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APPROXIMATION BY α –BERNSTEIN–SCHURER–STANCU OPERATORS

NURSEL ÇETIN AND ANA-MARIA ACU

(Communicated by I. Raşa)

Abstract. In this paper, we consider a new family of generalized Bernstein-Schurer-Stancu op-
erators, depending on a non-negative real parameter α and study some approximation proper-
ties of these operators. We obtain a recurrence formula concerning calculation of moments by
Schurer-Stancu operators. We prove a uniform approximation result using the well-known Ko-
rovkin theorem and obtain the rate of convergence in terms of modulus of continuity. Also, we
present Voronovskaya and Grüss-Voronovskaya type results for these operators. Moreover, we
give some numerical examples to illustrate approximation by the new operator.

1. Introduction

In 1912, Bernstein [4] introduced the classical Bernstein polynomials in order to
give one of the simplest and most elegant proof of Weierstrass Approximation Theorem.
Then, discovery of their various generalizations and modifications in different ways has
been an intensive research area due to the advantages of their simple structures and
many useful properties such as positivity, end-point interpolation, symmetry, degree
raising, etc. More information concerning the state of the art can be found in [5, 13].

In 1962, considering a given non-negative integer p, Schurer [15] introduced and
studied new generalization of Bernstein operators. In 1969, Stancu [17] constructed
a linear positive operators known in literature as Bernstein-Stancu operators, which
depend on two real parameters. On the other hand, in 2003, Barbosu [3] defined the

Schurer-Stancu operators S̃(α ,β )
n,p : C[0,1+ p]→C[0,1] as

S̃(α ,β )
n,p ( f ;x) =

n+p

∑
k=0

f

(
k+ α
n+ β

)(
n+ p

k

)
xk (1− x)n+p−k , x ∈ [0,1] (1.1)

where n ∈ N, f ∈C[0,1+ p], p is a non-negative integer and α,β are real parameters
satisfying the conditions 0 � α � β , and investigated some approximation properties
of these operators.

Mathematics subject classification (2020): 41A10, 41A25, 41A36.
Keywords and phrases: Bernstein-Schurer-Stancu operators, α -Bernstein operator, modulus of conti-

nuity, Voronovskaya type theorem, Grüss-Voronovskaya type theorem.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-15-59

845

http://dx.doi.org/10.7153/jmi-2021-15-59
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In 2017, Chen et al. [10] introduced a new family of generalized Bernstein opera-
tors which is called as α -Bernstein operator, depending on a non-negative real param-
eter, as follows

Tn,α( f ;x) =
n

∑
i=0

f

(
i
n

)
p(α)

n,i (x), n ∈ N, α ∈ R, (1.2)

for any function f defined on [0,1] . Here, for i = 0,1, . . . ,n, the α -Bernstein polyno-

mial p(α)
n,i (x) of degree n is defined by p(α)

1,0 (x) = 1− x, p(α)
1,1 (x) = x and

p(α)
n,i (x) =

[(
n−2

i

)
(1−α)x+

(
n−2
i−2

)
(1−α)(1− x)+

(
n
i

)
αx(1− x)

]
×xi−1 (1− x)n−i−1 ,

where n � 2, x ∈ [0,1] and the binomial coefficients
(k

l

)
are given by

(
k
l

)
=

⎧⎨⎩
k!

(k− l)! · l! , if 0 � l � k,

0, else.
(1.3)

For α = 1, the α -Bernstein operator becomes the classical Bernstein polynomial.
Also, the α -Bernstein operators are linear positive operators for α ∈ [0,1] . In [10], the
authors gave some elementary properties and proved the uniform convergence of the se-
quence of the α -Bernstein operators to f ∈C[0,1] with the help of the well known Ko-
rovkin theorem. They obtained the rate of convergence and Voronovskaya-type theorem
for the α -Bernstein operators. Also, they gave an upper bound for the approximation
error by means of the modulus of continuity and proved that the α -Bernstein opera-
tors satisfy some shape preserving results. Very recently, Çetin [7] investigated some
approximation properties of complex α -Bernstein operator in compact disks. The au-
thor obtained quantitative upper estimate for simultaneous approximation, a qualitative
Voronovskaja type result and the exact order of approximation. Also, the author pre-
sented some shape preserving properties of the complex α -Bernstein operator such as
univalence, starlikeness, convexity and spirallikeness. To mention some recent works
concerning generalizations of α -Bernstein operator, we may refer to [1], [6], [9], [14],
[16].

