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ON WEIGHTED FOURIER INEQUALITIES –– SOME

NEW SCALES OF EQUIVALENT CONDITIONS
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(Communicated by J. Pečarić)

Abstract. For Lebesgue spaces on Rn, we study two-weight p → q -inequalities for Fourier
transform. Some sufficient conditions on weights for such inequalities are known for special
ranges of parameters p and q. In the same ranges of parameters we show, that in every case each
of those conditions can be replaced by infinitely many conditions, even by continuous scales of
conditions. We also derive some new such characterizations concerning the Fourier transform in
weighted Lorentz spaces.

1. Introduction

The Fourier transform F of a complex-valued Lebesgue measurable function f :
R

n → C in the Euclidean space R
n is defined as

(F f )(γ) = f̂ (γ) =
∫
Rn

f (x)e−2π ix·γdx,

where γ ∈ R̂n(= R
n) is a spectral variable and x ∈ R

n is a space variable.
In this paper we consider the weighted Fourier inequality

‖ f̂‖q,u � C‖ f‖p,v for p > 1, q > 1. (1.1)

For the ranges of parameters 1 < p � q < ∞, 1 � q < p � 2 and 2 � q < p < ∞
some sufficient weight conditions to guarantee that (1.1) holds are known. In the same
ranges of parameters we show that in each case each of these conditions can be replaced
by infinite many conditions, even by continuous scales of conditions. This gives new
information concerning the continuity of the Fourier operator. We derive some similar
new characterizations for inequalities of the type (1.1) with weighted Lorentz spaces.
The proofs are based on some ideas from recent advances in the theory of Hardy-type
inequalities, see [8, Chapter 7.3].

If f belongs to the Lebesgue space Lp(Rn) , 1 � p � ∞, then its Lp norm is
denoted ‖ f‖p. It is elementary to see that ‖ f̂ ‖∞ � ‖ f‖1, see e.g. [1, Section 2]. By

Mathematics subject classification (2020): 26D15, 42A38, 46E30.
Keywords and phrases: Fourier transform, weighted inequalities, scales of conditions, Fourier inequal-

ities, Hardy-type inequalities, weighted Lebesgue spaces, weighted Lorentz spaces, continuity of the Fourier
operator.

c© � � , Zagreb
Paper JMI-15-61

879

http://dx.doi.org/10.7153/jmi-2021-15-61


880 A. KUFNER, L.-E. PERSSON AND N. SAMKO

using complex interpolation between this estimate and the Plancherel theorem ‖ f̂‖2 =
‖ f‖2, (see e.g. [2]) we obtain the Hausdorff-Young inequality

‖ f̂‖p′ � ‖ f‖p, (1.2)

where 1 � p � 2, 1
p + 1

p′ = 1 and ‖ f‖r =
(∫

Rn
| f (x)|rdx

)1/r

, 1 � r � ∞ (with the

usual supremum interpretation for r = ∞). It is well known that the inequality (1.2)
does not hold in general for any p > 2. Hence, the following result by J. Benedetto and
H. Heinig [1, Theorem 1] complemented by J. Rastegari and G. Sinnamon [14], may
be surprising (without restrictions 1 � p � 2, 1

p + 1
p′ = 1) :

THEOREM A. Let u and v be weight functions on R
n, suppose 1 < p,q < ∞.

Then there is a constant C > 0 such that, for all f ∈ Lp
v (Rn) and f ∈ L1 + L2, the

Fourier inequality⎛
⎝∫

Rn

| f̂ (γ)|qu(γ)dγ

⎞
⎠1/q

� C

⎛
⎝∫

Rn

| f (x)|pv(x)dx

⎞
⎠1/p

(1.3)

holds in the following ranges and with the following hypotheses on u and v :
(i) 1 < p � q < ∞ and

A := sup
x>0

⎛
⎝ 1/x∫

0

u∗(t)dt

⎞
⎠

1/q ⎛
⎝ x∫

0

[(
1
v

)∗
(t)

]p′−1

dt

⎞
⎠1/p′

< ∞ (1.4)

(ii) 1 < q < p � 2 or 2 � q < p < ∞ and

B :=

⎛
⎜⎝ ∞∫

0

⎛
⎝ 1/x∫

0

u∗(t)dt

⎞
⎠

r/q ⎛
⎝ x∫

0

[(
1
v

)∗
(t)

]p′−1

dt

⎞
⎠r/q′ [(

1
v

)∗
(x)

]p′−1

dx

⎞
⎟⎠

1/r

< ∞,

(1.5)
where 1

r = 1
q − 1

p .

