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MAXIMAL MOMENT INEQUALITY FOR PARTIAL SUMS

OF ρ –MIXING SEQUENCES AND ITS APPLICATIONS

GUO-DONG XING ∗ , QINGQING KANG, SHANCHAO YANG ∗
AND ZHIYONG CHEN ∗

(Communicated by T. Burić)

Abstract. A maximal moment inequality for partial sums of ρ -mixing random variable se-
quences is established, which uses some moment summations as upper bound. As its appli-
cations, we discuss the strong law of large numbers for weighted sums and the Berry-Esseen
bound of nonparametric regression estimate.

1. Introduction and inequality

Suppose that {Xi : i � 1} is a real-valued random variable sequence on a proba-
bility space (Ω,F ,P) . Let F n

m denote the σ -field generated by {Xi : m � i � n} and
||X ||r = (E|X |r)1/r . Let

ρ(n) = sup

{ |Cov(X ,Y )|
||X ||2||Y ||2 : X ∈ L2(Fm

1 ),Y ∈ L2(F∞
m+n),m � 1

}
, (1.1)

where L2 represents a space whose second-order norm is finite. The sequence {Xi : i �
1} is said to be ρ -mixing if ρ(n)→ 0 as n → ∞ .

It is well known that the moment inequalities for partial sums Sn = ∑n
i=1 Xi play

an important role in various proofs of limit theorems. For example, the Rosenthal
inequality for independent random variables, which is

E max
1� j�n

|S j|r � C

⎧⎨⎩ n

∑
i=1

E|Xi|r +

(
n

∑
i=1

E|Xi|2
)r/2

⎫⎬⎭ , (1.2)
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the Marcinkiewicz-Zygmund inequality for independent random sequences and the
Burkholder inequality for martingales. For dependent random variables, many scholars
have also been trying to develop these inequalities. One can refer to Billingsley (1968),
Peligrad (1982,1985,1987),Roussas and Ioannides (1987), Shao (1988,1989,1995) and
Yang (1997) for φ -mixing or ρ -mixing sequences, Yokoyama (1980), Shao and Yu
(1996), Yang (2000), Yang (2007) and Xing et al. (2009) for α -mixing sequences,
Birkel (1988), Shao and Yu (1996) for associated sequences, Shao and Su (1999), Shao
(2000) and Yang (2001) for negatively associated sequences, Wang et al. (2014) for
negatively superadditive-dependent sequences, Ding et al. (2017) for widely orthant-
dependent sequences, Wang et al. (2019) for m-extended negatively dependent se-
quences.

Motivated by the above scholars, we try our best to give the following maximal
moment inequality for partial sums of ρ -mixing random variables, which is similar to
(1.2) and uses some moment summations as upper bound.

THEOREM 1.1. Let r > 2 and {Xi, i � 1} be a ρ -mixing sequence of random
variables with EXi = 0 , E|Xi|r < ∞ and ρ(n) � Cn−θ for some θ > 1 and C > 0 .
Then, for any ε > 0 , there exists a positive constant K = K(ε,r,θ ,C) < ∞ such that

E max
1� j�n

∣∣S j
∣∣r � K

⎧⎨⎩nε
n

∑
i=1

E|Xi|r +

(
n

∑
i=1

EX2
i

)r/2
⎫⎬⎭ . (1.3)

REMARK.

(i) The inequality (1.3) is near to (1.2) for independent sequences by taking a suffi-
ciently small ε .

(ii) Since the upper bound of the inequality (1.3) contains the information of moment
summations, it plays an important role in researching the asymptotical property
of weight sums, which can be seen in the proofs of the theorems in sections 2 and
3. Indeed, there are many weighted estimates in statistics, such as least squares
regression estimate, nonparametric regression estimate and nonparametric density
estimate. So Theorem 1.1 is a useful result.

To show the applications of the inequality (1.3), we apply it to discuss the strong
law of large numbers for weighted sums and the Berry-Esseen bound of nonparametric
regression estimate.

The explicit applications are described in sections 2 and 3, respectively. The proof
of the inequality (1.3) is given in section 4. Throughout this paper, it is supposed that C
denotes a constant which only depends on some given numbers, [x] denotes the integer
part of x and a∧b := min{a,b} .



PARTIAL SUMS OF ρ -MIXING SEQUENCES AND ITS APPLICATIONS 829

2. Strong law of large numbers of weighted sums

In this section, we will show the applications of the inequality (1.3) in researching
the strong law of large numbers for weighted sums.

THEOREM 2.1. Let p > 1 and {Xi, i � 1} be a ρ -mixing sequence of random
variables with EXi = 0 , supi�1 E|Xi|p < ∞ and ρ(n) � Cn−θ for some θ > 1 and
C > 0 . And let {ani : 1 � i � n,n � 1} be a triangular array of real numbers satisfying

max
1�i�n

|ani| � Cn−δ and
n

∑
i=1

|ani| � C, (2.1)

where δ > 1/p. Then
n

∑
i=1

aniXi → 0, a.s. (2.2)

