the assumptions we have |a;;1 —a;] < 0 and |bj+1 —bj| <M —m, and conse-
quently

n n n
i > piaibi— Y pia; Y, pibi
i=1 =1 =l
n—1 [i—
_m)z <2Pl+1P + 2 PP; ) laii1 —a;

=1 Jj=i+1

i=1

<8 (M—m) E(ZP,HP—F > PP)
i=1

j=1 Jj=i+1
hence (2.1) is proved. [

In [6, Theorem 4] the author considered some other conditions on weights, such
as
0P, <P, kef{l,....n—1}

or B
0< P, <P ke{2,....n}.

It can be easily seen that if, for instance, the first assumption holds we get
Py <0, k€{2,...,n},
and if the second holds we get
P <0, ked{l,....n—1},

so in all cases the products P;, 1P; and PP j in

n—1 — n B
)y <2Pz+1P (i1 —ai) (bje1—bj) + 3, PPj(aiv1 —a) (bj—bjl)>
i=1 \j=1 J=itl

are not positive. From that we conclude

n n n
;> piaibi— Y piai Y, pib;
i=1 = =

1

_m)g<2’ ,+1P‘+ Z ’PP ’) a1 —

j=1 j=i+1

n—1 [i-1
sM-my (Y|P D

i=1 \Jj=1 Jj=i+1

—8 (M —m) g(ZP,HP—F > PP)

i=1 \J=1 Jj=i+1

In the following we show how Theorem 2.1 can be used to prove the Jensen-
Griiss inequality under Steffensen’s conditions (1.2). Such inequality will be called
the Jensen-Steffensen-Griiss inequality, or shorter, the Steffensen-Griiss inequality.
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THEOREM 2.2. Let f:1 — R be a differentiable function and suppose that there
exist some m,M € R such that

m< f(x) <M, forallx €.
Let x = (x1,...,x,) € I" be an n-tuple such that
IXep1 —xk] <0, ke {l,...,n—1}.

Then for all real n-tuples p = (py,...,pn) satisfying (1.2) such that x € I the follow-
ing inequalities hold

‘f (%Ept z) zptf (xi)

"il

(ZP,+1P + Z PP ) \x,-H—x,

j=1 j=i+1

< ME <ZP,+1P + 2 PP; ) (2.5)

Proof. From the mean-value theorem we know that for any x,y € I there exist
some & between them such that

Choosing x = X and y = x; we get
f i) = f(x) = £ (&) (xi —x).

If we multiply the above equality by p;, and then sum over i, we obtain
pif (xi) — Puf (X)

Il M:
—
=

pzxzf él

I
||M=
IIMm

or written differently

B pif (x) — PA (%)

i=1

ZZ szxzf (&) — Zplxlzp‘f (&)
i=1 i=1
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Using (2.1) with a; = x; and b; = f’ (&) by the assumptions of this theorem we get

Pf( PZPf x;)

i=1

n

1 /i-1
<! ( Pt |1 (E01) ~ (&)
p

i=1

+ i PPjlxic1—xi|[f (&) — 1" (1) |>

j=it1

n—1
m) Yy <2PZ+IP + 2 PP; ) |xi 1 — xi
i= J=i+1
1
<8 (M—m) nz <2P,+1P + 2 PP)
i=1 \Jj=1 Jj=i+l1

which after division by P? becomes (2.5). O

REMARK 2.3. Note thatif x= (xi,...,x,) € I" is monotonicand p = (pi,...,pu)
satisfies (1.2) the condition x € I becomes redundant.
Also, if in Theorem 2.2 instead of (1.2) we consider alternative conditions

0<P, <P, ke{l,....n—1}

or
0< P, <P, ke{2,...,n}.

we obtain

M—m n—1 i—1 o o
Si( 2 ) (2 Pi+1Pj‘+ > Pin‘ i1 — xi
= j=itl

—-m n—1 [i—1
g_%z (ZP,HP—F D PP)

j=1 j=i+1

3. Mercer type result

There is an easy way to obtain a Jensen-Mercer type inequality starting from some
Jensen type inequality whenever we have weights p = (py,...,p,) satisfying (1.2).
This can be seen in the following theorem.
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THEOREM 3.1. Let f:1 — R be a differentiable function and suppose that there
exist some m,M € R such that

m< f (x) <M, forallx €.
Let x = (x1,...,x,) € I" and a,b € I be such that
|xi —a| <0, |1 —xl <6, ke{l,....n—1}, |b—x,| <0. (3.1)
Then for all real n-tuples p = (p1,...,pn) satisfying
0P <Py, kef{l,....n—1}, B, >0,

and

a+b— Zplxl el
the following inequalities hold .

f<a+b—%ipixi> +Pinépif(xi)—f(a)—f(b)

nij=1

n [i-1 _ noo_
2 (2131._1]3./4_ Z P,-Pj> |xi —xi1]

i=2 \j=1 Jj=i—

M_m n n _
+T <X1—Cl|zpj+b—xn|zpj>

j=1 i—

g%i(ig P+ 2 PP) —m)(n+1). (3.2)

i Jj=i—1

i=2

Proof. Using n+2 instead of n points, and making some substitutions, the asser-
tion immediately follows from Theorem 2.2. Namely, we define

512617 52:)617 53:)‘/‘27 ) énJrl:xna €n+2:b7 (33)
P AN S AP .
Pn7 ’ n+1 an

Then the n+ 2-tuple p’ satisfies the conditions
0<P <P, ke{l,...n+1}and P, ,=1>0,

P;z+2: L.

