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QUANTITATIVE DUNKL ANALOGUE

OF SZÁSZ–MIRAKYAN OPERATORS

QING-BO CAI, SERDAL YAZICI, BAYRAM ÇEKIM ∗ AND GÜRHAN İÇÖZ

(Communicated by M. Mursaleen)

Abstract. The main object of this paper is to introduce a sequence of quantitative Dunkl analogue
Szász-Mirakyan operators. Firstly, we have defined mentioned operators and have obtained test
values and central moments for our operators. We have given weighted Korovkin theorem for
these operators and then, have shed light on approximation properties of these operators with
the help of the classical modulus of continuity, Peetre’s K -functional, the second modulus of
continuity, the modulus of weighted continuity defined by Holhos in [30] on some function space.
Moreover, we have given Voronovskaya type theorems for our operators and basic operators
defined by Sucu in [6]. Finally, graphics of these operators have been presented for some values
of n .

1. Introduction

Recently, many results about various generelization of Szász-Mirakyan operators
have been obtained. Some of mentioned generalizations that are important have given
in [1], [2], [3], [4] and [5]. Sucu [6] has introduced Dunkl analogue of Szász-Mirakyan
operators as follows

Sμ
n ( f ;x) =

1
eμ (nx)

∞

∑
k=0

(nx)k

γμ (k)
f

(
k+2μθk

n

)
, (1.1)

where n ∈ N, x ∈ [0,∞) , μ � 0 and f ∈ C [0,∞) . Moreover, eμ (x) has been intro-
duced by Rosenblum [7] in here as follows

eμ (x) =
∞

∑
k=0

xk

γμ (k)
, (1.2)

where the coefficients γμ (k) is defined by

γμ (2k) =
22kk!Γ

(
k+ μ + 1

2

)
Γ
(
μ + 1

2

) and γμ (2k+1) =
22k+1k!Γ

(
k+ μ + 3

2

)
Γ
(
μ + 1

2

) (1.3)
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for k ∈ N0 := N∪{0} and μ > − 1
2 .

We take note of the following recursion relation about γμ

γμ (k+1) = (k+1+2μθk+1)γμ (k) , k = 0,1,2, . . . , (1.4)

where

θk =
{

1 ; k ∈ 2N0 +1
0 ; k ∈ 2N0

.

Furthermore, many studies associated with Dunkl analogue of a linear positive opera-
tors have been carried out. Some of them are [8], [9], [10], [11], [12], [13], [14], [15]
and [16].

In the other hand, Cárnedas-Morales et al. [17] has presented a new construction
of Bernstein polynomials for f ∈C [0,1] as follows

Bτ
n ( f ;x) =

∞

∑
k=0

(
f ◦ τ−1)(k

n

)(
n
k

)
τk (x) (1− τ (x))n−k , (1.5)

where τ is a continuous infinite times differentiable function verfying the condition
τ (0) = 0, τ (1) = 1 and τ ′ (x) > 0 for 0 � x � 1. The Korovkin test set is generalized
from

{
1, t, t2

}
to

{
1,τ (t) ,τ2 (t)

}
on this construction. A better degree of approxima-

tion depending on τ has been obtained for Bernstein operators on this study. Therefore,
many of authors have carried out studies about this construction, likely [18], [19], [20]
and [21].

At the present, assume that Ψ is the function which satisfies the following require-
ments:

G1) Ψ is a continuously differentiable function on interval [0,∞) ,
G2) Ψ(0) = 0 and inf

x�0
Ψ′ (x) � 1.

By going on these conditions, Aral et al. [21] have defined a generalization as
follows:

S
Ψ
n ( f ;x) = exp(−nΨ(x))

∞

∑
k=0

(nΨ(x))k

k!

(
f ◦Ψ−1)( k

n

)
,

where n ∈ N, f ∈C [0,∞) , x � 0.
Now, let Ψ be the function satisfying conditions G1 and G2. Then, we introduce

a new generalization of Dunkl-Szász-Mirakyan operators as follows:

ΨSμ
n ( f ;x) =

1
eμ (nΨ(x))

∞

∑
k=0

(nΨ(x))k

γμ (k)
(
f ◦Ψ−1)(k+2μθk

n

)
, (1.6)

where n ∈ N, f ∈ C [0,∞) , x � 0, μ ∈ (− 1
2 , 1

2

)
, eμ (x) and γμ are defined by (1.2)

and (1.3) in [7], respectively. If Ψ is the unit function defined on [0,∞) , then ΨSμ
n = Sμ

n

for 0 � μ < 1/2. It is ΨSμ
n = SΨ

n for μ = 0. Furthermore, It is clear that

ΨSμ
n ( f ;x) = Sμ

n

(
f ◦Ψ−1;Ψ(x)

)
. (1.7)

Note that we take μ ∈ (− 1
2 , 1

2

)
differently from μ � 0 in the study [6]. So, the op-

erators defined by us are going to be more significant and have better approximation
properties.
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LEMMA 1. The operators defined in (1.6) confirm the following values

i. ΨSμ
n (1;x) = 1,

ii. ΨSμ
n (Ψ(t) ;x) = Ψ(x) ,

iii. ΨSμ
n

(
Ψ2 (t) ;x

)
= Ψ2 (x)+

(
1+2μξ μ

Ψ (n,x)
) Ψ(x)

n
,

iv. ΨSμ
n

(
Ψ3 (t) ;x

)
= Ψ3 (x)+

(
3−2μξ μ

Ψ (n,x)
) Ψ2 (x)

n

+
(
1+4μ2 +4μξ μ

Ψ (n,x)
) Ψ(x)

n2 ,

v. ΨSμ
n

(
Ψ4 (t) ;x

)
= Ψ4 (x)+

(
6+4μξ μ

Ψ (n,x)
) Ψ3 (x)

n

+
(
7+4μ2−8μξ μ

Ψ (n,x)
) Ψ2 (x)

n2

+
(
1+12μ2 +2μ

(
3+4μ2)ξ μ

Ψ (n,x)
) Ψ(x)

n3 ,

vi. ΨSμ
n

(
Ψ5 (t) ;x

)
= Ψ5 (x)+

Ψ4 (x)
n

(
10−4μξ μ

Ψ (n,x)
)