Proof. Let Xni = XiI(|Xi|< n1/p logn) , X ′
ni = XiI(|Xi|� n1/p logn) , Sn1 = ∑n

i=1 aniXni

and Sn2 = ∑n
i=1 aniX ′

ni . Then ∑n
i=1 aniXi = [Sn1−ESn1]+ [Sn2−ESn2] . Hence, it is suf-

ficient to show that Sn1−ESn1 → 0, a.s. and Sn2−ESn2 → 0 a.s.
Take r > max{2, p} . For any ε > 0, we obtain by Theorem 1.1

P(|Sn1−ESn1| > ε)

� CE

∣∣∣∣∣ n

∑
i=1

ani[Xni−EXni]

∣∣∣∣∣
r

� C

⎧⎨⎩nε
n

∑
i=1

|ani|rE |Xni−EXni|r +

(
n

∑
i=1

a2
niE[(Xni−EXni)2]

)r/2
⎫⎬⎭

� C

⎧⎨⎩nε(n−δ+1/p logn)r−1
n

∑
i=1

|ani|E|Xni|+
(

n−δ+1/p logn
n

∑
i=1

|ani|E|Xni|
)r/2

⎫⎬⎭
� C

{
nεn−(δ−1/p)(r−1)(logn)r−1 +n−(δ−1/p)r/2(logn)r/2

}
. (2.3)

Hence, ∑∞
n=1 P(|Sn1−Sn1| > ε) < ∞ for sufficiently large r and sufficiently small ε .

Thus Sn1−ESn1 → 0, a.s.
Next, we will prove that Sn2−ESn2 → 0 a.s. It is obvious that

|ESn2| �
n

∑
i=1

|ani|E|X ′
ni| � n−(p−1)/p(logn)−(p−1)

n

∑
i=1

|ani|E|X ′
ni|p

� Cn−(p−1)/p(logn)−(p−1) → 0. (2.4)

Note that ∑∞
i=1 P(|Xi|� i1/p log i) �C∑∞

i=1 i−1(log i)−p < ∞ . By Borel-Cantelli lemma,
we have

∞

∑
i=1

i−δ |Xi|I(|Xi| � i1/p log i) < ∞,a.s.
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From Kronecker lemma, it follows that n−δ ∑n
i=1 |Xi|I(|Xi| � i1/p log i) → 0 a.s. Thus

|Sn2| �
n

∑
i=1

|ani||X ′
ni| � Cn−δ

n

∑
i=1

|Xi|I(|Xi| � n1/p logn)

� Cn−δ
n

∑
i=1

|Xi|I(|Xi| � i1/p log i) → 0,a.s. (2.5)

From (2.4) and (2.5), Sn2−ESn2 → 0,a.s. follows. The proof is completed. �

The result of Theorem 2.1 may be applied to nonparametric regression estimate,
which is defined as follows.

Let d be a natural number and A be a compact set in Rd . Consider observations

Yi = g(xi)+ εi, i = 1,2, · · · ,n,

where x1,x2, · · · ,xn ∈ A are fixed design points, g is a bounded real valued function on
A and ε1,ε2, · · · ,εn are random errors with Eεi = 0, i = 1,2, · · · ,n . The general linear
smooth estimate of the function g(x) is defined by the formula

gn(x) =
n

∑
i=1

wni(x)Yi, x ∈ A ⊂ Rd, (2.6)

where weight functions wni , i = 1,2, · · · ,n , depend on the fixed design points x1,x2, · · · ,xn

and the number of observations n .
In order to make gn(x) be asymptotically unbiased, i.e. Egn(x)→ g(x) as n→ ∞ ,

we suppose that
n

∑
i=1

|wni(x)| � C for all n � 1 (2.7)

and
n

∑
i=1

wni(x) → 1,
n

∑
i=1

|wni(x)|I(||xi − x|| > a) → 0 for all a > 0 (2.8)

as n → ∞ .
Since gn(x)−Egn(x) = ∑n

i=1 wni(x)εi , we have immediately the following conse-
quence by Theorem 2.1.

COROLLARY 2.2. Let p > 1 and {εi, i � 1} be a ρ -mixing sequence of random
variables with Eεi = 0 , supi�1 E|εi|p < ∞ and ρ(n) � Cn−θ for some θ > 1 and
C > 0 . If the conditions (2.7) and (2.8) hold and for some δ > 1/p,

max
1�i�n

|wni| � Cn−δ , (2.9)

then at every continuity point x ∈ A of the function g, we have

gn(x) → g(x),a.s. (2.10)
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REMARK. Corollary 2.2 improves Theorem 4 of Georgiev (1988), which uses the
following more restrictive conditions.

(i) {εi, i � 1} is a sequence of independent random variables with supi�1 E|εi|p < ∞
for p > 2.

(ii) max1�i�n w2
ni(x)n log logn → 0 as n → ∞ . However, max1�i�n w2

ni(x)n loglogn
does not converge necessarily to zero as max1�i�n |wni| � Cn−δ for δ > 1/p .

THEOREM 2.3. Let p � 2 and {Xi, i � 1} be a ρ -mixing sequence of random
variables with EXi = 0 , supi�1 E|Xi|p < ∞ and ρ(n) � Cn−θ for some θ > 1 and
C > 0 . And let {ani : 1 � i � n,n � 1} be a triangular array of numbers satisfying

max
1�i�n

|ani| � Cn−δ and
n

∑
i=1

a2
ni � Cn−β , (2.11)

where δ > 1/p and β > 0 . Then (2.2) holds.

