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SOME MIXED WEAK TYPE INEQUALITIES

MARÍA LORENTE AND FRANCISCO J. MARTÍN-REYES

(Communicated by V. Dmitrievič Stepanov)

Abstract. We study mixed weak type (1,1) weighted inequalities for the Hardy averaging opera-
tor, Tc f (x) = χ(c,∞)(x)

1
x−c

∫ x
c f (y)dy . This type of inequalities have the form∫

{x∈R:|Tc f (x)|>v(x)}
uv � C

∫
R

| f |u,

where C is independent of f and c . We improve the results in [Q. J. Math. 60 (2009), no. 1,
63–73] by giving a wider class of pairs of weights for which the inequality holds. In particular,
and as a corollary, we prove that the inequality holds for u ∈ A−

1 and v ∈ A+
∞ .

1. Introduction

It is well known that a sublinear operator is of weak type (1,1) with respect to the
measures u(x)dx and w(x)dx if

∫
{x∈Rn:|T f (x)|>λ}

u � C
λ

∫
Rn

| f |w , (1.1)

where u and w are nonnegative measurable functions and C is independent of f and
λ > 0. The pairs of weights which satisfy this inequality for classical operators have
been studied in the last 50 years. Among these operators we have the following:

1. The Hardy averaging operator

T f (x) = χ(0,∞)(x)
1
x

∫ x

0
f (y)dy

and its adjoint

T ∗ f (x) = χ(0,∞)(x)
∫ ∞

x

f (y)
y

dy.
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2. The one–sided Hardy-Litlewood maximal operators

M− f (x) = sup
c<x

1
x− c

∫ x

c
| f | and M+ f (x) = sup

b>x

1
b− x

∫ b

x
| f |.

3. The Hardy-Litlewood maximal operator

M f (x) = sup
Q

χQ(x)
1
|Q|

∫
Q
| f |,

where the supremum is taken over all cubes in R
n with sides parallel to the axes.

4. The Hilbert transform

H f (x) = lim
ε→0+

∫
{y:|x−y|>ε}

f (y)
x− y

dy

or, with more generality, the Calderón-Zygmund operators.

Let T be any sublinear operator and, for 1 < p < ∞ , let Ap(T ) be the class of
weights u such that T : Lp(u) → Lp(u) is bounded and let A∞(T ) = ∪p>1Ap(T ) (we
simply write Ap and A∞ when T is the Hardy-Littlewood maximal operator). These
classes of weights have been extensively studied and characterised for the above oper-
ators (see [13], [16], [9]). Now, take a positive measurable function v and consider the
modification of the above operator given by

Tv f =
1
v
T ( f v).

Which is the class of weights Ap(Tv)?, that is, which are the weights u such that

∫
|Tv f |pu � C

∫
| f |pu

for all functions f ? Clearly, the last inequality is equivalent to
∫
|T f |puv−p � C

∫
| f |puv−p.

Thus, u ∈ Ap(Tv) if and only if uv−p ∈ Ap(T ) . Therefore, the “good weights” for Tv

are obtained from the “good weights” for T .
Now we wonder about the weighted weak type inequalities. Let weak-Ap(T ) be

the class of weights u such that T : Lp(u) → Lp,∞(u) is bounded (as before, we omit
the T when T is the Hardy-Littlewood maximal operator; for p=1, we usually write A1

instead of weak-A1 ). Which is the class of weights weak-Ap(Tv)?, that is, which are
the weights u such that ∫

{|Tv f |>λ}
u � C

λ p

∫
| f |pu
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for all functions f and all λ > 0? The last inequality is equivalent to

∫
{|T f |>λ v}

u � C
λ p

∫
| f |puv−p.

As we can see, it is not possible to reduce the study of the weak type inequalities for Tv

to the corresponding weak-type inequalities for T . For convenience, we will replace u
by uv in such a way that the last inequality can be written as

∫
{x∈Rn:|T f (x)|>λ v(x)}

uv � C
λ p

∫
Rn

| f |puv1−p . (1.2)

In this way, u belongs to weak-Ap(Tv) if and only if the pair (u/v,v) satisfies (1.2)
for all functions f and all λ > 0. These inequalities are of different nature and they
are called mixed weak type inequalities. As far as we know, the expression mixed
weak type inequality for a sublinear operator T was coined in [1]. We are specially
interested in the case p = 1, that is, in this paper we will search mixed weak type (1,1)
inequalities of the form

∫
{x∈Rn:|T f (x)|>λ v(x)}

uv � C
λ

∫
Rn

| f |u , (1.3)

where C is independent of f and λ > 0; clearly, this inequality is equivalent to saying
that the operator Tv is of weak type (1,1) with respect to the measure u(x)v(x)dx .