Inspired by the aboveworks, in this paper we introduce a generalization of Bernstein-
Schurer-Stancu operators given in (1.1), as follows:

T (α∗,β ∗)
n,α ,p ( f ;x) =

n+p

∑
i=0

f

(
i+ α∗

n+ β ∗

)
p̃(α)

n,i (x), n ∈ N, p ∈ N∪{0}, (1.4)

for any function f defined on [0,1+ p], x ∈ [0,1] , any fixed real α and α∗,β ∗ sat-
isfying the condition 0 � α∗ � β ∗. Here, for i = 0,1, . . . ,n, the Schurer-type basis
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functions are defined by p̃(α)
1,0 (x) = 1− x, p̃(α)

1,1 (x) = x and

p̃(α)
n,i (x) =

[(
n+ p−2

i

)
(1−α)x+

(
n+ p−2

i−2

)
(1−α)(1− x)

+
(

n+ p
i

)
αx(1− x)

]
xi−1 (1− x)n+p−i−1 ,

where n+ p � 2, x ∈ [0,1] and the binomial coefficients
(k

l

)
are given as in (1.3). The

operator (1.4) is called as α -Bernstein-Schurer-Stancu operators, which are a family

of linear positive operators for 0 � α � 1. Note that for α = 1, the operator T (α∗,β ∗)
n,α ,p

becomes the Schurer-Stancu operators. If α = 1 and p = 0, the operator (1.4) reduces
to the Bernstein-Stancu operators. If α = 1 and α∗ = β ∗ = 0, the operator (1.4) be-
comes the Bernstein-Schurer operators. The case p = 0 in (1.4) gives the α -Bernstein-

Stancu operators defined in [9]. If α∗ = β ∗ = 0 in (1.4) , the operator T (α∗,β ∗)
n,α ,p re-

duces to the α -Bernstein-Schurer operators defined in [8]. Also, in the special case
α∗ = β ∗ = p = 0, the operator (1.4) reduces to α -Bernstein operator given by (1.2).

In the present paper, firstly we obtain a recurrence formula concerning calculation
of moments by Schurer-Stancu operators given in (1.1). Then, we prove a uniform
approximation result using the well-known Korovkin theorem and obtain the degree
of approximation in terms of modulus of continuity. Also, we give some numerical
examples to illustrate approximation by new constructed operator. Finally, we study
Voronovskaya and Grüss-Voronovskaya type theorems for these operators.

2. Auxiliary results

In this section, we give some useful results that will be necessary in the proof
of the main results. Let us denote by ek (x) = xk, k ∈ N∪{0} the test functions and
ϕ j

x (t) := (t− x) j , j ∈ N.
The α -Bernstein-Schurer-Stancu operators defined by (1.4) have the following

another representation.

THEOREM 2.1. The α -Bernstein-Schurer-Stancu operators given by (1.4) can be
stated as

T (α∗,β ∗)
n,α ,p ( f ;x) = (1−α)

n+p−1

∑
i=0

g(α∗,β ∗)
i

(
n+ p−1

i

)
xi (1− x)n+p−i−1

+ α
n+p

∑
i=0

f (α∗,β ∗)
i

(
n+ p

i

)
xi (1− x)n+p−i , (2.1)

where f ∈C[0,1+ p], x ∈ [0,1] , f (α∗,β ∗)
i = f

(
i+α∗
n+β ∗

)
and

g(α∗,β ∗)
i =

(
1− i

n+ p−1

)
f (α∗,β ∗)
i +

i
n+ p−1

f (α∗,β ∗)
i+1 , n+ p � 2.
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Proof. It can be easily obtained by the method used for the α -Bernstein operator
(see p. 247–248 in [10]). Therefore, the details are omitted. �

LEMMA 2.1. (see [3]) For the Schurer-Stancu operators given by (1.1), the fol-
lowing results hold

S̃(α∗,β ∗)
n,p (e0;x) = 1, (2.2)

S̃(α∗,β ∗)
n,p (e1;x) =

n+ p
n+ β ∗ x+

α∗

n+ β ∗ , (2.3)

S̃(α∗,β ∗)
n,p (e2;x) =

1

(n+ β ∗)2

{
(n+ p)2 x2 +(n+ p)x(1− x)

+2α∗ (n+ p)x+ α∗2
}

. (2.4)

Furthermore, by direct computation, we have the following moments.

LEMMA 2.2. For the Schurer-Stancu operators given by (1.1), we have

S̃(α∗,β ∗)
n,p (e3;x)

=
1

(n+β ∗)3

{
(n+p)(n+p−1)(n+p−2)x3+3(n+p)(n+p−1)(1+α∗)x2

+(n+ p)
(
3α∗2 +3α∗ +1

)
x+ α∗3} (2.5)

and

S̃(α∗,β ∗)
n,p (e4;x) =

1

(n+ β ∗)4

{
(n+ p)(n+ p−1)(n+ p−2)(n+ p−3)x4

+2(n+ p)(n+ p−1)(n+ p−2)(3+2α∗)x3

+(n+ p)(n+ p−1)
(
6α∗2 +12α∗+7

)
x2

+(n+ p)(1+2α∗)
(
2α∗2 +2α∗+1

)
x+ α∗4} . (2.6)

In what follows, we will give a recurrence formula to calculate higher order mo-

ments of the new operator T (α∗,β ∗)
n,α ,p given by (1.4).