Proof. We can obtain the desired result (2.2) by modifying (2.3) and (2.4) in the
proof of Theorem 2.1. They are replaced by the following two inequalities.

P(|Sn1−ESn1| > ε)

� C

⎧⎨⎩nεn−(δ−1/p)(r−2)(logn)r−2
n

∑
i=1

a2
niE|Xni|2 +

(
n

∑
i=1

a2
niE|Xni|2

)r/2
⎫⎬⎭

� C
{

nεn−(δ−1/p)(r−2)(logn)r−2 +n−β r/2
}

(2.12)

and

|ESn2| �
(
E|Sn2|2

)1/2 � C

(
n

∑
i=1

a2
niE|X ′

ni|2
)1/2

� Cn−β/2 → 0, (2.13)

which can be obtained by the proof of Theorem 1.1, Lemma 4.2 in Section 4 and the
condition (2.11), respectively. The proof is completed. �

REMARK. From the proofs of Theorems 2.1 and 2.3, it can be seen that the con-
ditions ∑n

i=1 |ani| � C and ∑n
i=1 a2

ni � Cn−β are applied in the expressions (2.3), (2.12)
and (2.13), and play an important role. This is because of the applications of Theorem
1.1 playing a critical role.

3. Berry-Esseen bound of nonparametric regression estimate

In this section, we will give the Berry-Esseen bound of nonparametric regres-
sion estimate (2.6) for ρ -mixing samples by using Theorem (1.1). Define wn(x) :=
max1�i�n |wni(x)| , σ2

n (x) := Var(gn(x)) and u(n) = ∑∞
i=n ρ(i) . To formulate the main

result obtained, we need the following assumptions.
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(A1) (i) Assume that {εi, i � 1} is a sequence of identically distributed and ρ -
mixing randomvariables with zero mean; (ii) There exists δ > 0 such that E(|X1|2+δ )<
∞ ; (iii) Suppose ρ(n) � Cn−θ for some θ > 1.

(A2) (i) ∑n
i=1 |wni(x)| � C for all n � 1; (ii) wn(x) = O(σ2

n (x)) and σ2
n (x) > 0.

(A3) There exist positive integers p1 := p1(n) , p2 := p2(n) and a positive constant
c such that

p1 + p2 � n, p2p−1
1 < c < ∞ (3.1)

for sufficiently large n and as n → ∞ ,

γ1n → 0, γ2n → 0, γ3n → 0, (3.2)

where γ1n := np2p−1
1 wn(x) , γ2n := p1wn(x) and γ3n := np−1

1 ρ2(p2) .
Let Sn(x) = σ−1

n (x)
(
gn(x)−Egn(x)

)
=: ∑n

i=1 Zni in which Zni = σ−1
n (x)wni(x)εi ,

Fn(u) = P
(
Sn(x) < u

)
and Φ(u) be the distribution function of the standard normal

random variable. Then, we obtain

THEOREM 3.1. If the assumptions (A1)-(A3) hold, then

sup
u
|Fn(u)−Φ(u)|� C

{
γ1/3
1n + γ1/3

2n + γδ/2
2n + γ1/4

3n +u(p2)
}

. (3.3)

Proof. For convenience, we omit everywhere the argument x and set k = [n/(p1 +
p2)] . Then Sn may be split as

Sn = S′n +S′′n +S′′′n , (3.4)

where

S′n =
k

∑
m=1

ynm, S′′n =
k

∑
m=1

y′nm, S′′′n = y′nk+1,

ynm =
km+p1−1

∑
i=km

Zni, y′nm =
lm+p2−1

∑
i=lm

Zni, y′nk+1 =
n

∑
i=k(p1+p2)+1

Zni,

km = (m− 1)(p1 + p2) + 1, lm = (m− 1)(p1 + p2) + p1 + 1, m = 1, · · · ,k. Set s2
n =

∑k
m=1 Var(ynm) and assume that {ηnm : m = 1, · · · ,k} are independent random vari-

ables and, the distribution of ηnm is the same as that of ynm for m = 1, · · · ,k . Let
Tn = Σk

m=1ηnm,Bn = Σk
m=1Var(ηnm) , F̃n(u),Gn(u) and G̃n(u) be the distributions of

S
′
n,Tn/

√
Bn and Tn , respectively. Obviously,

Bn = s2
n, G̃n(u) = Gn(u/sn). (3.5)

Noticing Lemma A.2 in Section 4, the assumptions (A2) and (A3), we have

E
(
S
′′
n

)2 � C
k

∑
m=1

km+p2−1

∑
i=km

σ−2
n w2

ni � Ckp2σ−2
n w2

n � C
n

p1 + p2
p2wn

� C
(
1+ p2p−1

1

)−1
np2p−1

1 wn � Cγ1n. (3.6)
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By the same way, we have

E
(
S
′′′
n

)2 � C
n

∑
i=k(p1+p2)+1

σ−2
n w2

ni � C(n− k(p1 + p2))σ−2
n w2

n

� C

(
n

p1 + p2
− k

)
(p1 + p2)wn � C(1+ p2p

−1
1 )p1wn � Cγ2n, (3.7)