+
Ψ3 (x)

n2

(
25+12μ2 +32μξ μ

Ψ (n,x)
)

+
Ψ2 (x)

n3

(
15+20μ2− (

22μ +8μ3)ξ μ
Ψ (n,x)

)
+

Ψ(x)
n4

(
1+24μ2 +16μ4 +

(
8μ +32μ3)ξ μ

Ψ (n,x)
)
,

vii. ΨSμ
n

(
Ψ6 (t) ;x

)
= Ψ6 (x)+

Ψ5 (x)
n

(
15+6μξ μ

Ψ (n,x)
)

+
Ψ4 (x)

n2

(
65+12μ2−48μξ μ

Ψ (n,x)
)

+
Ψ3 (x)

n3

(
80+200μ2+138μξ μ

Ψ (n,x)+192μ3ξ μ
Ψ (n,x)

)
+

Ψ2 (x)
n4

(
51−16μ2 +16μ4− (

12μ +208μ3)ξ μ
Ψ (n,x)

)
+

Ψ(x)
n5

(
1+40μ2 +80μ4 +

(
10μ +80μ3 +32μ5

)
ξ μ

Ψ (n,x)
)

,

where ξ μ
Ψ (n,x) := eμ (−nΨ(x))

eμ (nΨ(x)) .

Proof. From the equality (1.7), it can be seen that

ΨSμ
n

(
Ψk;x

)
= Sμ

n

(
(Ψ)k ◦Ψ−1;Ψ(x)

)
= Sμ

n

(
(Ψ◦Ψ−1)k;Ψ(x)

)
= Sμ

n (ek;Ψ(x))
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where ek (t) = tk, t � 0 and k ∈ N0. We can calculate Sμ
n (e5;x) and Sμ

n (e6;x) for the
operators Sμ

n given in [6] with help of similar operations Lemma 1 in [6], too. Then,
the proof is completed by getting x → Ψ(x) in Sμ

n (ek;x) , k = 0,1, . . . ,6. �
Now, we can give next lemma without the proof thanks to linearity of ΨSμ

n and
Lemma 1.

LEMMA 2. The r -th central moment of operators ΨSμ
n ( f ;x) is given by

Mn,r (x) = ΨSμ
n ((Ψ(t)−Ψ(x))r ;x) , r = 0,1,2, . . .

for n ∈ N and x ∈ [0,∞) . Then, we obtain some central moments as follows

i. Mn,0 (x) = 1,

ii. Mn,1 (x) = 0,

iii. Mn,2 (x) =
(
1+2μξ μ

Ψ (n,x)
) Ψ(x)

n
,

iv. Mn,4 (x) = 24μξ μ
Ψ (n,x)

Ψ3 (x)
n

+
(
3−12μ2−24μξ μ

Ψ (n,x)
) Ψ2 (x)

n2

+
(
1+12μ2 +2μ

(
3+4μ2)ξ μ

Ψ (n,x)
) Ψ(x)

n3 ,

v. Mn,6 (x) = 160μξ μ
Ψ (n,x)

Ψ5 (x)
n

− (
80μ2 +440μξ μ

Ψ (n,x)
) Ψ4 (x)

n2

+
(
5+260μ2+360

(
μ + μ3)ξ μ

Ψ (n,x)
) Ψ3 (x)

n3

− (
160μ2 +80μ4−45+ μ

(
60+400μ2)ξ μ

Ψ (n,x)
) Ψ2 (x)

n4

+
(
1+40μ2(1+2μ2)+

(
10μ +80μ3 +32μ5

)
ξ μ

Ψ (n,x)
) Ψ(x)

n5 ,

where ξ μ
Ψ (n,x) := eμ (−nΨ(x))

eμ (nΨ(x)) .

2. Weighted Korovkin type theorem

Korovkin’s theorem [22] has played a important role in approximation theory. Ac-
cording to this study, if a sequence of linear positive operators approximates test func-
tions defined on a bounded interval

ek : ek (x) = xk, k = 0,1,2 (2.1)

then it approximates all continuous and bounded functions on this interval. Moreover,
the test functions e0,e1 and e2 can replace Ψ0, Ψ1 and Ψ2 . It is seen clearly that the
operators defined by ΨSμ

n ( f ;x) verify the following phase thanks to Lemma 1

lim
n→∞

ΨSμ
n

(
Ψk (t) ;x

)
= Ψk (x) , k = 0,1,2. (2.2)
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Korovkin theorem was extended under the name weighted Korovkin theorem to
unbounded intervals by Gadzhiev [23]. Function Ψ , given in conditions G1 and G2, is
a monotonous increased function and limx→∞ Ψ(x) = ∞ from condition G2. Therefore,
ρ (x) = 1 + Ψ2 (x) is a weighted function. So, we can define some function spaces
associated with weighted Korovkin theorem by means of function ρ as follows:

Bρ [0,∞) : =
{

f : [0,∞) −→ R | | f (x)| � Mf
(
1+ Ψ2 (x)

)}
Cρ [0,∞) : =

{
f ∈ Bρ [0,∞) | f is continuous on [0,∞)

}
Uρ [0,∞) : =

{
f ∈ Bρ [0,∞) | f

ρ
is uniformly continuous on [0,∞)

}

Ck
ρ [0,∞) : =

{
f ∈ Cρ [0,∞) | lim

x→∞

| f (x)|
1+ Ψ2 (x)

= k f < ∞
}

.