THEOREM 2.2. For all j, p ∈ N∪{0} , n ∈ N and x ∈ [0,1] , we have

T (α∗,β ∗)
n,α ,p (e j+1;x) (2.7)

=
x(1− x)
n+ β ∗

(
T (α∗,β ∗)
n,α ,p (e j;x)

)′
+

[1+ α∗+(n+ p−1)x]
n+ β ∗ T (α∗,β ∗)

n,α ,p (e j;x)

+
(1−α)

(n+ β ∗)(n+ p−1)

(
n−1+ β ∗

n+ β ∗

) j [
(n−1+ β ∗) S̃(α∗,β ∗)

n−1,p

(
e j+1;x

)
−(n+ p−1+ α∗) S̃(α∗,β ∗)

n−1,p (e j;x)
]
− α (1− x)

n+ β ∗ S̃(α∗,β ∗)
n,p (e j;x) ,

where α ∈ [0,1] and S̃(α∗,β ∗)
n,p is the Schurer-Stancu operator given by (1.1).
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Proof. Using (2.1), we can write

T (α∗,β ∗)
n,α ,p (e j;x)

=(1−α)
n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1−x)n+p−i−1

[(
1− i

n+p−1

)(
i+ α∗

n+ β ∗

) j

+
i

n+p−1

(
i+1+α∗

n+ β ∗

) j
]

+ α
n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j

.

By some calculations, we get(
T (α∗,β ∗)
n,α ,p (e j;x)

)′
= (1−α)

n+p−1

∑
i=0

(
n+p−1

i

)[
ixi−1 (1−x)n+p−i−1−(n+p−i−1)xi (1−x)n+p−i−2

]
×
[(

1− i
n+ p−1

)(
i+ α∗

n+ β ∗

) j

+
i

n+ p−1

(
i+1+ α∗

n+ β ∗

) j
]

+ α
n+p

∑
i=0

(
n+ p

i

)[
ixi−1 (1−x)n+p−i−(n+ p− i)xi (1−x)n+p−i−1

]( i+ α∗

n+ β ∗

) j

=
(1−α)
x(1−x)

n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1 i

[(
1− i

n+ p−1

)(
i+ α∗

n+ β ∗

) j

+
i

n+ p−1

(
i+1+ α∗

n+ β ∗

) j
]
− (n+ p−1)(1−α)

(1− x)

n+p−1

∑
i=0

(
n+ p−1

i

)
xi

× (1− x)n+p−i−1

[(
1− i

n+ p−1

)(
i+ α∗

n+ β ∗

) j

+
i

n+ p−1

(
i+1+ α∗

n+ β ∗

) j
]

+
α

x(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i i

(
i+ α∗

n+ β ∗

) j

− α (n+ p)
(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j

=
(1−α)
x(1−x)

n+p−1

∑
i=0

(
n+p−1

i

)
xi (1−x)n+p−i−1 i

[(
1− i

n!+p−1

)(
i+α∗

n+β ∗

) j
]

+
(1−α)
x(1− x)

n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1 i

×
[

i
n+ p−1

(
i+1+ α∗

n+ β ∗

) j
]
− (n+ p−1)(1−α)

(1− x)

×
n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1

[(
1− i

n+ p−1

)(
i+ α∗

n+ β ∗

) j
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+
i

n+p−1

(
i+1+ α∗

n+β ∗

) j
]
+

α
x(1−x)

n+p

∑
i=0

(
n+p

i

)
xi (1−x)n+p−i i

(
i+α∗

n+β ∗

) j

− α (n+ p)
(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j

Considering that i can be written as i+ α∗ −α∗, we obtain(
T (α∗,β ∗)
n,α ,p (e j;x)

)′
=

(n+β ∗) (1−α)
x(1−x)

n+p−1

∑
i=0

(
n+p−1

i

)
xi (1−x)n+p−i−1

[(
1− i

n+p−1

)(
i+α∗

n+β ∗

) j+1
]

−α∗ (1−α)
x(1−x)

n+p−1

∑
i=0

(
n+p−1

i

)
xi (1−x)n+p−i−1

[(
1− i

n+p−1

)(
i+α∗

n+β ∗

) j
]

+
(n+β ∗)(1−α)

x(1−x)

n+p−1

∑
i=0

(
n+p−1

i

)
xi (1−x)n+p−i−1

[
i

n+p−1

(
i+1+α∗

n+β ∗

) j+1
]

− (1+α∗) (1−α)
x(1−x)

n+p−1

∑
i=0

(
n+p−1

i

)
xi (1−x)n+p−i−1

[
i

n+p−1

(
i+1+α∗

n+β ∗

) j
]