Moreover, for the best constant C in (1.3) it yields that C
<∼ A and C

<∼ B in (i)
and (ii), respectively.

REMARK 1.1. In the original paper [1] part (ii) was claimed to hold for all 1 <
q < p < ∞ but it was later on pointed out in [14] that this claim indeed does not hold in
the range 1 < q < 2 < p ∞.

Here, as usual, by a weight function we mean a non-negative and measurable func-
tion, C

<∼ A means that C � cA for some c > 0, u∗(t) denotes the non-increasing rear-
rangement of u(x) (see Definition 2.2) and Lp

v = Lp
v (Rn) , p � 1, denotes the weighted

Lebesgue space defined by the norm

‖ f‖p,v :=

⎛
⎝∫

Rn

| f (x)|pv(x)dx

⎞
⎠1/p

.
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In this paper we show that the condition (1.4) is not unique and can in fact be
replaced by infinite many equivalent conditions, even by scales of conditions, see The-
orem 4.8. Also the condition (1.5) can in a similar way be replaced even by scales
of (equivalent) conditions, see Theorem 5.13. The results above can be interpreted as
sufficient conditions for the continuity of the Fourier operator. The ideas of the results
above are based on some recent results in Hardy-type inequalities, see e.g. Section 7.3
of the recent book [8] by A. Kufner et. al. Some of these ideas from Hardy-type in-
equalities, which are important for this paper, are presented in Section 3. In order not to
disturb our discussions later on some necessary preliminaries are collected in Section
2. Especially the equivalence theorem (Theorem 2.6) seems to be of general interest, at
least it was crucial for part of this new development of Hardy-type inequalities but also
crucial in our proof of Theorem 4.8. Finally, in Section 6 we discuss shortly the fact
that some of our results can be given also when weighted Lebesgue spaces are replaced
by weighted Lorentz spaces. See Theorems 6.16 and 6.17.

2. Preliminaries

Let us first give the following important definitions.

DEFINITION 2.2. Let (X,μ) be a measure space, where X ⊆ Rn, and let f be a
complex-valued μ -measurable function on X. The distribution function Df : [0,∞) →
[0,∞) of f is defined as

Df (θ ) = μ{x ∈ X : | f (x)| > θ}. (2.6)

Two measurable functions f and g on measurable spaces (X,μ) and (Y,ν), respec-
tively, are called equimeasurable if Df = Dg on [0,∞). The non-increasing rearrange-
ment of f on (X,μ) is the function f ∗ : [0,∞) → [0,∞) defined by

f ∗(t) = inf{θ � 0;Df (θ ) � t}. (2.7)

We use the convention infθ = ∞, so that if Df (s) > t for all s ∈ [0,∞), then
f ∗(t) = ∞.

For a given μ -measurable f on (X,μ) , f ∗ is a non-negative, non-increasing,
right continuous function on [0,∞) and f and f ∗ are equimeasurable, where f ∗ is
considered as a Lebesgue measurable function on [0,∞).

DEFINITION 2.3. Let v be a weight function on [0,∞) and let 1 < p < ∞.

The weighted Lorentz space Λp(v) is the set of Lebesgue measurable functions
f : Rn → C with the property that

ρ( f ) :=

⎛
⎝ ∞∫

0

f ∗(t)pv(t)dt

⎞
⎠1/p

< ∞. (2.8)



882 A. KUFNER, L.-E. PERSSON AND N. SAMKO

Moreover, we say that v ∈ Bp if there is a constant bp > 0 such that for all x > 0

∞∫
x

v(t)
t p dt � bp

1
xp

x∫
0

v(t)dt. (2.9)

It is not difficult to see that if v is non-increasing, then v ∈ Bp.