Bρ [0,∞) is a normed space with ‖·‖ρ defined as follows:

‖ f‖ρ = sup
x�0

| f (x)|
1+ Ψ2 (x)

where f ∈ Bρ [0,∞) . Furhermore, it’s clear that

Ck
ρ [0,∞) ⊂Cρ [0,∞) ⊂ Bρ [0,∞) .

Now, we remind some features of linear positive operators acting from Cρ [0,∞)
to Bρ [0,∞) in the following Lemma 3 and Theorem 1 using the special cases of the
definitions of the function spaces given above for Ψ(x) = x .

LEMMA 3. [23] The linear operators Ln, n � 1, act from Cρ [0,∞) to Bρ [0,∞)
if and only if

|Ln (ρ ;x)| � Kρ (ρ (x))

where ρ (x) = 1+ x2, x ∈ [0,∞) and Kρ is a positive constant.

THEOREM 1. [23] Let the sequence of linear positive operators {Ln}n�1 acting
from Cρ [0,∞) to Bρ [0,∞) and satisfying the condition

lim
n→∞

‖Ln (ek; ·)− ek‖ρ = 0, k = 0,1,2.

Then, for any function f ∈Ck
ρ [0,∞) ,

lim
n→∞

‖Ln ( f ; ·)− f‖ρ = 0.

THEOREM 2. ΨSμ
n defined in (1.6) fulfill the following equality

lim
n→∞

∥∥∥ΨSμ
n ( f ; ·)− f

∥∥∥
ρ

= 0 (2.3)

where each function f ∈Ck
ρ [0,∞) and ρ : ρ (x) = 1+ Ψ2 (x) .
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Proof. Firstly, it’s clear that we can change Korovkin test system from {e0,e1,e2}
to

{
Ψ0,Ψ1,Ψ2

}
in Lemma 3 and Theorem 1. ΨSμ

n are linear positive operators act-
ing from Cρ [0,∞) to Bρ [0,∞) with help of Lemma 1 and Lemma 3. Moreover,
it is obvious that

∥∥ΨSμ
n
(
Ψ0; ·)−Ψ0

∥∥
ρ = 0,

∥∥ΨSμ
n
(
Ψ1; ·)−Ψ1

∥∥
ρ = 0. We can see∣∣ξ μ

Ψ (n,x)
∣∣ =

∣∣∣ eμ (−nΨ(x))
eμ (nΨ(x))

∣∣∣ � 1 [24] and from Lemma 1, we obtain

sup
x�0

∣∣ΨSμ
n
(
Ψ2 (t) ;x

)−Ψ2 (x)
∣∣

1+ Ψ2 (x)
= sup

x�0

∣∣∣Ψ2 (x)+
(
1+2μξ μ

Ψ (n,x)
) Ψ(x)

n −Ψ2 (x)
∣∣∣

1+ Ψ2 (x)

� 1+2μ
n

sup
x�0

Ψ(x)
1+ Ψ2 (x)

� 1+2μ
2n

.

By above inequality, we get

lim
n→∞

∥∥∥ΨSμ
n

(
Ψ2; ·)−Ψ2

∥∥∥
ρ

= 0.

Consequently, we have

lim
n→∞

∥∥∥ΨSμ
n

(
Ψk; ·

)
−Ψk

∥∥∥
ρ

= 0, k = 0,1,2. (2.4)

We obtain the desired result from equality (2.4). �

Now, we can get approximation properties for these operators in the next section.

3. Approximation properties

Firstly, let’s remind the definitions of some criteria to find rate convergence of
operators ΨSμ

n .
The classical modulus of continuity of f ∈CB [0,∞) is defined as follows

ω ( f ;δ ) := sup
|h|�δ

{| f (x+h)− f (x)| : x ∈ [0,∞)} (3.1)

where δ > 0 [25].
We define the second-order modulus of smoothness of function f ∈ CB [0,∞) by

following equality

ω2 ( f ;δ ) := sup
0<h�δ

{| f (x+2h)−2 f (x+h)+ f (x)| : x ∈ [0,∞)} (3.2)

for δ > 0 [25].
Peetre’s K -functional of the function f ∈CB [0,∞) can be defined by

K ( f ;δ ) := inf
h∈C2

B[0,∞)

{
‖ f −h‖CB[0,∞) + δ ‖h‖C2

B[0,∞)

}
(3.3)
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for δ > 0 [26]. In here, C2
B [0,∞) := { f ∈CB [0,∞) : f ′, f ′′ ∈CB [0,∞)} is a normed

space with norm ‖·‖C2
B[0,∞) defined by

‖ f‖C2
B[0,∞) = ‖ f‖CB[0,∞) +

∥∥ f ′
∥∥

CB[0,∞) +
∥∥ f ′′

∥∥
CB[0,∞)

for every f ∈C2
B [0,∞) . Moreover, ‖·‖CB[0,∞) is defined as follows

‖ f‖CB[0,∞) := sup{| f (x)| : x ∈ [0,∞)}
for f ∈CB [0,∞) .