− (n+p−1)(1−α)
(1−x)

n+p−1

∑
i=0

(
n+p−1

i

)
xi (1−x)n+p−i−1

[(
1− i

n+p−1

)(
i+α∗

n+β ∗

) j

+
i

n+p−1

(
i+1+α∗

n+β ∗

) j
]
+

α (n+β ∗)
x(1−x)

n+p

∑
i=0

(
n+p

i

)
xi (1−x)n+p−i

(
i+α∗

n+β ∗

) j+1

− αα∗

x(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j

− α (n+ p)
(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j

=
(n+β ∗) (1−α)

x(1−x)

n+p−1

∑
i=0

(
n+p−1

i

)
xi (1−x)n+p−i−1

[(
1− i

n+ p−1

)(
i+α∗

n+β ∗

) j+1

+
i

n+p−1

(
i+1+α∗

n+β ∗

) j+1
]
−α∗ (1−α)

x(1−x)

n+p−1

∑
i=0

(
n+p−1

i

)
xi (1−x)n+p−i−1

×
[(

1− i
n+ p−1

)(
i+ α∗

n+ β ∗

) j

+
i

n+ p−1

(
i+1+ α∗

n+ β ∗

) j
]

− (1−α)
x(1− x)

n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1

[
i

n+ p−1

(
i+1+ α∗

n+ β ∗

) j
]

− (n+p−1)(1−α)
(1−x)

n+p−1

∑
i=0

(
n+p−1

i

)
xi (1−x)n+p−i−1

[(
1− i

n+ p−1

)(
i+α∗

n+β ∗

) j
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+
i

n+p−1

(
i+1+α∗

n+β ∗

) j
]
+

α (n+β ∗)
x(1−x)

n+p

∑
i=0

(
n+p

i

)
xi (1−x)n+p−i

(
i+ α∗

n+ β ∗

) j+1

− α [(n+ p)x+ α∗]
x(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j

Taking into account definition of the operators T (α∗,β ∗)
n,α ,p given by (2.1), we have

(
T (α∗,β ∗)
n,α ,p (e j;x)

)′
=

(n+ β ∗)
x(1− x)

{
T (α∗,β ∗)
n,α ,p

(
e j+1;x

)−α
n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j+1
}

− α∗

x(1− x)

{
T (α∗,β ∗)
n,α ,p (e j;x)−α

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j
}

− (1−α)
x(1− x)

n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1

[
i

n+ p−1

(
i+1+ α∗

n+ β ∗

) j
]

− (n+ p−1)
(1− x)

{
T (α∗,β ∗)
n,α ,p (e j;x)−α

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j
}

+
α (n+ β ∗)
x(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j+1

− α [(n+ p)x+ α∗]
x(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j

=
(n+ β ∗)
x(1− x)

T (α∗,β ∗)
n,α ,p

(
e j+1;x

)− [α∗ +(n+ p−1)x]
x(1− x)

T (α∗,β ∗)
n,α ,p (e j;x)

− (1−α)
x(1− x)

n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1

[
i

n+ p−1

(
i+1+ α∗

n+ β ∗

) j
]

− α
(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j

=
(n+ β ∗)
x(1− x)

T (α∗,β ∗)
n,α ,p

(
e j+1;x

)− [α∗ +(n+ p−1)x]
x(1− x)

T (α∗,β ∗)
n,α ,p (e j;x)

− 1
x(1− x)

{
T (α∗,β ∗)
n,α ,p (e j;x)− (1−α)

n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1

×
(

1− i
n+p−1

)(
i+α∗

n+β ∗

) j

−α
n+p

∑
i=0

(
n+p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j
}

− α
(1− x)

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j
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=
(n+ β ∗)
x(1− x)

T (α∗,β ∗)
n,α ,p

(
e j+1;x

)− [1+ α∗+(n+ p−1)x]
x(1− x)

T (α∗,β ∗)
n,α ,p (e j;x)

+
(1−α)
x(1− x)

(
1+

α∗

n+ p−1

)n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1

(
i+ α∗

n+ β ∗

) j

− (1−α)
x(1− x)

(n+ β ∗)
(n+ p−1)

n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1

(
i+ α∗

n+ β ∗

) j+1

+
α
x

n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

(
i+ α∗

n+ β ∗

) j

.

In view of definition of Schurer-Stancu operator defined by (1.1),(
T (α∗,β ∗)
n,α ,p (e j;x)

)′
=

(n+ β ∗)
x(1− x)

T (α∗,β ∗)
n,α ,p

(
e j+1;x

)− [1+ α∗+(n+ p−1)x]
x(1− x)

T (α∗,β ∗)
n,α ,p (e j;x)

+
(1−α)
x(1− x)

(
1+

α∗

n+ p−1

)(
n−1+ β ∗

n+ β ∗

) j

S̃(α∗,β ∗)
n−1,p (e j;x)

− (1−α)
x(1−x)

(n+β ∗)
(n+p−1)

(
n−1+β ∗

n+ β ∗

) j+1

S̃(α∗,β ∗)
n−1,p

(
e j+1;x

)
+

α
x

S̃(α∗,β ∗)
n,p (e j;x) ,

which completes the proof. �
Now, we give moments and central moments of the α -Bernstein-Schurer-Stancu

operators, below.