REMARK 2.4. G. G. Lorentz defined Λp(v) in [9, Section 2] and proved that
Λp(v) is a normed linear space with ‖ f‖Λp(v) ≡ ρ( f ) if and only if v is non-increasing

on (0,∞) and proved also that if v is non-increasing and
∞∫
0

v(t)dt = ∞, then Λp(v) is a

Banach space with the norm ‖ f‖Λp(v) ≡ ρ( f ).
Moreover, to define a Banach space associated with Λp(v), in the case that v is

not necessary non-increasing, we need the following condition: there exists a norm ‖·‖
on Λp(v) so that ‖ · ‖ ≈ ρ i.e. there are constants 0 < C1 < C2 < ∞ such that, for all
f ∈ Λp(v),

C1‖ f‖ � ρ( f ) � C2‖ f‖. (2.10)

An important result of E. Sawyer [15, Theorem 4] reads:

THEOREM 2.5. Let v be a weight function on (0,∞) and let 1 < p < ∞. The
following conditions are equivalent:

(i) (Λp(v),‖ · ‖) is a Banach space, where ‖ · ‖ is a norm on Λp(v) satisfying
(2.10).

(ii) v ∈ Bp with constant bp.
(iii) There exists a constant K > 0 such that, for all x > 0,⎛

⎜⎝ x∫
0

⎛
⎝1

t

t∫
0

v(τ)dτ

⎞
⎠1−p′

dt

⎞
⎟⎠

1/p′

� Kx

⎛
⎝ x∫

0

v(t)dt

⎞
⎠−1/p

.

We will need the following equivalence theorem in the proofs of our main results.

THEOREM 2.6. For −∞ � a < b � ∞ , α,β and s positive numbers and f , g, h
measurable functions positive a.e. in (a,b) , let

F(x) :=
b∫

x

f (t)dt, G(x) :=
x∫

a

g(t)dt (2.11)

and denote B1(x;α,β ) - B15(x;α,β ,s;h) as follows:

B1(x;α,β ) := Fα(x)Gβ (x);

B2(x;α,β ,s) :=

⎛
⎝ b∫

x

f (t)G
β−s

α (t)dt

⎞
⎠

α

Gs(x);
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B3(x;α,β ,s) :=

⎛
⎝ x∫

a

g(t)F
α−s

β (t)dt

⎞
⎠β

Fs(x);

B4(x;α,β ,s) :=

⎛
⎝ x∫

a

f (t)G
β+s

α (t)dt

⎞
⎠α

G−s(x);

B5(x;α,β ,s) :=

⎛
⎝ b∫

x

g(t)F
α+s

β (t)dt

⎞
⎠β

F−s(x);

B6(x;α,β ,s) :=

⎛
⎝ b∫

x

f (t)G
β

α+s (t)dt

⎞
⎠

α+s

F−s(x);

B7(x;α,β ,s) :=

⎛
⎝ x∫

a

g(t)F
α

β+s (t)dt

⎞
⎠β+s

G−s(x);

B8(x;α,β ,s) :=

⎛
⎝ x∫

a

f (t)G
β

α−s (t)dt

⎞
⎠α−s

Fs(x), α > s;

B9(x;α,β ,s) :=

⎛
⎝ b∫

x

f (t)G
β

α−s (t)dt

⎞
⎠

α−s

Fs(x), α < s;

B10(x;α,β ,s) :=

⎛
⎝ b∫

x

g(t)F
α

β−s (t)dt

⎞
⎠

β−s

Gs(x), β > s;

B11(x;α,β ,s) :=

⎛
⎝ x∫

a

g(t)F
α

β−s (t)dt

⎞
⎠β−s

Gs(x), β < s;

B12(x;α,β ,s;h) :=

⎛
⎝ b∫

x

f (t)h
β−s

α (t)dt

⎞
⎠

α

(h(x)+G(x))s, β < s;

B13(x;α,β ,s;h) :=

⎛
⎝ x∫

a

g(t)h
α−s

β (t)dt

⎞
⎠β

(h(x)+F(x))s, α < s;