Furthermore, we know that there is the relation between second order modulus of
smoothness ω2 and Peetre’s K -functional K ( f ;δ ) of the function f ∈ CB [0,∞) as
follows

K ( f ;δ ) � M
{

ω2

(
f ,
√

δ
)

+min(1,δ )‖ f‖CB[0,∞)

}
(3.4)

for all δ > 0 in [27] and where M is a positive constant.
Now, we obtain some approximation theorems for operators ΨSμ

n in some function
spaces.

PROPOSITION 1. For f ∈CB [0,∞) ,we have∥∥∥ΨSμ
n ( f ; ·)

∥∥∥
CB[0,∞)

� ‖ f‖CB[0,∞) . (3.5)

Proof. From (1.7), the triangle inequality and Sμ
n
(
Ψ0;x

)
= 1 (see [6]), we obtain∣∣∣ΨSμ

n ( f ;x)
∣∣∣ �

∣∣Sμ
n

(
f ◦Ψ−1;Ψ(x)

)∣∣
� Sμ

n

(∣∣ f ◦Ψ−1
∣∣ ;Ψ(x)

)
�

∥∥ f ◦Ψ−1
∥∥

CB[0,∞) S
μ
n

(
Ψ0;Ψ(x)

)
�

∥∥ f ◦Ψ−1
∥∥

CB[0,∞)

� ‖ f‖CB[0,∞) .

Then, we have the desired result. �

LEMMA 4. [28] We have the following equalities

i.
(
f ◦Ψ−1)′ (Ψ(x)) =

f ′ (x)
Ψ′ (x)

,

ii.
(
f ◦Ψ−1)′′ (Ψ(x)) =

f ′′ (x)
{Ψ′ (x)}2 −

f ′ (x)Ψ′′ (x)
{Ψ′ (x)}3 .

THEOREM 3. The operators given by ΨSμ
n in (1.6) confirm the following inequal-

ity ∣∣∣ΨSμ
n ( f ;x)− f (x)

∣∣∣ � 2
√

Mn,2 (x) ω
((

f ◦Ψ−1)′ ;√Mn,2 (x)
)

(3.6)
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where f ∈ C1
B [0,∞) := { f ∈CB [0,∞) : f ′exists in CB [0,∞)} and Mn,2 (x) is given in

Lemma 2.

Proof. The classical modulus of continuity of function f ∈ C1
B [0,∞) verifies the

following inequality

| f (t)− f (x)| �
( |t− x|

δ
+1

)
ω ( f ;δ ) [25]. (3.7)

Moreover, we can clearly write

f (t)− f (x) =
(
f ◦Ψ−1)(Ψ(t))− (

f ◦Ψ−1)(Ψ(x))

= (Ψ(t)−Ψ(x))
(
f ◦Ψ−1)′ (Ψ(x))

+

Ψ(t)∫
Ψ(x)

{(
f ◦Ψ−1)′ (s)− (

f ◦Ψ−1)′ (Ψ(x))
}

ds (3.8)

for x, t ∈ [0,∞) . Moreover, we can write∣∣∣∣∣∣∣
Ψ(t)∫

Ψ(x)

{(
f ◦Ψ−1)′ (s)− (

f ◦Ψ−1)′ (Ψ(x))
}

ds

∣∣∣∣∣∣∣
� ω

((
f ◦Ψ−1)′ ;δ){

(Ψ(t)−Ψ(x))2

δ
+ |Ψ(t)−Ψ(x)|

}
(3.9)

from inequality (3.7). Now, if we apply ΨSμ
n to the equality (3.8) and then absolute

value to the both sides of this inequality, we obtain∣∣∣ΨSμ
n ( f ;x)− f (x)

∣∣∣ �
∣∣∣( f ◦Ψ−1)′ (Ψ(x))

∣∣∣ |Mn,1 (x)| (3.10)

+ω
((

f ◦Ψ−1)′ ;δ){
Mn,2 (x)

δ
+ ΨSμ

n (|Ψ(t)−Ψ(x)| ;x)
}

from inequality (3.9) and the triangle inequality. Using Cauchy-Schwarz and Lemma 2
in inequality (3.11), we have∣∣∣ΨSμ

n ( f ;x)− f (x)
∣∣∣ � ω

((
f ◦Ψ−1)′ ;δ){

Mn,2 (x)
δ

+
√

Mn,2 (x)
}

.

Finally, the proof is completed by choosing δ := δn =
√

Mn,2 (x) in the last inequal-
ity. �

LEMMA 5. The operators defined by ΨSμ
n verify the following inequality about

Peetre’s K -functional

∣∣∣ΨSμ
n ( f ;x)− f (x)

∣∣∣ � 2K

⎛
⎝ f ;

Mn,2 (x)max
{

1,‖Ψ′′‖CB[0,∞)

}
4

⎞
⎠ (3.11)
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where f ∈CB [0,∞) and Mn,2 (x) is given in Lemma 2.

Proof. Let h ∈ C2
B [0,∞) . By using Taylor’s formula at point Ψ(x) ∈ [0,∞) , we

get (
h ◦Ψ−1)(Ψ(t)) =

(
h ◦Ψ−1)(Ψ(x))+ (Ψ(t)−Ψ(x))

(
h ◦Ψ−1)′ (Ψ(x))

+
((Ψ(t)−Ψ(x)))2

2!

(
h ◦Ψ−1)′′ (Ψ(c)) .