Obviously, if v = 1 then (1.3) is the same as (1.1) with w = u . For that reason, a
natural approach is to start with a function u such that (1.1) holds, i.e. u∈weak-A1(T ) ,
and to ask about which kind of weights v allow to get mixed weak type inequalities of
the form (1.3). In [1] the authors obtain mixed weak type (1,1) inequalities for some
classical operators. We collect their result in the following theorem.

THEOREM 1.1. [1] Let u satisfy the Muckenhoupt A1 condition: Mu(x) �Cu(x)
a.e.. Let v(x) = |x|−d , x∈R , where d is a real number, d �= 1 . If T denotes the Hilbert
transform or the Hardy-Littlewood maximal operator (in one dimension) then there is
a constant C dependent on d such that for all λ > 0 and all f ∈ L1(u)

∫
{x∈R:|T f (x)|>λ v(x)}

uv � C
λ

∫
R

| f |u . (1.4)

REMARK 1.2. If d < 1 then v is a weight in the Muckenhoupt A∞ class; if d > 1
then v is not a Muckenhoupt weight (it is not locally integrable); if d = 1 then v is not
a Muckenhoupt weight and the result is false [1].

However, this is not the first mixed weak type (1,1) inequality which appeared in
this setting. In fact, we can found the following result in the previous paper [14].

THEOREM 1.3. Let u satisfy the Muckenhoupt A1 condition and v = u−1 . If
T denotes the Hilbert transform or the Hardy-Littlewood maximal operator (in one
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dimension) then there is a constant C such that (1.4) holds for all λ > 0 and all f ∈
L1(u) , that is

|{x ∈ R : |T f (x)| > λv(x)}| � C
λ

∫
R

| f |u . (1.5)

REMARK 1.4. Notice that v is not necessarily a weight in the Muckenhoupt A1

class but v is in A2 and, therefore, it is in A∞ .

Eric Sawyer used some ideas of the proof of the above result and established that
(1.4) holds if v is also in the Muckenhoupt A1 class.

THEOREM 1.5. [16] Let u and v satisfy the Muckenhoupt A1 condition in the
real line. If T denotes the Hardy-Littlewood maximal operator (in one dimension) then
there is a constant C such that (1.4) holds for all λ > 0 and all f ∈ L1(u) .

Sawyer conjectured that the result should be true for the Hilbert transform. This
was proved in [5] where, in fact, the result was extended to the n dimensional setting
and also for any Calderón-Zygmund operator T . In a recent paper, [8], Li, Ombrosi
and Pérez have proved (among other many things) that the result is true with a weaker
condition on v , that is, v is an A∞ weight.

THEOREM 1.6. [8] Let u satisfy the Muckenhoupt A1 condition in R
n and let

v satisfy the Muckenhoupt A∞ condition. If T denotes the Hardy-Littlewood maximal
operator or a Calderón-Zygmund operator on R

n then there is a constant C such that
(1.4) holds for all λ > 0 and all f ∈ L1(u) .

REMARK 1.7. Notice that the last theorem generalizes Theorems 1.3 and 1.5 (see
Remark 1.4). However it is not a generalization of Theorem 1.1 because the functions
v(x) = |x|−d satisfy A∞ condition if and only if d < 1.

Other interesting mixed weak type (1,1) inequalities appear in [11].

THEOREM 1.8. [11, Theorems 1.7 and 1.8] Let u satisfy the Muckenhoupt A1

condition on R
n and let v be a radial function on R

n which is essentially constant on
the sets {x ∈ R

n : 2k � |x| < 2k+1} . Assume also that one of the following conditions is
satisfied: for some ε > 0 , the function v(x)|x|n+ε is radially decreasing or the function
v(x)|x|n−ε is radially increasing. If T denotes a Calderón-Zygmund operator on R

n

(or the Hardy-Littlewood maximal operator) then there is a constant C such that (1.4)
holds for all λ > 0 and all f ∈ L1(u) .