Combining the two results (3.6) and (3.7) yields that

P
(
|S′′

n| � γ1/3
1n

)
� Cγ1/3

1n , P
(
|S′′′

n | � γ1/3
2n

)
� Cγ1/3

2n , (3.8)

which, together with (3.4), the following result

sup
u

∣∣F̃n(u)−Φ(u)
∣∣� C

{
γ1/2
1n + γ1/2

2n + γδ/2
2n + γ1/4

3n +u(p2)
}

(3.9)

and Lemma 3.7 in Yang (2003) conclude the desired result (3.3). Hence, it suffices to
prove (3.9). It is easy to observe that

sup
u

∣∣F̃n(u)−Φ(u)
∣∣

� sup
u
|Φ(u/sn)−Φ(u)|+ sup

u

∣∣G̃n(u)−Φ(u/sn)
∣∣+ sup

u

∣∣F̃n(u)− G̃n(u)
∣∣

=: J1n + J2n + J3n.

Next, we will give the bounds of J1n, J2n and J3n in order to obtain (3.9), respectively.
(i) Let τn = Σ1�i< j�kCov(yni,yn j) . Obviously, E(Sn)2 = Var(Sn) = 1 and s2

n =
E
(
S
′
n

)2−2τn . Hence, we obtain

E
(
S
′
n

)2 = E
[
Sn−

(
S
′′
n +S

′′′
n

)]2
= 1+E

(
S
′′
n +S

′′′
n

)2−2E
[
Sn
(
S
′′
n +S

′′′
n

)]
,

which together (3.6) and (3.7), concludes that∣∣∣E(S′
n

)2 −1
∣∣∣ =

∣∣∣E(S′′
n +S

′′′
n

)2−2E
[
Sn
(
S
′′
n +S

′′′
n

)]∣∣∣
� E

∣∣S′′
n +S

′′′
n

∣∣2 +2E
∣∣Sn
(
S
′′
n +S

′′′
n

)∣∣
� 2
(
E
∣∣S′′

n

∣∣2 +E
∣∣S′′′

n

∣∣2)+2
(
E|Sn|2

)1/2(
E
(
S
′′
n +S

′′′
n

)2)1/2

� C
(
E
∣∣S′′

n

∣∣2 +E
∣∣S′′′

n

∣∣2 +
(
E
∣∣S′′

n

∣∣2)1/2 +
(
E
∣∣S′′′

n

∣∣2)1/2
)

� C
(
γ1/2
1n + γ1/2

2n

)
. (3.10)

On the other hand,

|τn| � ∑
1�i< j�k

|Cov(yni,yn j)|

� ∑
1�i< j�k

ki+p1−1

∑
s=ki

k j+p1−1

∑
t=k j

|Cov(Zns,Znt)|
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� ∑
1�i< j�k

ki+p1−1

∑
s=ki

k j+p1−1

∑
t=k j

σ−2
n |wnswnt | · |Cov(εs,εt)|

� C ∑
1�i< j�k

ki+p1−1

∑
s=ki

k j+p1−1

∑
t=k j

σ−2
n |wnswnt | ·ρ(t− s)

√
Var(εs)Var(εt )

� C
k−1

∑
i=1

ki+p1−1

∑
s=ki

|wns|
k

∑
j=i+1

k j+p1−1

∑
t=k j

ρ(t− s)

� C
n

∑
s=1

|wns|
∞

∑
j=p2

ρ( j)

� Cu(p2). (3.11)

From (3.10) and (3.11), it follows that

J1n � C
(

γ1/2
1n + γ1/2

2n +u(p2)
)

. (3.12)

(ii) By Theorem 1.1 with ε = δ/2, we have

k

∑
m=1

E|ynm|2+δ � C
k

∑
m=1

⎧⎨⎩pδ/2
1

km+p1−1

∑
i=km

E|Zni|2+δ +

(
km+p1−1

∑
i=km

E|Zni|2
)1+δ/2

⎫⎬⎭
� C

k

∑
m=1

⎧⎨⎩pδ/2
1

km+p1−1

∑
i=km

|wni|1+δ/2 +

(
km+p1−1

∑
i=km

|wni|
)1+δ/2

⎫⎬⎭
� Cpδ/2

1

n

∑
i=1

|wni|1+δ/2

� Cpδ/2
1 wδ/2

n

= Cγδ/2
2n . (3.13)

Also, from (3.12), it follows that B2
n = s2

n → 1. Thus,

1

B1+δ/2
n

k

∑
m=1

E|ηnm|2+δ � Cγδ/2
2n .

By Berry-Esseen theorem and the results stated earlier, we obtain

sup
u
|Gn(u)−Φ(u)|� Cγδ/2

2n , (3.14)

which implies

J2n � Cγδ/2
2n . (3.15)

(iii) Suppose that ϕ(t) and ψ(t) are the characteristic functions of S
′
n and Tn ,

respectively. Noticing that

ψ(t) = E(exp{itTn}) = Πk
m=1E exp{itηnm} = Πk

m=1E exp{itynm},
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we have by Lemmas 4.1 and 4.2 in Section 4,

|ϕ(t)−ψ(t)| =

∣∣∣∣∣E exp{it
k

∑
m=1

ynm}−Πk
m=1E exp{itynm}

∣∣∣∣∣
� C|t|ρ(p2)

k

∑
m=1

‖ynm‖2

� C|t|ρ(p2)
k

∑
m=1

{
km+p1−1

∑
i=km

σ−2
n w2

ni

}1/2

= C|t|ρ(p2)

⎧⎨⎩ k

∑
m=1

{
km+p1−1

∑
i=km

σ−2
n w2

ni

}1/2
⎫⎬⎭

2· 12

� C|t|ρ(p2)

{
k

k

∑
m=1

km+p1−1

∑
i=km

|wni|
}1/2

� C|t|(kρ2(p2))1/2

� C|t|γ1/2
3n .