From Lemma 4, we obtain

h(t)−h(x) =
h′ (x)
Ψ′ (x)

(Ψ(t)−Ψ(x))

+
((Ψ(t)−Ψ(x)))2

2

(
h′′ (c)

{Ψ′ (c)}2 −
h′ (c)Ψ′′ (c)
{Ψ′ (c)}3

)
(3.12)

where c between x and t. By applying ΨSμ
n to the equality (3.12) and then taking

absolute value, we obtain∣∣∣ΨSμ
n (h;x)−h(x)

∣∣∣ � Mn,1 (x)
h′ (x)
Ψ′ (x)

+
Mn,2 (x)

2

(
h′′ (c)

{Ψ′ (c)}2 − h′ (c)Ψ′′ (c)
{Ψ′ (c)}3

)

� Mn,2 (x)
2

(∥∥h′′
∥∥

CB[0,∞) +
∥∥h′

∥∥
CB[0,∞)

∥∥Ψ′′∥∥
CB[0,∞) +‖h‖CB[0,∞)

)
� Mn,2 (x)

2
max

{
1,

∥∥Ψ′′∥∥
CB[0,∞)

}
‖h‖C2

B[0,∞) (3.13)

thanks to Mn,1 (x) = 0 and inf
x�0

Ψ′ (x) � 1. Now, consider f ∈CB [0,∞) . Thus, we have

∣∣∣ΨSμ
n ( f ;x)− f (x)

∣∣∣ � ΨSμ
n (| f −h| ;x)+ | f (x)−h(x)|+

∣∣∣ΨSμ
n (h;x)−h(x)

∣∣∣
� 2‖ f −h‖CB[0,∞) +

Mn,2 (x)
2

max
{

1,
∥∥Ψ′′∥∥

CB[0,∞)

}
‖h‖C2

B[0,∞)

(3.14)

from the triangle inequality and (3.13). The desired result is obtained by taking the
infimum over all h ∈C2

B [0,∞) in (3.14). So, the proof is done. �
At the present, we give the next theorem without the proof thanks to (3.4) and

Lemma 5.

THEOREM 4. We have the following inequality∣∣∣ΨSμ
n ( f ;x)− f (x)

∣∣∣ � C
{

ω2

(
f ,
√

ξn

)
+min(1,ξn)‖ f‖CB[0,∞)

}
(3.15)

where f ∈CB [0,∞) , C is a positive constant that is independent of n and

ξn =
Mn,2 (x)max

{
1,‖Ψ′′‖CB[0,∞)

}
4

.
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At the present, we recall that it is given lim
n→∞

ξ μ
n (x) = 0 in [24] and furthermore,

we calculate that lim
n→∞

nξ μ
n (x) = μ

2x thanks to Maple where ξ μ
n (x) = eμ (−nx)

eμ (nx) , x ∈ (0,∞)

and μ ∈ (−1
2 , 1

2

)
. We can give the following lemma thanks to Lemma 2 and values of

these limits.

LEMMA 6. It is

i. lim
n→∞

nSμ
n ((t − x) ;x) = 0, v. lim

n→∞
n ΨSμ

n ((Ψ(t)−Ψ(x)) ;x) = 0,

ii. lim
n→∞

nSμ
n

(
(t− x)2 ;x

)
= x, vi. lim

n→∞
n ΨSμ

n

(
(Ψ(t)−Ψ(x))2 ;x

)
= Ψ(x) ,

iii. lim
n→∞

n2Sμ
n

(
(t− x)4 ;x

)
= 3x2, vii. lim

n→∞
n2 ΨSμ

n

(
(Ψ(t)−Ψ(x))4 ;x

)
= 3Ψ2 (x) ,

iv. lim
n→∞

nSμ
n

(
(t− x)6 ;x

)
= 0, viii. lim

n→∞
n ΨSμ

n

(
(Ψ(t)−Ψ(x))6 ;x

)
= 0,

where μ ∈ (−1
2 , 1

2

)
, x,t ∈ [0,∞) , the operators Sμ

n and ΨSμ
n are respectively defined

in (1.1) and (1.6).

Now, we give Voronovskaya type asymptotic formula for the operators Sμ
n defined

in (1.1) in Lemma 7. Then, we compare our operators given in (1.6) with Sμ
n by using

this formula in Theorem 5.

LEMMA 7. Let x ∈ [0,∞) be fixed point and let f ∈UB [0,∞) . If f is of the class
C1 [0,∞) in a particular neighbourhood of a point x and f ′′ (x) exists, then

lim
n→∞

n{Sμ
n ( f ;x)− f (x)} =

x f ′′ (x)
2

(3.16)

where μ ∈ (−1
2 , 1

2

)
, Sμ

n is the operators defined in (1.1) and UB [0,∞) = { f : f is an
uniformly continuous and bounded on [0,∞)} .

Proof. From Taylor formula of f at x ∈ [0,∞) that is a fixed point, we can write

f (t) = f (x)+ (t− x) f ′ (x)+
(t− x)2

2
f ′′ (x)+ λx (t)(t − x)2 (3.17)

where λx (t) that is given by

λx (t) =

⎧⎨
⎩

f (t)− f (x)−(t−x) f ′(x)− (t−x)2
2 f ′′(x)

(t−x)2
; t �= x

0 ; t = x
.

With the help of L’Hôpital’s Rule, we get

lim
t→x

λx (t) = 0.