LEMMA 2.3. For the operators T (α∗,β ∗)
n,α ,p , one has

T (α∗,β ∗)
n,α ,p (e0;x) = 1, (2.8)

T (α∗,β ∗)
n,α ,p (e1;x) =

n+ p
n+ β ∗ x+

α∗

n+ β ∗ , (2.9)

T (α∗,β ∗)
n,α ,p (e2;x) =

1

(n+ β ∗)2

{
x2 [(n+ p)(n+ p−1)−2(1−α)]

+x [(n+ p)(1+2α∗)+2(1−α)]+ α∗2} , (2.10)

T (α∗,β ∗)
n,α ,p (e3;x)

=
1

(n+ β ∗)3

{[
(n+ p)3−3(n+ p)2 +2(3α −2)(n+ p)+12(1−α)

]
x3

+3
[
(1+ α∗) (n+ p)2 +(1−α∗−2α)(n+ p)−2(3+ α∗)(1−α)

]
x2

+
[
(n+ p)

(
1+3α∗+3α∗2)+6(1+ α∗)(1−α)

]
x+ α∗3} , (2.11)
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and

T (α∗,β ∗)
n,α ,p (e4;x)

=
1

(n+β ∗)4

{[
(n+p)4−6(n+p)3+(12α−1)(n+p)2+6(9−10α)(n+p)−72(1−α)

]
x4

+2
[
(3+2α∗)(n+p)3−3(1+2α+2α∗)(n+p)2

+2(24α−4α∗+6αα∗−21)(n+p)+24(1−α)(3+α∗)
]
x3

+
[(

7+12α∗+6α∗2)(n+p)2+
(
29+12α∗−36α−24αα∗−6α∗2)

× (n+p)−2(1−α)
(
43+36α∗+6α∗2)]x2

+
[(

1+4α∗+6α∗2+4α∗3)(n+p)+2(1−α)
(
7+12α∗+6α∗2)]x+ α∗4

}
.

(2.12)

Proof. Using the definition of the operators T (α∗,β ∗)
n,α ,p given by (2.1), we can write

that if f = e0, then f (α∗,β ∗)
i = g(α∗,β ∗)

i = 1 and

T (α∗,β ∗)
n,α ,p (e0;x) = (1−α)

n+p−1

∑
i=0

(
n+ p−1

i

)
xi (1− x)n+p−i−1

+α
n+p

∑
i=0

(
n+ p

i

)
xi (1− x)n+p−i

= 1.

On the other hand, by the recurrence formula obtained in Theorem 2.2 , for j = 0 we
have

T (α∗,β ∗)
n,α ,p (e1;x)

=
x(1− x)
n+ β ∗

(
T (α∗,β ∗)
n,α ,p (e0;x)

)′
+

[1+ α∗+(n+ p−1)x]
n+ β ∗ T (α∗,β ∗)

n,α ,p (e0;x)

+
(1−α)

(n+β ∗)(n+p−1)

[
(n−1+β ∗) S̃(α∗,β ∗)

n−1,p (e1;x)−(n+p−1+α∗) S̃(α∗,β ∗)
n−1,p (e0;x)

]
− α (1− x)

n+ β ∗ S̃(α∗,β ∗)
n,p (e0;x) .

Using (2.8), (2.2) and (2.3), it follows that

T (α∗,β ∗)
n,α ,p (e1;x) =

1+ α∗+(n+ p−1)x
n+ β ∗ +

(1−α)
(n+ β ∗)(n+ p−1)

× [(n+ p−1)x+ α∗ − (n+ p−1+ α∗)]− α (1− x)
n+ β ∗
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=
1+ α∗+(n+ p−1)x

n+ β ∗ +
(1−α)(x−1)

(n+ β ∗)
− α (1− x)

n+ β ∗

=
n+ p
n+ β ∗ x+

α∗

n+ β ∗ . (2.13)

Then, from (2.7), for j = 1 we get

T (α∗,β ∗)
n,α ,p (e2;x) =

x(1− x)
n+ β ∗

(
T (α∗,β ∗)
n,α ,p (e1;x)

)′
+

[1+ α∗+(n+ p−1)x]
n+ β ∗ T (α∗,β ∗)

n,α ,p (e1;x)

+
(1−α)

(n+ β ∗)(n+ p−1)

(
n−1+ β ∗

n+ β ∗

)[
(n−1+ β ∗) S̃(α∗,β ∗)

n−1,p (e2;x)

−(n+ p−1+ α∗) S̃(α∗,β ∗)
n−1,p (e1;x)

]
− α (1− x)

n+ β ∗ S̃(α∗,β ∗)
n,p (e1;x) ,

By application of the equations (2.13), (2.3) and (2.4), we obtain the followings

T (α∗,β ∗)
n,α ,p (e2;x)

=
x(1− x)
n+ β ∗

(n+ p)
n+ β ∗ +

[1+ α∗+(n+ p−1)x]
n+ β ∗

[(n+ p)x+ α∗]
n+ β ∗

+
(1−α)