REMARK 1.9. Notice that in the last theorem we can take v(x) = |x|−n−ε(log(1+
|x|))−1 or v(x) = |x|ε−n log(1 + |x|) . Therefore, Theorem 1.8 generalizes Theorem
1.1 and the weight v is not necessarily in A∞ . Therefore, it is not a consequence of
Theorem 1.6.
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The mixed weak type two-weight estimates were also investigated in the mono-
graph [6]. In that monograph (see Theorems 8.2.8 and 8.2.9, pp. 536–537) mixed weak
type inequalities are derived for the Calderón-Zygmund operators K defined on spaces
of homogeneous type. Here we formulate those statements for Euclidean spaces.

THEOREM 1.10. [6] Let α � 0 and let σ and u be increasing functions on
(0,∞) , provided that σ is continuous. Suppose that ρ is a weight on R

n such that it be-
longs to the Muckenhoupt class A1 . We set v(x) = σ(|x|)ρ(x) and w(x) = u(|x|)ρ(x) ,
where |x| is the norm of x . If

sup
τ>t>0

(
1
τn

∫
t<|x|<τ

v(x)dx

)
esssup|x|<t

1
w(x)

< ∞,

then the two-weight weak type inequality holds:

∫
{x∈Rn:|x|αn|K f (x)|>λ}

v(x)|x|−αndx � C
λ

∫
Rn

| f (x)|w(x)dx. (1.6)

THEOREM 1.11. [6] Let α � 0 and let σ and u be decreasing functions on
(0,∞) , provided that σ is continuous. Suppose that ρ is a weight on R

n such that it be-
longs to the Muckenhoupt class A1 . We set v(x) = σ(|x|)ρ(x) and w(x) = u(|x|)ρ(x) ,
where |x| is the norm of x . If

sup
t>0

(∫
|x|<2t

v(x)dx

)
esssup|x|>t

1
|x|nw(x)

< ∞,

then the inequality (1.6) holds.

REMARK 1.12. As in Remark 1.9, we notice that, even for ρ = 1, it can be con-
structed a pair of weights (v,w) such that v and w are out of the Muckenhoupt A∞
class but the two-weight inequality (1.6) holds.

Other interesting results about mixed weak estimates of Sawyer type can be found
in [2, 3, 4, 15].

It is interesting to ask whether or not the corresponding results for the one-sided
Hardy-Littlewood maximal operators hold. As far as we know there are no analogous
results for M− (M+ ). Then, one wonders about a more modest and probably easier
question. Take the Hardy averaging-operator defined for c ∈ R by

Tc f (x) = χ(c,∞)(x)
1

x− c

∫ x

c
f (y)dy.

It is clear that |Tc f | � M− f and that Tc is apparently easier than M− . Then we ask the
same question for Tc : which kind of mixed weak type (1,1) inequality can be obtained
for Tc ? In fact, the mixed weak type (1,1) inequality for Tc were characterised in [11]
(see [10] for a more clarifying statement and proof).
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THEOREM 1.13. [11, 10] Let u and v be non-negative measurable functions
defined on R . Let c ∈ R . The following statements are equivalent.

(a) There exists a constant C such that∫
{x:|Tc f (x)|>v(x)}

uv � C
∫

R

| f |u

for all measurable functions.

(b) There exists a constant C such that for all a > c

sup
λ>0

λ
∫
{x>a: 1

x−c >λ v(x)}
uv � Cu(x) for a.e. x ∈ (c,a) .

As a corollary of the last result, the characterisation of the weak type (1,1) in-
equality for Tc is obtained. It is convenient to state the characterisation not only for Tc

but also for its formal adjoint

T ∗
c f (x) = χ(c,∞)(x)

∫ ∞

x

f (y)
y− c

dy .

THEOREM 1.14. [1, 10]

1. The operator Tc is of weak type (1,1) with respect to the measure u(x)dx if and
only if u ∈ A1(Tc) , that is, there exists C > 0 such that for all a > c

sup
y>a

1
y− c

∫ y

a
u � Cu(x), for a.e. x ∈ (c,a) .

2. The operator T ∗
c is of weak type (1,1) with respect to the measure v(x)dx if and

only if v ∈ A1(T ∗
c ) , that is, there exists C > 0 such that

1
x− c

∫ x

c
v � Cv(x), for a.e. x > c.

Now, a first question for Tc appears: if u∈ A1(Tc) and v∈ A1(T ∗
c ) does the mixed

weak type inequality (1.3) hold for Tc ? We know that the answer is affirmative but with
a little bit stronger conditions on u and v .

THEOREM 1.15. [10] Let c ∈ R and let u,v be two weights such that u1+ε ∈
A1(Tc) and v1+ε ∈ A1(T ∗

c ) , for some ε > 0 . Let T = Tc . Then, there exists C > 0
independent on c such that (1.4) holds for all λ > 0 and all f ∈ L1(u) .