Therefore, λx (t) is the uniformly continuous and bounded function on [0,∞) . So, It’s
can be seen that

lim
n→∞

Sμ
n

(
(λx (t))2 ;x

)
= (λx (x))2 = 0 (3.18)
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from Theorem 4 in [6]. By applying operators Sμ
n to equality (3.17) and from Lemma

6 , we obtain

lim
n→∞

n{Sμ
n ( f ;x)− f (x)} =

x f ′′ (x)
2

+n lim
n→∞

Sμ
n

(
λx (t)(t− x)2 ;x

)
. (3.19)

Moreover, from Cauchy-Schwarz inequality, we have

nSμ
n

(
λx (t)(t− x)2 ;x

)
�

√
Sμ

n

(
(λx (t))2 ;x

)√
n2Sμ

n

(
(t− x)4 ;x

)
. (3.20)

Using Lemma 6 and the equality (3.18) in (3.20), we have

lim
n→∞

nSμ
n

(
λx (t)(t − x)2 ;x

)
= 0. (3.21)

Desired result is obtained by writting (3.21) in (3.19). So, the proof is done. �

THEOREM 5. Let x ∈ [0,∞) be fixed point and let f ∈ UB [0,∞) . If f is of the
class C1 [0,∞) in a specific neighbourhood of a point x and f ′′ (x) exists, then

lim
n→∞

n
{

ΨSμ
n ( f ;x)− f (x)

}
=

Ψ(x)
2

(
f ′′ (x)

{Ψ′ (x)}2 − f ′ (x)Ψ′′ (x)
{Ψ′ (x)}3

)
(3.22)

where ΨSμ
n is the operators defined in (1.6).

Proof. We have the following equality

lim
n→∞

n
{

ΨSμ
n ( f ;x)− f (x)

}
= lim

n→∞
n
{
Sμ

n

(
f ◦Ψ−1;Ψ(x)

)− (
f ◦Ψ−1)(Ψ(x))

}
=

Ψ(x)
(
f ◦Ψ−1

)′′ (Ψ(x))
2

=
Ψ(x)

2

(
f ′′ (x)

{Ψ′ (x)}2 −
f ′ (x)Ψ′′ (x)
{Ψ′ (x)}3

)

by means of (1.7), Lemmas 4 and 7. So, the proof is done. �
At the present, we remember weighted modulus of continuity that is defined by

İspir in [29] as follows

Ω( f ;δ ) := sup
|h|�δ

{ | f (x+h)− f (x)|
(1+h2)(1+ x2)

: x ∈ [0,∞)
}

(3.23)

where f ∈Ce0+e2 [0,∞) =
{

f ∈Cρ [0,∞) : ρ (x) = 1+ x2
}

and δ > 0. Moreover, mod-
ulus of continuity is defined by Holhos in [30] following that

ωΨ ( f ;δ ) := sup
|Ψ(y)−Ψ(x)|�δ

{ | f (y)− f (x)|
(1+ Ψ2 (y))+ (1+ Ψ2 (x))

: x,y ∈ [0,∞)
}

(3.24)

where f ∈ Cρ [0,∞) and δ > 0. It is clearly that ωΨ ( f ;δ ) � Ω( f ;δ ) for Ψ(x) = x
and δ � 1√

2
. Moreover, the properties of modulus of continuity ωΨ is given by Holhos

in [30] as follows:
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i. For every f ∈Uρ [0,∞) , it’s limδ→0+ωΨ ( f ;δ ) = 0.

ii. For every f ∈Cρ [0,∞) , we have

| f (y)− f (x)| � (ρ (x)+ ρ (y))
(

2+
|Ψ(y)−Ψ(x)|

δ

)
ωΨ ( f ;δ ) (3.25)

where x,y � 0 and δ > 0.

THEOREM 6. Let Ψ be satisfies conditions G1 and G2, then for every δn (x) =
4
√

nMn,6 (x) verified δn (x) < 1 , we have∣∣∣∣∣n
{

ΨSμ
n ( f ;x)− f (x)

}
−

(
1+2μξ μ

Ψ (n,x)
)

Ψ(x)
2

(
f ◦Ψ−1)′′ (Ψ(x))

∣∣∣∣∣
� 6

{
Ψ2 (x)+ Ψ(x)+2

}[(
1+2μξ μ

Ψ (n,x)
)

Ψ(x)+1
]

×
(

ωΨ

(
f ′′

(Ψ′)2 ;δn (x)

)
+ ωΨ

(
f ′Ψ′′

(Ψ′)3 ;δn (x)

))

where f ′′
(Ψ′)2

, f ′Ψ′′
(Ψ′)3

∈Cρ [0,∞) and x � 0 .

Proof. We prove this theorem making similar expansions in [18] and [20]. By
Taylor formula of f ◦Ψ−1 at Ψ(x) ∈ [0,∞) , we have

f (t) =
(
f ◦Ψ−1)(Ψ(x))+ (Ψ(t)−Ψ(x))

(
f ◦Ψ−1)′ (Ψ(x))

+
(Ψ(t)−Ψ(x))2

2

(
f ◦Ψ−1)′′ (Ψ(x))+ μ (t,x)(Ψ(t)−Ψ(x))2 (3.26)

where μ (t,x) is given by

μ (t,x) =

(
f ◦Ψ−1

)′′ (Ψ(c))− (
f ◦Ψ−1

)′′ (Ψ(x))
2

for c between x and t. Applying operator ΨSμ
n to equation (3.26) and with help of

Lemma 2, we obtain∣∣∣∣ΨSμ
n ( f ;x)− f (x)− (1+2μξ μ

Ψ(n,x))Ψ(x)
2n

(
f ◦Ψ−1

)′′ (Ψ(x))
∣∣∣∣

� ΨSμ
n

(
|μ (t,x)|(Ψ(t)−Ψ(x))2 ;x

)
.