Hence, ∫ T

−T

∣∣∣∣ϕ(t)−ψ(t)
t

∣∣∣∣dt � Cγ1/2
3n T. (3.16)

By G̃n(u) = Gn(u/sn) and (3.14), it follows that

sup
u

∣∣G̃n(u+ y)− G̃n(u)
∣∣

= sup
u
|Gn((u+ y)/sn)−Gn(u/sn)|

� sup
u
|Gn((u+ y)/sn)−Φ((u+ y)/sn)|+ sup

u
|Φ((u+ y)/sn)−Φ(u/sn)|

+sup
u
|Gn(u/sn)−Φ(u/sn)|

� 2sup
u
|Gn(u)−Φ(u)|+ sup

u
|Φ((u+ y)/sn)−Φ(u/sn)|

� C{γδ/2
2n + |y|/sn}

� C{γδ/2
2n + |y|}.

Thus, we have

T sup
u

∫
|y|�c/T

∣∣G̃n(u+ y)− G̃n(u)
∣∣dy � CT

∫
|y|�c/T

{γδ/2
2n + |y|}dy � C{γδ/2

2n +1/T}.
(3.17)
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Setting T = γ−1/4
3n and applying Esseen inequality, (3.16) and (3.17), we obtain

sup
u

∣∣F̃n(u)− G̃n(u)
∣∣

� CT
∫ T

−T

∣∣∣∣ϕ(t)−ψ(t)
t

∣∣∣∣dy+T sup
u

∫
|y|�c/T

∣∣G̃n(u+ y)− G̃n(u)
∣∣dy

� C{γ1/2
3n T + γδ/2

2n +1/T}
� C{γδ/2

2n + γ1/4
3n },

i.e.,
J3n � C{γδ/2

2n + γ1/4
3n }. (3.18)

Finally, combining (3.12), (3.15) and (3.18) yields (3.9). Thus, the proof of Theo-
rem 3.1 is completed. �

By Theorem 3.1, we can obtain easily the following corollaries.

COROLLARY 3.2. If the assumptions (A1)-(A3) hold, then

sup
u
|Fn(u)−Φ(u)|= o(1). (3.19)

COROLLARY 3.3. If the assumptions (A1)-(A3) hold for δ � 2/3 and ρ(n) =
O(n−λ ) for λ � 7/6 , then

sup
u
|Fn(u)−Φ(u)|� C

{
n−λ/(6λ+7)

}
. (3.20)

Proof. Let p1 = [nτ ], p2 = [n2τ−1] , where τ = 1
2 + 7

2(6λ+7) . Then, we have from

δ � 2/3,

γ1/3
1n = O(n−(1−τ)/3) = O(n−λ/(6λ+7)),

γδ/2
2n � γ1/3

2n = O(n−(1−τ)/3) = O(n−λ/(6λ+7)),

γ1/4
3n = O(n−(λ+7/2)/(6λ+7)) = O(n−λ/(6λ+7))

and

u(p2) = O(
∞

∑
i=p2

i−λ ) = O(p−λ+1
2 ) = O(n−(2τ−1)(λ−1)) = O(n−(7λ−7)/(6λ+7)).

Also, λ � 7/6 implies 7λ − 7 � λ . Hence, u(p2) = O(n−λ/(6λ+7)) . Thus by (3.3),
(3.20) follows. The proof is completed. �

REMARK. In view of (3.20), we obtain that the convergence rate of the uniformly
asymptotic normality of the nonparametric estimate is near to n−1/6 as λ is sufficiently
large.
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4. Proof of Theorem 1.1

To prove Theorem 1.1, We need the following lemmas.

LEMMA 4.1. (Shao 1995, Lemma 2.1) Suppose that {Xi, i � 1} is a ρ -mixing
sequence. Let p,q > 1 with 1/p+1/q = 1 , ξ ∈ Lp(F k

1 ) and η ∈ Lq(F∞
k+n) . Then

|E(ξ η)− (Eξ )(Eη)|� 10ρ2(1/p∧1/q)(n)||ξ ||p · ||η ||q. (4.1)

LEMMA 4.2. If {Xi, i � 1} is a ρ -mixing sequence with zero mean and ∑∞
n=1 ρ(n)

< ∞ , then we have

E

(
n

∑
i=1

Xi

)2

� C
n

∑
i=1

EX2
i . (4.2)

Proof. Taking p = q = 2 in Lemma 4.1, we have

E

(
n

∑
i=1

Xi

)2

=
n

∑
i=1

EX2
i +2 ∑

1�i< j�n

E(XiXj)

�
n

∑
i=1

EX2
i +20 ∑

1�i< j�n

ρ( j− i)
(
EX2

i

)1/2 (
EX2

j

)1/2

�
n

∑
i=1

EX2
i +10

n−1

∑
k=1

n−k

∑
i=1

ρ(k)
(
EX2

i +EX2
k+i

)
�
(

1+20
∞

∑
k=1

ρ(k)

)
n

∑
i=1

EX2
i

� C
n

∑
i=1

EX2
i ,

which completes the proof of the lemma. �

LEMMA 4.3. For r > 2 and any x,y ∈ R1 , we have

|x+ y|r � |y|r +d1|x|r + rx|y|r−1sgn(y)+d2x
2|y|r−2, (4.3)

where d1 = 2r,d2 = 2r · r2 .