REMARK 1.16. Notice that there exist weights such that u ∈ A1(Tc) and u1+ε �∈
A1(Tc) for all ε > 0 (see [10]).

As a consequence they obtained the following corollary (see [17] and [12] for the
definitions of the one-sided Muckenhoupt classes).
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COROLLARY 1.17. [10] Let u,v be two weights such that u ∈ A−
1 (M+u � Cu

a.e.) and v ∈ A+
1 (M−v � Cv a.e.). Let T = Tc . Then, there exists C > 0 independent

on c such that (1.4) holds for all λ > 0 and all f ∈ L1(u) .

Then, taking into account Theorem 1.5 and Corollary 1.17, it is natural to con-
jecture that the one-sided version of Theorem 1.5 holds, that is, if u ∈ A−

1 and v ∈ A+
1

then ∫
{x:M− f (x)>λ v(x)}

uv � C
λ

∫
R

| f |u .

In view of the results in [8] one may conjecture an even more general result: that the
last inequality holds for u∈ A−

1 and v ∈ A+
∞ =∪p�1A+

p . So far, it has not been possible
to prove these conjectures. By the moment, we shall continue to deepen the study of the
behavior of Tc . In this paper we are going to give other mixed weak type inequalities
for Tc and for some generalization of these operators, that will allow us to improve
some of the results in [10].

2. Results

In order to simplify, we are going to establish all the results for c = 0, although
they hold for c ∈ R , and we will write T or T ∗ instead of T0 or T ∗

0 . Let us start with
some definitions.

DEFINITION 2.1. Let 1 < p < ∞ . We say that a weight w belongs to the class
Ap(T ∗) if

||w||Ap(T∗) = sup
t>0

(∫ t

0
w

)1/p
(∫ ∞

t

w(x)1−p′

xp′ dx

)1/p′

< ∞ .

The operator T ∗ is bounded in Lp(w) if and only if w ∈ Ap(T ∗) and Ap(T ∗) ⊃
A1(T ∗) .

DEFINITION 2.2. Let 1 < p < ∞ . We say that a weight w belongs to the class Cp

if for some γ ∈ (0,1)

||w1+γ ||Cp = sup
0<b

bγ
(∫

(0,b)∩E
w1+γ

)1/p(∫
(b,∞)∩E

w1+γ
)1/p′

< ∞ , (2.1)

where E = {x > 0 : w(x) < 1/x} .

PROPOSITION 2.3. Suppose that v1+γ ∈ Ap(T ∗) for some 0 < γ < 1 < p. Then
λv ∈Cp for all positive λ and ||(λv)1+γ ||Cp � ||v1+γ ||Ap(T ∗) .

Proof. Since v1+γ ∈Ap(T ∗) implies that (λv)1+γ ∈Ap(T ∗) and ||(λv)1+γ ||Ap(T ∗) =
||v1+γ ||Ap(T ∗) then it suffices to prove it only for λ = 1.
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For x ∈ E , 1 <
v(x)−(1+γ)p′

x(1+γ)p′ . This implies that

bγ p′
∫

(b,∞)∩E
v1+γ(x)dx � bγ p′

∫
(b,∞)∩E

v1+γ(x)
v(x)−(1+γ)p′

xp′xγ p′ dx

�
∫

(b,∞)

v(x)(1+γ)(1−p′)

xp′ dx .

Therefore,

bγ
(∫

(0,b)∩E
v1+γ

)1/p(∫
(b,∞)∩E

v1+γ
)1/p′

�
(∫ b

0
v1+γ

)1/p
(∫ ∞

b

v(x)(1+γ)(1−p′)

xp′ dx

)1/p′

� C

and the constant C is ||v1+γ ||Ap(T ∗) . �

THEOREM 2.4. Let u,v be two weights such that u1+ε ∈ A1(T ) and λv satisfies
Cp , with constant independent on λ > 0 , for some ε,γ, p such that 0 < γ < ε < 1 < p.
Then, there exists C > 0 such that

∫
{x:|T f (x)|>λ v(x)}

uv � C
λ

∫
R

| f |u ,

for all λ > 0 and f ∈ L1(u) .

Proof. By Theorem 1.13, we only have to prove that there exists C > 0 such that
for all a > 0 and all λ > 0

λ
∫
{x>a :λ v(x)<1/x}

uv � Cess inf{u(x) : x ∈ (0,a)}. (2.2)

Since λv satisfies Cp , with constant independent on λ > 0, it is enough to prove the
above inequality with λ = 1 and a constant depending only on the uniform constant of
the condition Cp .