(3.27)

From (3.25) and Lemma 4, we can write that

μ (t,x) =

(
f ◦Ψ−1

)′′ (Ψ(c))− (
f ◦Ψ−1

)′′ (Ψ(x))
2

=
1
2

[
f ′′ (c)

(Ψ′ (c))2 −
f ′′ (x)

(Ψ′ (x))2 +
f ′ (x)Ψ′′ (x)
(Ψ′ (x))3 − f ′ (c)Ψ′′ (c)

(Ψ′ (c))3

]
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� (ρ (t)+ ρ (x))
(

2+
|Ψ(t)−Ψ(x)|

δ

)

×
(

ωΨ

(
f ′′

(Ψ′)2 ;δ

)
+ ωΨ

(
f ′Ψ′′

(Ψ′)3 ;δ

))
.

Furthermore, in the event of |Ψ(y)−Ψ(x)| � δ since

ρ (t)+ ρ (x) � δ 2 +2δΨ(x)+2Ψ2 (x)+2,

we get

|μ (t,x)| � 3
(
δ 2 +2δΨ(x)+2Ψ2 (x)+2

)
×

(
ωΨ

(
f ′′

(Ψ′)2 ;δ

)
+ ωΨ

(
f ′Ψ′′

(Ψ′)3 ;δ

))
(3.28)

and whenever |Ψ(t)−Ψ(x)| > δ since

ρ (t)+ ρ (x) �
(

Ψ(t)−Ψ(x)
δ

)2{
δ 2 +2Ψ(x)δ +2Ψ2 (x)+2

}
,

we have

|μ (t,x)| � 3

(
Ψ(t)−Ψ(x)

δ

)4{
δ 2 +2Ψ(x)δ +2Ψ2 (x)+2

}

×
(

ωΨ

(
f ′′

(Ψ′)2 ;δ

)
+ ωΨ

(
f ′Ψ′′

(Ψ′)3 ;δ

))
. (3.29)

By choosing δ < 1 and combining (3.28) and (3.29), we obtain

|μ (t,x)| � 6
{

Ψ2 (x)+ Ψ(x)+2
}((

Ψ(t)−Ψ(x)
δ

)4

+1

)

×
(

ωΨ

(
f ′′

(Ψ′)2 ;δ

)
+ ωΨ

(
f ′Ψ′′

(Ψ′)3 ;δ

))
. (3.30)

It is clearly that ΨSμ
n ( f ;x) operators are linear and positive. So, these operators are

monoton increased. Using monotonicity of these operators, writting inequality (3.30)
in (3.27) and multiplying with n to both sides of inequality (3.27), we have∣∣∣∣∣n

{
ΨSμ

n ( f ;x)− f (x)
}
−

(
1+2μξ μ

Ψ (n,x)
)

Ψ(x)
2

(
f ◦Ψ−1)′′ (Ψ(x))

∣∣∣∣∣
� 6n

{
Ψ2 (x)+ Ψ(x)+2

}(
Mn,6 (x)

δ 4 +Mn,2 (x)
)

×
(

ωΨ

(
f ′′

(Ψ′)2 ;δ

)
+ ωΨ

(
f ′Ψ′′

(Ψ′)3 ;δ

))
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= 6
{

Ψ2 (x)+ Ψ(x)+2
}[(

1+2μξ μ
Ψ (n,x)

)
Ψ(x)+n

Mn,6 (x)
δ 4

]

×
(

ωΨ

(
f ′′

(Ψ′)2 ;δ

)
+ ωΨ

(
f ′Ψ′′

(Ψ′)3 ;δ

))
.

By choosing δ := δn (x) = 4
√

nMn,6 (x) in the above inequality, we finish the proof. �

COROLLARY 1. The followings holds:

i. Let f ′′ ∈ Ce0+e2 [0,∞) . By choosing Ψ(x) = x in Theorem 6, we obtain the
quantative Voronovskaya theorem for Dunkl analogue of Szász operators defined by
Sucu in [6] following that∣∣∣∣∣n{Sμ

n ( f ;x)− f (x)}− f ′′ (x)
(
1+2μξ μ

n (x)
)
x

2

∣∣∣∣∣
� 24(1+ x)3 Ω

(
f ′′;δ e1

n (x)
)

for δ e1
n (x) verified δ e1

n (x) � 1√
2

where ξ μ
n (x) = eμ (−nx)

eμ (nx) ,

δ e1
n (x) = 4

√
nSμ

n

(
(t− x)6 ;x

)

= 4

√√√√√√√√√√√

160μξ μ
n (x)x5 − (

80μ2 +440μξ μ
n (x)

)
x4

n

+
(
5+260μ2 +360

(
μ + μ3

)
ξ μ

n (x)
)

x3

n2

−(
160μ2 +80μ4−45+ μ

(
60+400μ2

)
ξ μ

n (x)
)

x2

n3

+
(
1+40μ2

(
1+2μ2

)
+

(
10μ +80μ3 +32μ5

)
ξ μ

n (x)
)

x
n4

and δ e1
n (x) → 0 as n→ ∞ from Lemma 6.

ii. Let f ′′
(Ψ′)2

, f ′Ψ′′
(Ψ′)3

∈Uρ [0,∞) . By taking limit for n → ∞ in Theorem 6 and from

Lemma 6, we have the Voronovskaya theorem for our operators defined by (1.6) as
follows

lim
n→∞

n
{

ΨSμ
n ( f ;x)− f (x)

}
=

Ψ(x)
2

(
f ◦Ψ−1)′′ (Ψ(x))

=
Ψ(x)

2

(
f ′′ (x)

{Ψ′ (x)}2 −
f ′ (x)Ψ′′ (x)
{Ψ′ (x)}3

)
.

iii. Let f ′′ ∈Uρ [0,∞) . By taking limit for n → ∞ and choosing Ψ(x) = x in Theorem
6, we have the Voronovskaya theorem for Dunkl analogue of Szász operators defined by
Sucu in [6] following that limn→∞ n

{
Sμ

n ( f ;x)− f (x)
}

= x
2 f ′′ (x) .
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4. Numerical results

In this section, we resolve the theoretical results given in the previous sections by
numerical examples. Now, we select Ψ satisfying G1 and G2 as follows

Ψ(x) = (x+1)2−1.