B14(x;α,β ,s;h) :=

⎛
⎝ x∫

a

f (t)(h(t)+G(t))
β+s

α dt

⎞
⎠α

h−s(x);

B15(x;α,β ,s;h) :=

⎛
⎝ b∫

x

g(t)(h(t)+F(t))
α+s

β dt

⎞
⎠

β

h−s(x). (2.12)
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Then the numbers

B1 := sup
a<x<b

B1(x;α,β ) and Bi := sup
a<x<b

Bi(x;α,β ,s), i = 2,3, . . . ,11

and

Bi = inf
h�0

sup
a<x<b

Bi(x;α,β ,s;h), i = 12,13,14,15

are mutually equivalent. The constants in the equivalence relations can depend on α,β
and s.

Proof. The proof is carried out by deriving explicit positive constants ci and di so
that, for i = 2, . . . ,15,

ci sup
a<x<b

Bi(x;α,β ,s) � sup
a<x<b

B1(x;α,β ) � di sup
a<x<b

Bi(x;α,β ,s). (2.13)

The details of the proofs of equivalences between B1,B2,B3,B4 and B5 can be found
in the book [8] (see Theorem 7.29). Concerning the proof of the equivalence of also the
other constants see [5, Theorem 1] and [4, Theorem 1]. For the readers convenience we
include the proof of (2.13) for i = 2, i.e. that

sup
a<x<b

B1(x;α,β ) ≈ sup
a<x<b

B2(x;α,β ,s). (2.14)

(i) Let s � β . Then β−s
α � 0, and since G(x) is increasing, we have that for t � x

G
β−s

α (t) � G
β−s

α (x). (2.15)

Consequently,

B2(x;α,β ,s) =

⎛
⎝ b∫

x

f (t)G
β−s

α (t)dt

⎞
⎠

α

Gs(x)

�

⎛
⎝ b∫

x

f (t)dt

⎞
⎠

α (
G

β−s
α (x)

)α
Gs(x)

= Fα(x)Gβ (x).

(ii) Let s > β and denote

W (x) :=
b∫

x

f (t)G
β−s

α (t)dt,
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i.e. −dW (x) = f (x)G
β−s

α (x)dx. Then

Fα (x)Gβ (x) = Gβ (x)

⎛
⎝ b∫

x

f (t)G
β−s

α (t)G
s−β

α (t)W
s−β

s (t)W
β−s

s (t)dt

⎞
⎠α

�
(

sup
x<t<b

Gs−β (t)W
(s−β)α

s (t)
)

Gβ (x)

⎛
⎝−

b∫
x

W
β−s

s (t)dW (t)

⎞
⎠

α

=
(

sup
x<t<b

Gs(t)Wα(t)
) s−β

s
(

s
β

)α
Gβ (x)W

β
s α(x)

�
(

s
β

)α (
sup

x<t<b
Gs(t)Wα(t)

)1− β
s
(

sup
x<t<b

Gs(t)W α(t)
) β

s

=
(

s
β

)α
sup

x<t<b
B2(t;α,β ,s).

(2.16)

Hence, for every s > 0 it follows from (2.15) and (2.16) that

sup
a<x<b

B1(x;α,β ) �
(

max

{
1,

s
β

})α
sup

a<x<b
B2(x;α,β ,s). (2.17)

Also for the proof of the opposite estimate we need to consider two cases.
(iii) Now, let s > β . Then we have an inequality opposite to (2.15) and hence

B2(x;α,β ,s) = Gs(x)
(

b∫
x

f (t)G
β−s

α (t)dt

)α

� Gs(x)
(

b∫
x

f (t)dt

)α

Gβ−s(x) = Fα(x)Gβ (x).
(2.18)

(iv) For s < β we have

Gs(x)W α(x) = Gs(x)

⎛
⎝ b∫

x

f (t)G
β−s

α (t)F
β−s

β (t)F
s−β

β dt

⎞
⎠

α

�
(

sup
x<t<b

G
β−s

α (t)F
β−s

β (t)
)α

Gs(x)

⎛
⎝ b∫

x

F
s
β −1(t)(−dF(t))