Fix a > 0 and let Ea = {x > a : 0 < v(x) < 1/x} . If |Ea| = 0 there is nothing to
prove. Then we can suppose that |Ea|> 0. Denote by z the essencial supremum of Ea .
Then a < z and ∫

Ea∩(a,z)
v(x)1+γdx �

∫ ∞

a

1
x1+γ dx < ∞ .

This allows us to define the sequence {zn}∞
n=0 in the following way: let z0 = a and

∫
(zk+1,z)∩Ea

v1+γ =
∫

(zk,zk+1)∩Ea

v1+γ .



SOME MIXED WEAK TYPE INEQUALITIES 819

(We point out that the existence of that sequence follows easily considering the function

F(t) =
∫

Ea∩(t,z)
v(x)1+γdx =

∫ z

t
v(x)1+γ χEa(x)dx

because F : [a,z) → R is well defined, continuous, decreasing and F(t) > 0 for all
t ∈ [a,z) (z is the essential supremum of Ea .) Then it is immediate to prove that for all
k ∈ N∪{0} , ∫

(a,z1)∩Ea

v1+γ = 2k
∫

(zk,zk+1)∩Ea

v1+γ = 2k
∫

(zk+1,z)∩Ea

v1+γ (2.3)

and that limn→∞ zn = z .
Then, the hypothesis in v gives us that

zγ
k+1

(∫
(a,z1)∩Ea

v1+γ
)1/p(∫

(zk+1,z)∩Ea

v1+γ
)1/p′

� C . (2.4)

Taking into account (2.3) and (2.4) we get

2k/pzγ
k+1

∫
(zk+1,z)∩Ea

v1+γ � C ,

and by the definition of zk , ∫
(zk,zk+1)∩Ea

v1+γ � C

2k/pzγ
k+1

. (2.5)

Now we proceed to prove inequality (2.2). Observe that∫
{x>a :v(x)<1/x}

uv =
∫

(a,z)∩Ea

uv =
∞

∑
k=0

∫
(zk,zk+1)∩Ea

uv . (2.6)

For x ∈ Ea , v(x) < 1/x then, since 1− γε > 0, we have that v(x)
1−γε
1+ε <

1

x
1−γε
1+ε

. There-

fore, by Hölder’s inequality with exponents (1+ε, 1+ε
ε ) and inequality (2.5) we obtain

∫
(zk,zk+1)∩Ea

uv �
∫

(zk,zk+1)∩Ea

u(x)v(x)
(1+γ)ε

1+ε

x
1−γε
1+ε

dx

�
(∫

(zk,zk+1)∩Ea

u(x)1+ε

x1−γε dx

) 1
1+ε
(∫

(zk,zk+1)∩Ea

v1+γ
) ε

1+ε

� C

(∫
(a,zk+1)

u(x)1+ε

x1−γε dx

) 1
1+ε
(

1

2k/pzγ
k+1

) ε
1+ε

.

(2.7)

Since 0 < γ < ε < 1, we get that 1− ε < 1−γε
1+ε < 1

1+ε . Then, following the same steps

than in the proof of Theorem 2.4 in [10], taking α = 1−γε
1+ε , we obtain that

(∫
(a,zk+1)

u(x)1+ε

x1−γε dx

) 1
1+ε

� Cz
γε

1+ε
k+1 ess inf{u(x) : x ∈ (0,a)}
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This fact together with inequalities (2.7) and (2.6) give us

∫
{x>a :v(x)<1/x}

uv � Cess inf{u(x) : x ∈ (0,a)}
∞

∑
k=0

(
1

2
ε

p(1+ε)

)k

� Cess inf{u(x) : x ∈ (0,a)} . �

As a direct consequence of Proposition 2.3 we obtain the following corollary.

COROLLARY 2.5. Let u,v be two weights such that u1+ε ∈ A1(T ) and v1+γ ∈
Ap(T ∗) , for some ε,γ, p such that 0 < γ < ε < 1 < p. Then, there exists C > 0 such
that ∫

{x:|T f (x)|>λ v(x)}
uv � C

λ

∫
R

| f |u ,

for all λ > 0 and f ∈ L1(u) .

If u ∈ A−
1 then, for ε > 0 small enough, u1+ε ∈ A−

1 and if v ∈ A+
p then, for γ > 0

small enough, v1+γ ∈ A+
p (see [12]). We also have that A−

1 ⊂ A1(T ) and A+
p ⊂ Ap(T ∗)

(see [10] and [17]). Then, the following result holds.