By regarding to Ψ, we observe the following example.

EXAMPLE 1. Let μ = 1
3 , f (x) = 2(x+1)2

(x+1)2+1
and εΨ

n,μ ( f ;x) =
∣∣ΨSμ

n ( f ;x)− f (x)
∣∣

be the error of approximation to f (x) of ΨSμ
n ( f ;x) . The graphs of f (x) and ΨSμ

n ( f ;x)
for n = 1,2,4,12 on interval [0,2] are given, respectively in Figure 1. Moreover, the
graphs of εΨ

n,μ ( f ;x) for these values n on interval [0,10] are given in Figure 2. These

graphs show that if n is increased, the approximation to f (x) of ΨSμ
n ( f ;x) increase and

error εΨ
n,μ ( f ;x) decrease. Note that operators ΨSμ

n ( f ;x) verify Proposition 1 thanks to∣∣ΨSμ
n ( f ;x)

∣∣ � | f (x)| on Figure 1.

f(x) n=1 n=2 n=4 n=10

x
0 0,5 1 1,5 2

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

Figure 1: Approximation Processes

n=1 n=2 n=4 n=10

x
0 2 4 6 8 10

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

Figure 2: Approximation Errors

EXAMPLE 2. Let μ = 1
3 , f (x)= sin((x+1)2) and εΨ

n,μ ( f ;x) =
∣∣ΨSμ

n ( f ;x)− f (x)
∣∣

be the error of approximation to f (x) of ΨSμ
n ( f ;x) . The graphs of f (x) and ΨSμ

n ( f ;x)
for n = 6,9,12,15,25,50 on interval [0,2] are given, respectively in Figure 3. More-
over, the graphs of εΨ

n,μ ( f ;x) for these values n on this interval are given in Figure

4. These graphs show that if n is increased, the approximation to f (x) of ΨSμ
n ( f ;x)

increase and error εΨ
n,μ ( f ;x) decrease. Furthermore, note that operators ΨSμ

n ( f ;x) sat-

isfy Proposition 1 thanks to
∣∣ΨSμ

n ( f ;x)
∣∣ � | f (x)| on Figure 3.

EXAMPLE 3. Let μ = 1
5 , f (x) = 2(x+1)2

(x+1)2+1
. In Figures 5 and 6, we compare the

approximation to f (x) of ΨSμ
n ( f ;x) with Sμ

n ( f ;x) , original operator, for n = 5. Then,
we compare with these operators for n = 10 in Figures 7 and 8. Consequently, we
obtain better approximation to f (x) for ΨSμ

n ( f ;x) than Sμ
n ( f ;x) .
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f(x) n=50 n=25 n=15 n=12

n=9 n=6

x
0,5 1 1,5 2
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0
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1

Figure 3: Approximation Processes

n=50 n=25 n=15 n=12 n=9

n=6

x
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Figure 4: Approximation Errors

f(x) Modified Operator Original Operator
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Figure 5: Comparison of Approximation
for n = 5 and μ = 1/5

Modified Operator Original Operator
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Figure 6: Comparison of Error for n = 5
and μ = 1/5

f(x) Modified Operator Original Operator
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Figure 7: Comparison of Approximation
for n = 10 and μ = 1/5

Modified Operator Original Operator
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Figure 8: Comparison of Error for n = 10
and μ = 1/5
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[9] G. İÇÖZ AND B. ÇEKIM, Dunkl generalization of Szász operators via q-calculus, Journal of Inequal-
ities and Applications, (2015), 1–11.

[10] M. NASIRUZZAMAN AND A. M. ALJOHANI, Approximation by parametric extension of Szász-
Mirakjan-Kantorovich operators involving the Appell polynomials, Journal of Functions Spaces,
(2020), Volume 2020, Article ID 9657489.

[11] M. NASIRUZZAMAN AND N. RAO, A generalized Dunkl type modifications of Phillips operators,
Journal of Inequalities and Applications, (2018), 323.

[12] M. NASIRUZZAMAN AND A. M. ALJOHANI, Approximation by Szász-Jakimovski-Leviatan type op-
erators via aid of Appell polynomials, Journal of Functions Spaces, (2020), Article ID 9657489.

[13] M. NASIRUZZAMAN, Approximation properties by Szász Mirakjan operators to bivariate functions
via Dunkl analogue, Iranian Journal of Science and Technology (Transactions A: Science), (2020),
https://doi.org/10.1007/s40995-020-01018-8.

[14] H. M. SRIVASTAVA, M. MURSALEEN, A. M. ALOTAIBI, M. NASIRUZZAMAN, A. A. H. AL-
ABIED, Some approximation results involving the q-Szász-Mirakjan-Kantorovich type operators via
Dunkl’s generalization, Mathematical Methods in the Applied Sciences, (2017), 40 (15), 5437–5452.

[15] M. MURSALEEN, M. NASIRUZZAMAN, A. ALOTAIBI, On modified Dunkl generalization of Szász
operators via q-calculus, Journal of Inequalities and Applications, (2017), 38.

[16] M. MURSALEEN, S. RAHMAN, A. ALOTAIBI, Dunkl generalization of q -Szász-Mirakjan Kan-
torovich operators which preserve some test functions, Journal of Inequalities and Applications,
(2016), 317.
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