⎞
⎠

α

=
(

sup
x<t<b

Gβ (t)Fα(t)
) β−s

β
(

β
s

)α
Gs(x)F

αs
β (x)

�
(

sup
x<t<b

Gβ (t)Fα(t)
) β−s

β
(

β
s

)α (
sup

a<x<b
Gβ (x)Fα(x)

) s
β

�
(

β
s

)α
sup

a<x<b
B1(x;α,β ).
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Therefore, by combining this estimate with (2.18), for every s > 0 it follows that

sup
a<x<b

B2(x;α,β ,s) �
(

max

{
1,

β
s

})α
sup

a<x<b
B1(x;α,β ). (2.19)

The proof of (2.14) follows by combining (2.17) and (2.19). �

REMARK 2.7. This information is useful e.g. for obtaining good estimates of
the best constant in Hardy-type inequalities (see the book [8]) and correspondingly for
some of the Fourier inequalities in this paper.

3. A comparison with Hardy-type inequalities

The inequality (1.3) remind us about the following well-known Hardy inequality

‖H f‖q,u � Cp,q‖ f‖p,v, f � 0, (3.20)

with parameters a,b, p,q such that −∞ � a < b � ∞ , 0 < q � ∞ , 1 � p � ∞ and with

u � 0, v � 0 given weight functions. Here (H f )(x) =
x∫
a

f (t)dt is the Hardy operator

for all measurable functions f � 0 on (a,b) and the norms (quasi-norms when q < 1)
in (3.20) are considered in Lq

u(a,b) and Lp
v (a,b), respectively.

For the case 1 < p � q < ∞ a necessary and sufficient condition on the weights
u � 0, v � 0 for (3.20) to hold for all f � 0 is either the well-known Muckenhoupt-
Bradley condition (e.g., see [11] for q = p and the generalization in [3])

AMB(x) := sup
a<x<b

⎛
⎝ b∫

x

u(t)dt

⎞
⎠

1/q ⎛
⎝ x∫

a

v1−p′(t)dt

⎞
⎠1/p′

(3.21)

or the following two alternatives, which can be found in [12, Theorem 1] (see also [8,
Theorem 1.1]):

A(1)
PS = sup

a<x<b

⎛
⎝ x∫

a

⎛
⎝ t∫

a

v1−p′(τ)dτ

⎞
⎠q

u(t)dt

⎞
⎠

1/q ⎛
⎝ x∫

a

v1−p′(t)dt

⎞
⎠−1/p

< ∞

A(2)
PS = sup

a<x<b

⎛
⎜⎝ b∫

x

⎛
⎝ b∫

t

u(τ)dτ

⎞
⎠

p′

v1−p′(t)dt

⎞
⎟⎠

1/p′⎛
⎝ b∫

x

u(t)dt

⎞
⎠

−1/q′

< ∞,

where p′ = p
p−1 . Moreover, for the best constant Cp,q in (3.20) it yields that Cp,q ≈

AMB ≈ A(1)
PS ≈ A(2)

PS . Besides these conditions there exists also other (equivalent) con-
ditions in the literature. The latest in this development is that it is nowadays known
that there are infinite many such characterizing conditions, even a number of scales of
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conditions. The historical development and these scales of conditions are described in
the review article [7] and Section 7.3 of the new book [8].

For the case 1 < q < p < ∞ the inequality (3.20) is usually characterized by the
Maz’ya-Rozin or by the Persson-Stepanov conditions. In this case it is known, see
[10], [8], [16, Theorem 2.4] and [12, Theorem 3], that the inequality (3.20) holds for
some finite constant Cp,q > 0, if and only if one of the following quantities is finite, the
Maz’ya-Rozin condition:

BMR :=

⎛
⎜⎝ b∫

a

⎛
⎝ b∫

x

u(t)dt

⎞
⎠

r/p ⎛
⎝ x∫

a

v1−p′(t)dt

⎞
⎠r/p′

u(t)dt

⎞
⎟⎠

1/r

< ∞ (3.22)

or the Persson-Stepanov condition:

BPS :=

⎛
⎜⎝ b∫

a

⎛
⎝ x∫

a

⎛
⎝ t∫

a

v1−p′(τ)dτ

⎞
⎠q

u(t)dt

⎞
⎠

r/p ⎛
⎝ x∫

a

v1−p′(t)dt

⎞
⎠q−r/p

⎞
⎟⎠

1/r

< ∞,

(3.23)
where 1

r = 1
q − 1

p , and for the best constant Cp,q in (3.20) it holds that Cp,q ≈ BMR ≈
BPS. Moreover, these conditions are not unique and can be replaced by scales of con-
ditions depending on a continuous parameter s > 0. See [13] and again for historical
remarks and newest developments [7] and [8]. The descriptions above indicate that the
conditions (1.4) and (1.5) to guarantee the Benedetto-Heinig inequality (1.3) are not
unique and maybe can be replaced by alternative conditions which can be easier to ver-
ify and give new possibilities to estimate the best constants in (1.3). The crucial fact that
confirms that indeed it is so, is the following exact relation between the conditions (1.4)
and (1.5) and the Muckenhoupt-Bradley and Maz’ya-Rozin conditions, respectively.

Crucial observation 3.1 By making the substitution s = 1/t, we have

1/x∫
0

u∗(t)dt =
∞∫

x

u∗(1/t)
t2

dt.

Hence, the condition (1.4) can be rewritten as

sup
x>0

⎛
⎝ ∞∫

x

u∗(1/t)
t2

dt

⎞
⎠1/q ⎛

⎝ x∫
0

[(
1
v

)∗
(t)

]p′−1

dt

⎞
⎠1/p′

< ∞,

which is analogous to the Muckenhoupt-Bradley condition (3.21) (AMB < ∞) with the

weights u∗
(

1
t

)
t−2 and

[(
1
v

)∗
(t)

]−1
instead of u(t) and v(t), respectively. Similarly,

condition (1.5) can be written as⎛
⎜⎝ ∞∫

0

⎛
⎝ ∞∫

x

u∗(1/t)
t2

dt

⎞
⎠r/q ⎛

⎝ x∫
0

[(
1
v

)∗
(t)

]p′−1

dt

⎞
⎠r/q′ [(

1
v

)∗
(x)

]p′−1

dx

⎞
⎟⎠

1/r

< ∞,
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which is analogous to the Maz’ya-Rozin condition (3.22) (BMR < ∞), again with the
same relation between the involved weights.

4. Continuity of the Fourier operator – the case 1 < p � q < ∞

Our main result in this case reads:

THEOREM 4.8. Let 1 < p � q < ∞ , 0 < s < ∞ and u,v,h be weight functions on
Rn. Denote

U(x) =
∞∫

x

u∗(1/t)
t2

dt, V (x) =
x∫

0

[(
1
v

)∗
(t)

]p′−1

dt

where u∗ and (1/v)∗ are the decreasing rearrangements of u and 1
v , respectively.

Define

A1(x,s) :=

⎛
⎝ ∞∫

x

u∗(1/t)
t2

V
q( 1

p′ −s)(t)dt

⎞
⎠1/q

V s(x);

A2(x,s) :=

⎛
⎝ x∫

0

[(
1
v

)∗
(t)

]p′−1

U p′( 1
q−s)(t)dt

⎞
⎠1/p′

Us(x);

A3(x,s) :=

⎛
⎝ x∫

0

u∗(1/t)
t2

V
q( 1

p′ +s)(t)dt

⎞
⎠1/q

V−s(x);

A4(x,s) :=

⎛
⎝ ∞∫

x

[(
1
v

)∗
(t)

]p′−1

U p′( 1
q +s)(t)dt

⎞
⎠1/p′

U−s(x);

A5(x,s) :=

⎛
⎝ ∞∫

x

u∗(1/t)
t2

V
q

p′(1+sq) (t)dt

⎞
⎠

1+sq
q

U−s(x);

A6(x,s) :=

⎛
⎝ x∫

0

[(
1
v

)∗
(t)

]p′−1

U
p′

q(1+sp′) (t)dt

⎞
⎠

1+sp′
p′

V−s(x);