COROLLARY 2.6. Let u,v be two weights such that u∈A−
1 and v∈A+

∞ =∪p�1A+
p .

Then, there exists C > 0 such that∫
{x:|T f (x)|>λ v(x)}

uv � C
λ

∫
R

| f |u ,

for all λ > 0 and f ∈ L1(u) .

In section 3 we provide examples of weights v such that λv satisfies the Cp con-
dition, for all λ > 0, with constant not depending on λ and some of them do not satisfy
Ap(T ∗) .

We can consider a more general operator (see [7], [11] and [1])

Tg,ϕ f (x) = g(x)
∫ x

0
f (t)ϕ(t)dt ,

where g and ϕ are positive measurable functions. The following result is proved in [7]
but we include the proof for the sake of clarity.

PROPOSITION 2.7. Let u and v be two weights. Then the following assertions
are equivalent:

1. There exists C > 0 such that∫
{x:|Tg,ϕ f (x)|>v(x)}

uv � C
∫

R

| f |u .
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2. There exists C > 0 such that for all a > 0 ,

sup
λ>0

λ
∫
{x>a:g(x)>λ v(x)}

uv � Cess inf{u(x)(ϕ(x))−1 : x ∈ (0,a)} .

Proof. (1) ⇒ (2) It is sufficient to prove it for λ = 1.
Let a > 0 and let E ⊂ (0,a) be measurable. Consider f = χE

ϕ(E) , where ϕ(E) =∫
E ϕ(x)dx . Then, for all x > a ,

Tg,ϕ f (x) = g(x)
∫ x

0

χE(t)
ϕ(E)

ϕ(t)dt = g(x) .

Therefore,∫
{x>a:g(x)>v(x)}

uv =
∫
{x:|Tg,ϕ f (x)|>v(x)}

uv � C
ϕ(E)

∫
E

u = C
|E|

ϕ(E)
1
|E|

∫
E

u .

Since E ⊂ (0,a) is any measurable set, by the Lebesgue’s differenciation theorem, we
get ∫

{x>a:g(x)>v(x)}
uv � Cess inf{u(x)(ϕ(x))−1 : x ∈ (0,a)} .

(2)⇒ (1) Without lost of generality, we can suppose that f � 0, fϕ ∈ L1 and
∫ a
0 fϕ >

0, for all a > 0.
Let us define the nonincreasing sequence {xn}∞

n=0 by x0 = ∞ and
∫ xn+1
0 fϕ =∫ xn

xn+1
fϕ . Then, limn→∞ xn = 0.
Observe that for all x ∈ [xn+1,xn) ,

Tg,ϕ f (x) � g(x)
∫ xn

0
fϕ = 4g(x)

∫ xn+1

xn+2

fϕ .

Then

{x : |Tg,ϕ f (x)| > v(x)} ⊂
∞⋃

n=1

{
x ∈ [xn+1,xn) : g(x) >

v(x)
4
∫ xn+1
xn+2

fϕ

}
.

Let βn = ess inf{u(x)(ϕ(x))−1 : x ∈ (0,xn+1)} . Then, by (2) ,∫{
x∈[xn+1,xn):g(x)> v(x)

4
∫ xn+1
xn+2

fϕ

} uv � Cβn4
∫ xn+1

xn+2

fϕ

� 4C
∫ xn+1

xn+2

fϕu(ϕ)−1 = 4C
∫ xn+1

xn+2

f u .

As a consequence,

∫
{x:|Tg,ϕ f (x)|>v(x)}

uv � C
∞

∑
n=1

∫ xn+1

xn+2

f u � C
∫

R

f u . �
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REMARK 2.8. For the particular case of v(x) = 1 we obtain that Tg,ϕ is of weak
type (1,1) respect to the weight u if and only if

sup
a>0

||gχ(a,∞)||L1,∞(u)||χ(0,a)u
−1ϕ ||L∞ < ∞ .

If we also take ϕ = 1, then Tg,ϕ = Tg is of weak type (1,1) respect to the weight u if
and only if

sup
a>0

||gχ(a,∞)||L1,∞(u)||χ(0,a)u
−1||L∞ < ∞ .

And, if furthermore, g is nonincreasing, this is equivalent to

sup
y>a

g(y)
∫ y

a
u � Cess inf{u(x) : x ∈ (0,a)} .