(n+ β ∗)(n+ p−1)

(
n−1+ β ∗

n+ β ∗

){
1

n−1+ β ∗
[
(n+ p−1)2 x2

+(n+ p−1)x(1− x)+2α∗ (n+ p−1)x+ α∗2]− (n+ p−1+ α∗)

× [(n+ p−1)x+ α∗]
n−1+ β ∗

}
− α (1− x)

n+ β ∗
[(n+ p)x+ α∗]

n+ β ∗

=
1

(n+β ∗)2

{
x2 [−(n+p)+(n+p)(n+p−1)+(1−α)(n+p−2)+α (n+p)]

+x [(n+ p)+ (1+ α∗) (n+ p)+ α∗ (n+ p−1)+ (1−α)(1+2α∗)
−(1−α)(n+p−1+α∗)+αα∗−α (n+p)]+α∗ (1+α∗)−(1−α)α∗−αα∗}

=
1

(n+ β ∗)2

{
x2 [(n+ p)(n+ p−1)−2(1−α)]+ x [(n+ p)(1+2α∗)

+2(1−α)]+ α∗2} . (2.14)

Writing for j = 2 and j = 3 in (2.7), by making use of (2.14), (2.4), (2.5) and then
(2.11), (2.5), (2.6) respectively, the remain of the proof can be easily shown. So, we
omit the details. �

LEMMA 2.4. For the central moments of the operators T (α∗,β ∗)
n,α ,p , one has

T (α∗,β ∗)
n,α ,p

(
ϕ1

x ;x
)

=
(p−β ∗)
n+ β ∗ x+

α∗

n+ β ∗ , (2.15)

T (α∗,β ∗)
n,α ,p

(
ϕ2

x ;x
)

=
1

(n+ β ∗)2

{
(p−β ∗)2 x2 +[n+ p+2(1−α)]x(1− x)

+2α∗ (p−β ∗)x+ α∗2}=:
(

δ (α∗,β ∗)
n,α ,p (x)

)2
(2.16)
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T (α∗,β ∗)
n,α ,p (ϕ4

x ;x)

=
1

(n+β ∗)4

{[
3n2+2n

(−3p2+p(7+6β ∗)+3−6α−4β ∗−3β ∗2)+p4−2p3 (3+2β ∗)

+ p2 (12α −1+12β ∗+6β ∗2)+2p
(
27−30α +8β ∗−12αβ ∗−3β ∗2−2β ∗3)

−12(1−α)
(
6+4β ∗+ β ∗2)+ β ∗4

]
x4

+
[
−6n2 +2n

(
3p2−6p(2+ α∗+ β ∗)+12α−6+4α∗+6β ∗+6α∗β ∗+3β ∗2)

+2p3 (3+2α∗)−6p2 (1+2α+2α∗+2β ∗+2α∗β ∗)

+2p
(
48α −42−8α∗−6β ∗+12αα∗+6α∗β ∗ +12αβ ∗+3β ∗2 +6α∗β ∗2)

+12(1−α)
(
12+4α∗+6β ∗+2α∗β ∗+β ∗2)−4α∗β ∗3

]
x3

+
[
3n2+n

(
2p(5+6α∗)+5−12α−12α∗−4β ∗−12α∗β ∗−6α∗2)

+p2 (7+12α∗+6α∗2)
+p
(
29−36α+12α∗−4β ∗−6α∗2−24αα∗−12α∗β ∗−12α∗2β ∗)

−2(1−α)
(
43+36α∗+12β ∗+12α∗β ∗+6α∗2)+6α∗2β ∗2

]
x2

+
[
(n+p)

(
1+4α∗+6α∗2)+4pα∗3+2(1−α)

(
7+12α∗+6α∗2)−4α∗3β ∗

]
x+α∗4

}
.

LEMMA 2.5. For the operators T (α∗,β ∗)
n,α ,p , the following expressions hold

lim
n→∞

nT (α∗,β ∗)
n,α ,p

(
ϕ1

x ;x
)

= (p−β ∗)x+ α∗, (2.17)

lim
n→∞

nT (α∗,β ∗)
n,α ,p

(
ϕ2

x ;x
)

= x(1− x) , (2.18)

lim
n→∞

nT (α∗,β ∗)
n,α ,p (ϕ4

x ;x) = 0. (2.19)

3. Main results

Applying the classical Korovkin Theorem to the sequence of linear positive oper-

ators T (α∗,β ∗)
n,α ,p , from (2.8)–(2.10) we have the convergence theorem as follows.

THEOREM 3.1. For any f ∈C [0,1+ p] and α ∈ [0,1] , the sequence{
T (α∗,β ∗)
n,α ,p ( f ;x)

}
converges to f uniformly on [0,1] .