Proof. For r > 2 and t ∈ R1 , it is easy to show that |1+ t|r � 1+d1|t|r +rt+d2t2 .
From this result, we have (4.3) by taking t = x/y as y 
= 0. It is clear as y = 0. �

Since 0 < r−1
r−1+2θ < 1 and 0 < r−2

r−2+2θ(2∧(r−2)) < 1 for r > 2, we can take λ
which satisfies

max

{
r−1

r−1+2θ
,

r−2
r−2+2θ (2∧ (r−2))

}
< λ < 1 for r > 2. (4.4)
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On the other hand, let k = [(n/2)λ ] and m = [(n/2)1−λ ] . Clearly,

n < 2(m+1)k, Cnλ < k < nλ , m < n1−λ . (4.5)

For convenience, we fix n and redefine Xi as Xi = Xi for 1 � i � n and Xi = 0 for
i > n . For j = 1,2, · · · ,m+1, set

Yj =
(2 j−1)k

∑
i=2( j−1)k+1

Xi, Zj =
2 jk

∑
i=(2 j−1)k+1

Xi

and S1, j = ∑ j
i=1Yi, S2, j = ∑ j

i=1 Zi . Then Sn = ∑m+1
j=1 Yj + ∑m+1

j=1 Zj .

LEMMA 4.4. If r > 2 , then

E max
1� j�n

|S j|r �C

{
E max

1� j�m+1
|S1, j|r +E max

1� j�m+1
|S2, j|r +

2(m+1)

∑
j=1

E max
1�l<k

∣∣∣∣∣ ( j−1)k+l

∑
i=( j−1)k+1

Xi

∣∣∣∣∣
r}

.

Proof. Note that S j = ∑[ j/k]k
i=1 Xi + ∑ j

i=[ j/k]k+1 Xi , we have

max
1� j�n

|S j|r � 2r−1 max
1� j�n

∣∣∣∣∣[ j/k]k

∑
i=1

Xi

∣∣∣∣∣
r

+2r−1 max
1� j�n

∣∣∣∣∣ j

∑
i=[ j/k]k+1

Xi

∣∣∣∣∣
r

:= I1 + I2. (4.6)

Since
I1 � 22(r−1) max

1� j�m+1
|S1, j|r +22(r−1) max

1� j�m+1
|S2, j|r (4.7)

and

I2 � 2r−1 max
1� j�2(m+1)

max
1�l<k

∣∣∣∣∣ ( j−1)k+l

∑
i=( j−1)k+1

Xi

∣∣∣∣∣
r

� 2r−1
2(m+1)

∑
j=1

max
1�l<k

∣∣∣∣∣ ( j−1)k+l

∑
i=( j−1)k+1

Xi

∣∣∣∣∣
r

, (4.8)

Combining (4.6)–(4.8) yields the desired result. The proof is completed. �
Clearly

max
1� j�m+1

|S1, j|r �
∣∣∣∣ max
1� j�m+1

S1, j

∣∣∣∣r +
∣∣∣∣ max
1� j�m+1

(−S1, j)
∣∣∣∣r . (4.9)

Denote
Mj = max{0,Yj+1,Yj+1 +Yj+2, · · · ,Yj+1 +Yj+2 + · · ·+Ym+1},
Nj = max{Yj+1,Yj+1 +Yj+2, · · · ,Yj+1 +Yj+2 + · · ·+Ym+1},

M̃j = max{0,−Yj+1,−Yj+1−Yj+2, · · · ,−Yj+1−Yj+2−·· ·−Ym+1}
and

Ñj = max{−Yj+1,−Yj+1−Yj+2, · · · ,−Yj+1−Yj+2−·· ·−Ym+1}.
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Then
max

1� j�m+1
S1, j = N0, Nj = Yj+1 +Mj+1, 0 � Mj � |Nj|, (4.10)

max
1� j�m+1

(−S1, j) = Ñ0, Ñj = −Yj+1 + M̃j+1, 0 � M̃j � |Ñj|, (4.11)

and

Mj = max{S1, j,S1, j+1, · · · ,S1,m+1}−S1, j � max
j�i�m+1

|S1,i|+ |S1, j|
� 2 max

1� j�m+1
|S1, j|, (4.12)

M̃j = max{−S1, j,−S1, j+1, · · · ,−S1,m+1}+S1, j

� max
j�i�m+1

|S1,i|+ |S1, j| � 2 max
1� j�m+1

|S1, j|. (4.13)

LEMMA 4.5. Suppose that the sequence {Xi, i � 1} satisfies the conditions in
Theorem 1.1. If r > 2 , then for any τ > 0 , there exist positive constants Cτ =C(τ,r,θ )<
∞ and Cr = C(r) < ∞ such that

m

∑
j=1

E
(
YjM

r−1
j

)
� Cτ

m

∑
j=1

E|Yj|r + τCrE max
1� j�m+1

|S1, j|r, (4.14)

m

∑
j=1

E
(
YjM̃

r−1
j

)
� Cτ

m

∑
j=1

E|Yj|r + τCrE max
1� j�m+1

|S1, j|r. (4.15)

Proof. For r > 2, we have from (4.4) and (4.5)

mr−1ρ2(1∧(r−1))(k) = mr−1ρ2(k) � Cmr−1k−2θ � Cn(1−λ )(r−1)−2λ θ

� Cnr−1−λ (r−1+2θ) � C.