DEFINITION 2.9. Let 1 < p < ∞ and g a positive, nonincreasing measurable
function in (0,∞) . We say that a weight w belongs to the class Ap(T ∗

g ) if

sup
t>0

(∫ t

0
w

)1/p(∫ ∞

t
w(x)1−p′g(x)p′dx

)1/p′

< ∞ .

We say that w belongs to the class A1(Tg) if there exists C > 0 such that, for all a > 0,

sup
y>a

g(y)
∫ y

a
w � Cess inf{w(x) : x ∈ (0,a)} .

We say that w belongs to the class A1(T ∗
g ) if there exists C > 0 such that,

g(x)
∫ x

0
w � Cw(x), a.e. x > 0.

Following the same steps as in Proposition 2.3 we have that if g is nonincreasing
and v1+γ ∈ Ap(T ∗

g ) then

sup
0<b

g(b)−γ
(∫

(0,b)∩E
v1+γ

)1/p(∫
(b,∞)∩E

v1+γ
)1/p′

< ∞ , (Cp(g))

where now E = {x > 0 : v(x) < g(x)} .
Then, changing the function 1/x by g(x) in Theorem 2.4, we obtain the following

result.

THEOREM 2.10. Let g be a positive, nonincreasingmeasurable function in (0,∞)
and let u,v be two weights such that u1+ε ∈ A1(Tg) and λv satisfies Cp(g) with con-
stant not depending on λ > 0 , for some ε,γ, p such that 0 < γ < ε < 1 < p . Then,
there exists C > 0 such that∫

{x:|Tg f (x)|>λ v(x)}
uv � C

λ

∫
R

| f |u ,

for all λ > 0 and f ∈ L1(u) .
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COROLLARY 2.11. Let g be a positive, nonincreasing measurable function in
(0,∞) and let u,v be two weights such that u1+ε ∈ A1(Tg) and v1+γ ∈ Ap(T ∗

g ) , for
some ε,γ, p such that 0 < γ < ε < 1 < p . Then, there exists C > 0 such that∫

{x:|Tg f (x)|>λ v(x)}
uv � C

λ

∫
R

| f |u ,

for all λ > 0 and f ∈ L1(u) .

3. Remarks on the condition Cp

PROPOSITION 3.1. If 1 < p < q and v ∈Cp then v ∈Cq .

Proof. We are going to prove that, for the same γ ∈ (0,1) that gives v ∈Cp ,

sup
b∈(0,∞)

bγ
∫

(0,b)∩E
v1+γ

(
γbγ

∫
(b,∞)∩E

v1+γ
)q−1

< ∞.

By Jensen’s inequality with exponent (q−1)/(p−1) we get

γbγ
∫

(b,∞)∩E
v1+γ(x)dx = γbγ

∫
(b,∞)∩E

x1+γv1+γ(x)x−1−γ dx

�
(

γbγ
∫

(b,∞)∩E
x

(1+γ)(q−1)
p−1 v

(1+γ)(q−1)
p−1 (x)x−1−γ dx

) p−1
q−1

�
(

γbγ
∫

(b,∞)∩E
v1+γ(x)x

(1+γ)(q−1)
p−1 v

(1+γ)(q−p)
p−1 (x)x−1−γ dx

) p−1
q−1

�
(

γbγ
∫

(b,∞)∩E
v1+γ(x)x

(1+γ)(q−1)
p−1 x

(1+γ)(p−q)
p−1 x−1−γ dx

) p−1
q−1

=
(

γbγ
∫

(b,∞)∩E
v1+γ(x)dx

) p−1
q−1

.

It follows that

sup
b∈(0,∞)

bγ
∫

(0,b)∩E
v1+γ

(
γbγ

∫
(b,∞)∩E

v1+γ
)q−1

� sup
b∈(0,∞)

bγ
∫

(0,b)∩E
v1+γ

(
γbγ

∫
(b,∞)∩E

v1+γ
)p−1

< ∞. �

The following two results provide examples of weights v such that λv ∈ Cp for
all positive λ . Notice that the examples in Proposition 3.2 and some of the examples in
Proposition 3.3 show that there are weights v satisfying the assumptions in Proposition
2.4 which are not included in Corollary 2.5.
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PROPOSITION 3.2. Let β > 1 and v(x) = 1
xβ . Then, for all λ > 0 , the weight λv

satisfies Cp with constant independent of λ .