In the next result, we will give the rate of convergence of the operator T (α∗,β ∗)
n,α ,p by

means of the first modulus of continuity.
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THEOREM 3.2. Let f ∈ C [0,1+ p] and α ∈ [0,1] . Then, for all x ∈ [0,1] we
have ∣∣∣T (α∗,β ∗)

n,α ,p ( f ;x)− f (x)
∣∣∣� 2ω

(
f ;δ (α∗,β ∗)

n,α ,p (x)
)

where ω is the modulus of continuity and δ (α∗,β ∗)
n,α ,p (x) is given as in (2.16).

Proof. Taking into account that the modulus of continuity of f has the following
well known property

| f (t)− f (x)| � ω ( f ;δ )
(
1+

(t− x)2

δ 2

)
for x, t ∈ [0,1] and δ > 0, we can write∣∣∣T (α∗,β ∗)

n,α ,p ( f ;x)− f (x)
∣∣∣� T (α∗,β ∗)

n,α ,p (| f (t)− f (x)| ;x)

� ω ( f ;δ )

(
1+

(
δ (α∗,β ∗)

n,α ,p (x)
)2

δ 2

)
.

If we choose δ = δ (α∗,β ∗)
n,α ,p (x) , we arrive at desired result. �

Now, with the help of Maple let us give some numerical examples to show the
approximation process by these operators.

EXAMPLE 3.1. The convergence of T (α∗,β ∗)
n,α ,p ( f ;x) to f (x) = cos

(
x3
)

is shown
in Figure 1 for p = 1, α∗ = 1, β ∗ = 2, n = 2 and different values of the parameter α.

Figure 1: Approximation process of T (α∗,β ∗)
n,α ,p , for α = 0.1,0.4,0.7,1.
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EXAMPLE 3.2. The convergence of Tn,α ,p ( f ;x) to f (x) = xex is illustrated in
Figure 2 for p = 2, α = 0.5, α∗ = 2, β ∗ = 10 and different values of n.

Figure 2: Approximation process of T (α∗,β ∗)
n,α ,p , for n = 5,10,20,100.

In what follows, we give a Voronovskaya-type result for the constructed operator

T (α∗,β ∗)
n,α ,p .

THEOREM 3.3. Suppose that f ∈C [0,1+ p] and f has the second order deriva-
tive at x ∈ [0,1] . Then we have

lim
n→∞

n
[
T (α∗,β ∗)
n,α ,p ( f ;x)− f (x)

]
= [(p−β ∗)x+ α∗] f ′ (x)+

x(1− x)
2

f ′′ (x) ,

where 0 � α � 1.

Proof. From Taylor’s formula, one has

f (t) = f (x)+ f ′ (x)(t− x)+
1
2

f ′′ (x) (t− x)2 +h(t− x)(t− x)2 , (3.1)

at the fixed point x ∈ [0,1] , where h(t− x) is a continuous function on [0,1+ p] and

limt→x h(t − x) = 0. Application of the operators T (α∗,β ∗)
n,α ,p to (3.1) implies

n
[
T (α∗,β ∗)
n,α ,p ( f ;x)− f (x)

]
= f ′ (x)nT (α∗,β ∗)

n,α ,p (t−x;x)+
f ′′ (x)

2
nT (α∗,β ∗)

n,α ,p

(
(t−x)2 ;x

)
+nT (α∗,β ∗)

n,α ,p

(
h(t− x)(t− x)2 ;x

)
.
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Using (2.17) and (2.18), we can write

lim
n→∞

n
[
T (α∗,β ∗)
n,α ,p ( f ;x)− f (x)

]
= [(p−β ∗)x+ α∗] f ′ (x)+

x(1− x)
2

f ′′ (x)

+ lim
n→∞

nT (α∗,β ∗)
n,α ,p

(
h(t − x)(t − x)2 ;x

)
.

Then, it suffices to prove that limn→∞ nT (α∗,β ∗)
n,α ,p

(
h(t− x)(t − x)2 ;x

)
= 0.

Since limt→x h(t− x) = 0, for each ε > 0 there is a δ > 0 such that |h(t− x)| <
ε for all t satisfying |t− x| < δ . On the other hand, since h(t− x) is bounded on
[0,1+ p] , there is an M > 0 such that |h(t− x)| � M for all t. Therefore, we may

write |h(t − x)| � M (t−x)2

δ 2 when |t− x| � δ . So, these arguments enable us to write

|h(t− x)| � ε +M (t−x)2

δ 2 for all t.
Thus, we have

nT (α∗,β ∗)
n,α ,p

(
h(t− x)(t− x)2 ;x

)
� εnT (α∗,β ∗)

n,α ,p

(
(t− x)2 ;x

)
+

M
δ 2 nT (α∗,β ∗)

n,α ,p

(
(t − x)4 ;x

)
= εnT (α∗,β ∗)

n,α ,p
(
ϕ2

x ;x
)
+

M
δ 2 nT (α∗,β ∗)

n,α ,p
(
ϕ4

x ;x
)
.