and by Theorem 2.2 we have

n+2 n+2
( Zpl ) P/ pr él

n+2 i= n+2 j=

(M —m) "
S P2 2<2P1+1P+ > PP>|(§i+1—§i

Jj=i+1

S (M —m) il [i=1
S (Srne S ).
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The left hand side of (3.2) follows from

n+2 n+2
< 2 pl ) P 2 Pi f gl 3.4)

n+2z n+2 i=
1 n
=f a+b—FEPixi pr x;) —f(b).
ni—| Lt
It can be easily seen that
Pl=P. ,=1,P, =0,
P1 Pi-1 pi
Pl=1-21—...— Pl _lie{2,... n},
1 Pn Pn ) l { n}
P/I_Pn+2:17P2_Ov
= Di-1 pn Pia o,
=12 Br_ T2 e {3,....n+1},
i P P~ p ! { n+1}
hence for i € {2,...,n}
n+2
sz+zﬂ
j=i+1
P P, Py P; (Pi—l P )
= 1+ =4t + = RS B
Pn ( P}’Z Pn ) n Pn P}’Z
Py (P P> Piy P; <R—1 P Pn)
= et el I e
Pn (Pn P}’Z Pn ) n Pn P}’Z P}’Z
1 i—1 B n B
-5 ;P,,le—l—‘;lP,Pj
j= Jj=i

Using the above equalities and substitutions (3.3) we get

(M m) n+1
Tp2o 2 ZPzHP/"‘ 2 PP 8iv1—&il
n+2 =1 \j=1 Jj=i+1

n
=(M—m) Z(ZPIHP’—k D PP)xi—x,-l
i=2 \j=1

Jj=i+1

n+1 _ n
+ (M —m) [xl —a|+ |b—xn| + |x1 — 4 EPj—i— |b— xp| ZPJ/
J=3 J=2

i=2 j=i—1

n n
= P2 2(21) P+ Y PP)x,-—xi_1|

n+1 |b—xn| no
(M=) | —al+ | + ZP, 2+ 5 2P
n j=2
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Obviously
—qg|nd] b—x
|x1 —al+b— x,q|+| | Pj_ 2+‘ "‘ZP
n j=3
x| —al| "E? b—x —
S LB
Jj=1
|x1 —al i |b— x| _
= Pj+ EP/’
By j=1 By j=1
hence

m n+1
(Af;/z 2 <2Pt+lpl+ 2 ) ‘§,+1

n+2 i=1 \j=1 Jj=

i+1
M—md i—1 n
< 7 2(23 P+ Y ,P,> xi — X1

i=2 = j=i—1

+MP (xl—a|ZP+b xnz )

J=1 Jj=1

) ‘élJrl
M m n

+2
i+1
i—1 n
< 7 2(23 P+ Y ,P,> xi — X1
1

£ — =i

Applying (3.1) we obtain

M n+1 n
WS (Srane S

n+2 i=1 \j=1 j

=2

-l-MP (xl—a|ZP+b xnz )

n j—l :
§(M—
P2

n n n n
<=0 [2 (23 P+ Y PP>+2P,,P,»+ZP,,P,-
Jj=i—1 j=1 Jj=1

1

2
i(fa 1P+ i >+6M m)(n+1),

n i j=1 Jj=i—

i=2
and consequently, with (3.4),

f(a—l—b——Zp,x,) +%ipif(xi)_f(a)_f(b)
' n =1

M noo_
g szz <2Pz IP + 2 Pin> \xi—xi,l\
n j=i—1

i=2 \j=1

—l—g <|x1—a|2P +1b—xy EPJ)
n

j=1 =1
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<S8 (Bnms £ o) on (S0 £7)

:T;i<§31PJ-+ i PP>+5(M m)(n+1),

which is the desired result. [

REMARK 3.2. Note thatif x= (xi,...,x,) € I" is monotonicand p = (pi,...,pu)
satisfies (1.2) any choice of a,b € I such that

min{xy,...,x,} —a <6, b—max{xy,...,x,} <6

makes the condition .
1
atb——Y pixicl (3.5)
Lt
redundant (see for instance [1]).
Also, if p = (p1,...,pn) is positive then (1.2) holds for every permutation of
the components of x = (xi,...,x,) which means that (3.5) is true even if x is not
monotonic.

REMARK 3.3. In [6] the author investigated some generalizations of the integral
Ostrowski inequality [5]. The obtained results included those involving Steffensen type
weights, and one of them is strongly related to (2.1). Namely, in [6, Theorem 2] the
author proved that if f and g are two differentiable functions on [a,b] C R monotonic
in the same sense, p an integrable function on [a,b] such that

0<P(x)<P(b), forallx € [a.b], /p (3.6)

and M,N two real numbers satisfying

|f/(x)}<M, g’(x)}gN, forall x € [a,b],
then
[T (f,8:p)| <MNT (x—a,x—a;p), (3.7)
where
b
T(f.gp) /p dx/ px x)dx — /p )dX/a p(x)g(x)dx

Note that (3.6) is an integral variant of (1.2), and the main tool used in the proof of
(3.7) is the identity

r(ran = [P [ Pwas0areo+ [ P [ Podaswar e
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which is an integral variant of (2.4). Nevertheless, it is not possible to obtain integral
version of (2.1) employing similar reasoning as in the proof of Theorem 2.2 and using
(3.7) instead of (2.1).

In the same paper [6] the author proved several integral Chebyshev type inequali-

ties but the problem of finding results of this type that can be used to obtain the integral
Steffensen-Griiss inequality remains open.
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