Proof. We have to prove that there exists γ ∈ (0,1) such that

sup
b>0,λ>0

bγλ 1+γ
(∫

(0,b)∩E

1

xβ (1+γ) dx

)1/p(∫
(b,∞)∩E

1

xβ (1+γ) dx

)1/p′

< ∞ , (3.1)

where E = {x > 0 : λ
xβ < 1

x} . Observe that x ∈ E if and only if xβ−1 > λ , therefore

E = (λ
1

β−1 ,∞) . This implies that, if b � λ
1

β−1 , then
∫

(0,b)∩E

1

xβ (1+γ) dx = 0. As a

consequence we only have to consider those b > 0 and λ > 0 such that λ
1

β−1 < b
which is equivalent to λ < bβ−1 . In these cases,

∫
(0,b)∩E

1

xβ (1+γ) dx =
∫ b

λ
1

β−1

1

xβ (1+γ) dx .

Therefore,

bγλ 1+γ
(∫

(0,b)∩E

1

xβ (1+γ) dx

)1/p(∫
(b,∞)∩E

1

xβ (1+γ) dx

)1/p′

=bγλ 1+γ 1
β −1+ β γ

(
1

λ 1+β ′γ − 1

bβ−1+β γ

)1/p( 1

bβ−1+β γ

)1/p′

�bγλ 1+γ 1
β −1+ β γ

(
1

λ 1+β ′γ

)1/p( 1

bβ−1+β γ

)1/p′

=
1

β −1+ β γ
λ

1
p′ +γ

(
p−β ′

p

)

b
β−1+βγ

p′ −γ
=

1
β −1+ β γ

(
λ

bβ−1

) 1
p′ +γ

(
p−β ′

p

)
.

(3.2)

If p � β ′ then 1
p′ + γ

(
p−β ′

p

)
� 0 for all γ ∈ (0,1) . If p < β ′ then we choose

γ ∈ (0,1) small enough to have 1
p′ + γ

(
p−β ′

p

)
� 0, i.e., 0 < γ � p−1

β ′−p . Now we use

that λ < bβ−1 to obtain that

(
λ

bβ−1

) 1
p′ +γ

(
p−β ′

p

)
� 1 . �

PROPOSITION 3.3. Let λ > 0 , β ∈ R and v(x) = h(x)x−β defined in (0,∞) .

(a) If h is increasing and β < 1 then λv satisfies Cp for all p ∈ (1,∞)

(b) If h is decreasing and β > 1 then λv satisfies Cp for all p ∈ (1,∞) .

(c) If h(x) = 1 , β = 1 , λ < 1 and p ∈ (1,∞) then λv does not satisfy Cp .
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Proof. The proof of (a) is straightforward. Since β < 1 then x−β ∈ A+
1 . There-

fore, v ∈ A+
1 because h is increasing. Consequently, λv ∈ A+

p for all p ∈ (1,+∞) , and
(a) follows from Proposition 2.3.

We proceed to prove (b) . Let β > 1. We have to prove that there exists γ ∈ (0,1)
such that

sup
b>0,λ>0

bγλ 1+γ

(∫
(0,b)∩E

(
h(x)
xβ

)(1+γ)

dx

)1/p(∫
(b,∞)∩E

(
h(x)
xβ

)(1+γ)

dx

)1/p′

< ∞ ,

(3.3)
where E = {x > 0 : h(x)< xβ−1

λ } . We may assume that (0,b)∩E �= /0 . Then E = (α,∞)
with 0 � α < b . If α = 0 then h = 0 and we have nothing to prove. Assume α > 0.
Then for all x ∈ (α,∞) we get

h(x) � αβ−1

λ
.

Therefore,

bγλ 1+γ

(∫
(0,b)∩E

(
h(x)
xβ

)(1+γ)

dx

)1/p(∫
(b,∞)∩E

(
h(x)
xβ

)(1+γ)

dx

)1/p′

�bγ α(β−1)(1+γ)

β −1+ β γ

(
1

αβ−1+β γ

)1/p( 1

bβ−1+β γ

)1/p′

=
1

β −1+ β γ

(α
b

) β−1+γ(β−p′)
p′

.

(3.4)

If p′ � β then β − 1 + γ(β − p′) > 0 for all γ ∈ (0,1) . If p′ < β then we choose
γ ∈ (0,1) small enough to get β −1+ γ(β − p′) � 0, i.e., 0 < γ � β−1

p′−β . Now we use
that α < b to obtain that (α

b

) β−1+γ(β−p′)
p′ � 1 .

Finally, (c) is obvious since, under the assumptions of (c), the set E equals (0,∞) .
�
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