A7(x,s) :=

⎛
⎝ x∫

0

u∗(1/t)
t2

V
q

p′(1−sq) (t)dt

⎞
⎠

1−sq
q

Us(x), qs < 1;

A8(x,s) :=

⎛
⎝ ∞∫

x

u∗(1/t)
t2

V
q

p′(1−sq) (t)dt

⎞
⎠

1−sq
q

Us(x), qs > 1;
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A9(x,s) :=

⎛
⎝ ∞∫

x

[(
1
v

)∗
(t)

]p′−1

U
p′

q(1−sp′) (t)dt

⎞
⎠

1−sp′
p′

Vs(x), p′s < 1;

A10(x,s) :=

⎛
⎝ x∫

0

[(
1
v

)∗
(t)

]p′−1

U
p′

q(1−sp′) (t)dt

⎞
⎠

1−sp′
p′

Vs(x), p′s > 1;

A11(x,h,s) :=

⎛
⎝ ∞∫

x

u∗(1/t)
t2

h(t)q( 1
p′ −s)

dt

⎞
⎠1/q

(h(x)+V(x))s, p′s > 1;

A12(x,h,s) :=

⎛
⎝ x∫

0

[(
1
v

)∗
(t)

]p′−1

h(t)p′( 1
q−s)dt

⎞
⎠1/p′

(h(x)+U(x))s, qs > 1;

A13(x,h,s) :=

⎛
⎝ x∫

0

u∗(1/t)
t2

(h(t)+V(t))q( 1
p′ +s)

dt

⎞
⎠1/q

h−s(x);

A14(x,h,s) :=

⎛
⎝ ∞∫

x

[(
1
v

)∗
(t)

]p′−1

(h(t)+U(t))p′( 1
q +s)(t)

⎞
⎠1/p′

h−s(x). (4.24)

Then the Fourier inequality (1.3) holds for all measurable functions f � 0 if any of
the quantities Ai(s) = sup

x>0
Ai(x,s), i = 1,2, . . . ,10, and Ai(s) = inf

h>0
sup
x>0

Ai(x;h;s), i =

11, . . . ,14, is finite for any fixed s > 0. Moreover, for the best constant C in (1.4) we
have C

<∼ min
i,s

Ai(s), i = 1,2, . . . ,14.

REMARK 4.9. Since
1/x∫
0

u∗(t)dt =
∞∫
x

u∗(1/t)
t2

dt, we see that the condition

A1(x,1/p′) < ∞ coincides with the condition (1.4) in Theorem A. Hence, Theorem
4.8 is a generalization of this result.

Proof of Theorem 4.8. The basic ideas are just to combine Remark 4.9, crucial
observation 3.1, (the equivalence) Theorem 2.6 and Theorem A. More exactly, in (2.11)

and (2.12) we put a = 0, b = ∞, f (x) = u∗(1/x)
x2 , g(x) =

[( 1
v

)∗ (x)
]p′−1

, so that F(x) =
U(x), G(x) = V (x), and choose α = 1/q, β = 1/p′. Then the assertion follows from
the fact that the following expressions

A0 := sup
x>0

B1(x;1/q,1/p′);

A1(s) := sup
x>0

B2(x;1/q,1/p′,s), s > 0;

A2(s) := sup
x>0

B3(x;1/q,1/p′,s), s > 0;
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A3(s) := sup
x>0

B4(x;1/q,1/p′,s), s > 0;

A4(s) := sup
x>0

B5(x;1/q,1/p′,s), s > 0;

A5(s) := sup
x>0

B6(x;1/q,1/p′,s), s > 0;

A6(s) := sup
x>0

B7(x;1/q,1/p′,s), s > 0;

A7(s) := sup
x>0

B8(x;1/q,1/p′,s), qs < 1;

A8(s) := sup
x>0

B9(x;1/q,1/p′,s), qs > 1;

A9(s) := sup
x>0

B10(x;1/q,1/p′,s), p′ s < 1;

A10(s) := sup
x>0

B11(x;1/q,1/p′,s), p′ s > 1;

A11(s,h) := inf
h>0

sup
x>0

B12(x;1/q,1/p′,s), p′s > 1;