By the above result, Lemma 4.1 with p = r and q = r/(r−1) and (4.12), we obtain

m

∑
j=1

E
(
YjM

r−1
j

)
� 10ρ2(1∧(r−1))/r(k)

m

∑
j=1

‖ Yj ‖r · ‖ Mj ‖r−1
r

� 10 ·2r−1ρ2(1∧(r−1))/r(k)
m

∑
j=1

‖ Yj ‖r ·
(

E max
1� j�m+1

|S1, j|r
)(r−1)/r

� 2r+3τ−(r−1)/rρ2(1∧(r−1))/r(k)
m

∑
j=1

‖ Yj ‖r ·
(

τE max
1� j�m+1

|S1, j|r
)(r−1)/r

� 2r(r+3)ρ2(1∧(r−1))(k)
rτ(r−1)

(
m

∑
j=1

‖ Yj ‖r

)r

+
τ(r−1)

r
E max

1� j�m+1
|S1, j|r
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� 2r(r+3)mr−1ρ2(1∧(r−1))(k)
rτ(r−1)

m

∑
j=1

E|Yj|r +
τ(r−1)

r
E max

1� j�m+1
|S1, j|r

� Cτ
m

∑
j=1

E|Yj|r + τCrE max
1� j�m+1

|S1, j|r,

which implies (4.14). Similarly, we can get (4.15). �

LEMMA 4.6. Suppose that the sequence {Xi, i � 1} satisfies the conditions in
Theorem 1.1. If r > 2 , then for any τ > 0 , there exist positive constants Cτ =C(τ,r,θ )<
∞ and Cr = C(r)
< ∞ such that

m

∑
j=1

E
(
Y 2

j Mr−2
j

)
� Cτ

(
n

∑
i=1

EX2
i

)r/2

+Cτ
m

∑
j=1

E|Yj|r + τCτE max
1� j�m+1

|S1, j|r, (4.16)

m

∑
j=1

E
(
Y 2

j M̃r−2
j

)
� Cτ

(
n

∑
i=1

EX2
i

)r/2

+Cτ
m

∑
j=1

E|Yj|r + τCrE max
1� j�m+1

|S1, j|r. (4.17)

Proof. From (4.4) and (4.5), we have

mr/2−1ρ2∧(r−2)(k) � Cmr/2−1k−θ(2∧(r−2)) � Cn(1−λ )(r/2−1)−λ θ(2∧(r−2))

� Cnr/2−1−λ{r−2+2θ(2∧(r−2))}/2 � C. (4.18)

By (4.18) and Lemma 4.1 with p = r/(r−2) and q = r/2, we obtain that

m

∑
j=1

E(Y 2
j Mr−2

j ) =
m

∑
j=1

E(Y 2
j )E(Mr−2

j )+
m

∑
j=1

Cov
(
Y 2

j ,Mr−2
j

)
�

m

∑
j=1

E(Y 2
j )E(Mr−2

j )+10ρ2(2∧(r−2))/r(k)
m

∑
j=1

‖ Yj ‖2
r‖ Mj ‖r−2

r

=: II1 + II2. (4.19)

Noting (4.12), Lemma 4.2 and Hölder inequality, we have

II1 � C
m

∑
j=1

E(Y 2
j )E max

1� j�m+1
|S1, j|r−2

� C
n

∑
i=1

EX2
i

(
E max

1� j�m+1
|S1, j|r

)(r−2)/r

� C

τr(r−2)/4

(
n

∑
i=1

EX2
i

)r/2

+
τ(r−2)

r
E max

1� j�m+1
|S1, j|r. (4.20)
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Also, it follows by (4.12), Hölder inequality and (4.18) that

II2 � Cρ2(2∧(r−2))/r(k)
m

∑
j=1

‖ Yj ‖2
r

(
E max

1� j�m+1
|S1, j|r

)(r−2)/r

� C

τr(r−2)/4
ρ2∧(r−2)(k)

(
m

∑
j=1

‖ Yj ‖2
r

)r/2

+
τ(r−2)

r
E max

1� j�m+1
|S1, j|r

� C

τr(r−2)/4
mr/2−1ρ2∧(r−2)(k)

m

∑
j=1

E|Yj|r +
τ(r−2)

r
E max

1� j�m+1
|S1, j|r

� C

τr(r−2)/4

m

∑
j=1

E|Yj|r +
τ(r−2)

r
E max

1� j�m+1
|S1, j|r. (4.21)

Combining (4.19)–(4.21) yields (4.16). Similarly, we have (4.17). The proof is com-
pleted. �

LEMMA 4.7. Suppose that the sequence {Xi : i � 1} satisfies the conditions in
Theorem 1.1. If r > 2 , then for any ε > 0 ,

E max
1� j�m+1

|S1, j|r � C

⎧⎨⎩m+1

∑
j=1

E|Yj|r +

(
n

∑
i=1

EX2
i

)r/2
⎫⎬⎭ , (4.22)

E max
1� j�m+1

|S2, j|r � C

⎧⎨⎩m+1

∑
j=1

E|Zj|r +

(
n

∑
i=1

EX2
i

)r/2
⎫⎬⎭ . (4.23)

Proof. For r > 2, we have by (4.10) and Lemma 4.3,∣∣∣∣ max
1� j�m+1

S1, j

∣∣∣∣r = |N0|r = |Y1 +M1|r � d1|Y1|r + rY1M
r−1
1 +d2Y

2
1 Mr−2

1 +Mr
1

� d1|Y1|r + rY1M
r−1
1 +d2Y

2
1 Mr−2

1 + |N1|r � · · ·

� d1

m+1

∑
j=1

|Yj|r + r
m

∑
j=1

YjM
r−1
j +d2

m

∑
j=1

Y 2
j Mr−2

j . (4.24)

In the same way,∣∣∣∣ max
1� j�m+1

(−S1, j)
∣∣∣∣r � d1

m+1

∑
j=1

|Yj|r + r
m

∑
j=1

YjM̃
r−1
j +d2

m

∑
j=1

Y 2
j M̃r−2

j . (4.25)

Thus we have

E

∣∣∣∣ max
1� j�m+1

S1, j

∣∣∣∣r � Cτ
m+1

∑
j=1

E|Yj|r +Cτ

(
n

∑
i=1

EX2
i

)r/2

+ τCrE max
1� j�m+1

|S1, j|r
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by combining (4.24) with (4.14) and (4.16), and

E

∣∣∣∣ max
1� j�m+1

(−S1, j)
∣∣∣∣r � Cτ

m+1

∑
j=1

E|Yj|r +Cτ

(
n

∑
i=1

EX2
i

)r/2

+ τCrE max
1� j�m+1

|S1, j|r

by combining (4.25) with (4.15) and (4.17). Hence, from (4.9) and the two inequalities
mentioned above, it follows that

E max
1� j�m+1

|S1, j|r � Cτ
m+1

∑
j=1

E|Yj|r +Cτ

(
n

∑
i=1

EX2
i

)r/2

+ τCrE max
1� j�m+1

|S1, j|r.

Thus, we have

(1− τCr)E max
1� j�m+1

|S1, j|r � Cτ
m+1

∑
j=1

E|Yj|r +Cτn
ε

(
n

∑
i=1

EX2
i

)r/2

,

which concludes (4.22) by taking a sufficiently small τ . Similarly, we obtain (4.23).
The proof is completed. �

Next, we will give the proof of Theorem 1.1, as follows.

Proof of Theorem 1.1. By Lemmas 4.4 and 4.7, we have

E max
1� j�n

|S j|r � C

{
m+1

∑
i=1

(E|Yi|r +E|Zi|r)+
2(m+1)

∑
j=1

E max
1�l<k

∣∣∣∣∣ ( j−1)k+l

∑
i=( j−1)k+1

Xi

∣∣∣∣∣
r

+

(
n

∑
i=1

EX2
i

)r/2}
. (4.26)

Using Minkowski inequality to E|Yi|r , E|Zi|r and E max1�l<k

∣∣∣∑( j−1)k+l
i=( j−1)k+1 Xi

∣∣∣r in (4.26),

and noting (4.5) and Xi = 0 for i > n , we have

E max
1� j�n

|S j|r � C

⎧⎨⎩kr−1
n

∑
i=1

E|Xi|r +

(
n

∑
i=1

EX2
i

)r/2
⎫⎬⎭

� C

⎧⎨⎩nλ (r−1)
n

∑
i=1

E|Xi|r +

(
n

∑
i=1

EX2
i

)r/2
⎫⎬⎭ .

Applying the above inequality to E|Yi|r , E|Zi|r and E max1�l<k

∣∣∣∑( j−1)k+l
i=( j−1)k+1 Xi

∣∣∣r in

(4.26), we obtain

E max
1� j�n

|S j|r � C

⎧⎨⎩kλ (r−1)
n

∑
i=1

E|Xi|r +

(
n

∑
i=1

EX2
i

)r/2
⎫⎬⎭

� C

⎧⎨⎩nλ 2(r−1)
n

∑
i=1

E|Xi|r +

(
n

∑
i=1

EX2
i

)r/2
⎫⎬⎭ .
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Again, applying the inequality above to E|Yi|r , E|Zi|r and E max1�l<k

∣∣∣∑( j−1)k+l
i=( j−1)k+1 Xi

∣∣∣r
in (4.26), and repeating t times in this way, we have

E max
1� j�n

|S j|r � C

⎧⎨⎩nλ t(r−1)
n

∑
i=1

E|Xi|r +

(
n

∑
i=1

EX2
i

)r/2
⎫⎬⎭

for positive integer t � 1. Since 0 < λ < 1, λ t(r−1) < ε for sufficiently large t . Thus
(1.3) holds. The proof is completed. �
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