Making use of (2.18) and (2.19), we arrive at the desired result. �

Recently, Acu et al. [2] initially studied the Grüss-type inequality for linear posi-
tive operators by using the least concave majorant of the modulus of continuity. In [12],
Gonska and Tachev proved Grüss-type inequalities in terms of the second order modu-
lus of continuity and the second order Ditizian-Totik modulus of smoothness. Recently,
Gal and Gonska [11] obtained a Voronovskaya-type theorem with the help of Grüss in-
equality for Bernstein operators in both the real and the complex case and termed it as
Grüss-Voronovskaya-type theorem.

In the next theorem, by using the approach in [11] we will give Grüss-Voronovskaya

type theorem for the α -Bernstein-Schurer operator T (α∗,β ∗)
n,α ,p .

THEOREM 3.4. Let f ,g ∈ C2 [0,1+ p] and α ∈ [0,1] . Then, for each x ∈ [0,1]
we have

lim
n→∞

n
[
T (α∗,β ∗)
n,α ,p ( f g;x)−T (α∗,β ∗)

n,α ,p ( f ;x)T (α∗,β ∗)
n,α ,p (g;x)

]
= x(1− x) f ′ (x)g′ (x) .

Proof. Since

( f g)(x) = f (x)g(x) , ( f g)′ (x) = f ′ (x)g(x)+ f (x)g′ (x)

and
( f g)′′ (x) = f ′′ (x)g(x)+2 f ′ (x)g′ (x)+ f (x)g′′ (x) ,
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we can easily write

T (α∗,β ∗)
n,α ,p ( f g;x)−T (α∗,β ∗)

n,α ,p ( f ;x)T (α∗,β ∗)
n,α ,p (g;x)

=
[
T (α∗,β ∗)
n,α ,p (f g;x)− f (x)g(x)−(f g)′ (x)T (α∗,β ∗)

n,α ,p
(
ϕ1

x ;x
)− ( f g)′′ (x)

2
T (α∗,β ∗)
n,α ,p

(
ϕ2

x ;x
)]

−g(x)
[
T (α∗,β ∗)
n,α ,p ( f ;x)− f (x)− f ′ (x)T (α∗,β ∗)

n,α ,p
(
ϕ1

x ;x
)− f ′′ (x)

2
T (α∗,β ∗)
n,α ,p

(
ϕ2

x ;x
)]

−T (α∗,β ∗)
n,α ,p (f ;x)

[
T (α∗,β ∗)
n,α ,p (g;x)−g(x)−g′ (x)T (α∗,β ∗)

n,α ,p
(
ϕ1

x ;x
)−g′′ (x)

2
T (α∗,β ∗)
n,α ,p

(
ϕ2

x ;x
)]

+
1
2
T (α∗,β ∗)
n,α ,p

(
ϕ2

x ;x
)[

f (x)g′′ (x)+2 f ′ (x)g′ (x)−g′′ (x)T (α∗,β ∗)
n,α ,p ( f ;x)

]
+g′ (x)T (α∗,β ∗)

n,α ,p
(
ϕ1

x ;x
)[

f (x)−T (α∗,β ∗)
n,α ,p ( f ;x)

]
.

By using (2.17) and (2.18), we get

lim
n→∞

n
[
T (α∗,β ∗)
n,α ,p ( f g;x)−T (α∗,β ∗)

n,α ,p ( f ;x)T (α∗,β ∗)
n,α ,p (g;x)

]
= lim

n→∞
n
[
T (α∗,β ∗)
n,α ,p ( f g;x)− f (x)g(x)

]
−(f g)′ (x) [(p−β ∗)x+α∗]− ( f g)′′ (x)

2
x(1−x)

−g(x)
{

lim
n→∞

n
[
T (α∗,β ∗)
n,α ,p ( f ;x)− f (x)

]
− f ′ (x) [(p−β ∗)x+α∗]− f ′′ (x)

2
x(1−x)

}
− lim

n→∞
T (α∗,β ∗)
n,α ,p ( f ;x)

{
lim
n→∞

n
[
T (α∗,β ∗)
n,α ,p (g;x)−g(x)

]
−g′ (x) [(p−β ∗)x+ α∗]− g′′ (x)

2
x(1−x)

}
+

x(1−x)
2

{
g′′ (x) lim

n→∞

[
f (x)−T (α∗,β ∗)

n,α ,p ( f ;x)
]
+2 f ′ (x)g′ (x)

}
+g′ (x) [(p−β ∗)x+ α∗] lim

n→∞

[
f (x)−T (α∗,β ∗)

n,α ,p ( f ;x)
]
.

Considering Theorem 3.1 and Theorem 3.3, we obtain

lim
n→∞

n
[
T (α∗,β ∗)
n,α ,p ( f g;x)−T (α∗,β ∗)

n,α ,p ( f ;x)T (α∗,β ∗)
n,α ,p (g;x)

]
= x(1− x) f ′ (x)g′ (x) ,

which completes the proof. �

Acknowledgements. Project financed by Lucian Blaga University of Sibiu & Hasso
Plattner Foundation research grants LBUS-IRG-2020-06.
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