A12(s,h) := inf
h>0

sup
x>0

B13(x;1/q,1/p′,s), qs > 1;

A13(s,h) := inf
h>0

sup
x>0

B14(x;1/q,1/p′,s), s > 0;

A14(s,h) := inf
h>0

sup
x>0

B15(x;1/q,1/p′,s), s > 0;

are all equivalent to A from (1.4) according to Theorem 2.6 and the finiteness of A is
sufficient for the inequality (1.3) to hold. Moreover, since for the least constant C in
(1.3) we have

C
<∼ sup

x>0

⎛
⎝ 1/x∫

0

u∗(t)dt

⎞
⎠

1/q ⎛
⎝ x∫

0

[(
1
v

)∗
(t)

]p′−1

dt

⎞
⎠1/p′

=: A,

it is clear that C
<∼ min

i,s
Ai(s), i = 1,2, . . . ,14. The proof is complete. �

REMARK 4.10. Theorem 4.8 gives us a great variety of possibilities to verify the
Fourier inequality (1.3). By also using known estimates from (2.13) we can like in the
case with the Hardy operator (see [7] and the book [8]) obtain better estimates of the
best constant C in (1.3). Here we just give one example of alternative estimate of the
best constant C in (1.3).

EXAMPLE 4.11. Let 1 < p � q < ∞, and s ∈ (0,1/p]. Then the inequality (1.3)
in Theorem A holds for all measurable f � 0 if A3(s) < ∞, where A3(s) is defined in
(4.24). Moreover, if C is the best constant in (1.3). Then

C � p′ min
s∈(0, 1

p ]
A3(s).
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Compare also with [5, Corollary 1] and c.f. also the book [8, Example 7.28:(7.46)].

REMARK 4.12. The result in Theorem 4.8 may be regarded as a statement
concerning the continuity of the Fourier operator F : f → f̃ between the weighted
Lebesgue spaces Lp

v (Rn)→ Lq
u(Rn),1 < p � q < ∞, namely that the operator F maps

continuously between these spaces whenever Ai(s) < ∞ for any i , i = 1,2, . . . ,14
and for any fixed s > 0. Moreover, for the operator norm we have the estimate
<∼ min

i,s
Ai(s), i = 1,2, . . . ,14 and s > 0.

5. Continuity of the Fourier operator – the cases 1 < q < p � 2 and
2 � q < p < ∞

The most important facts we used in the proof of Theorem 4.8 was Theorem A
(i), equivalence Theorem 2.6 and the crucial observation 3.1. However, none of these
arguments work directly in these cases but by using other recent results concerning
Hardy-type inequalities we can work in a similar way. We introduce the following
scales of conditions: D1(s) < ∞, D2(s) < ∞ and D3(s) < ∞, where s > 0 and

D1(s) =

⎛
⎜⎝ ∞∫

0

⎡
⎣ ∞∫

x

u(t)Vq( 1
p′ −s)(t)dt

⎤
⎦r/p

V
q( 1

p′ −s)+rs(x)U(x)dx

⎞
⎟⎠

1/r

,

D2(s) =

⎛
⎜⎝ ∞∫

0

⎡
⎣ x∫

0

u(t)Vq( 1
p′ +s)(t)dt

⎤
⎦r/p

V
q( 1

p′ +s)−rs(x)U(x)dx

⎞
⎟⎠

1/r

,

D3(s) =

⎛
⎜⎝ ∞∫

0

⎡
⎣ ∞∫

x

u(t)Vq( 1
p′ −

s
r )(t)dt

⎤
⎦r/q

V s−1)(x)v1−p′(x)dx

⎞
⎟⎠

q/r

,

here 1
r := 1

q − 1
p , u(t) and v(t) are weight functions, and

U(x) :=
∞∫

x

u(t)dt and V (x) :=
x∫

0

v1−p′(t)dt. (5.25)

The main result of this section reads:

THEOREM 5.13. Let 1 < q < p � 2 or 2 � q < p < ∞, s > 0, and let D∗
1(s),D

∗
2(s)

and D∗
3(s) denote D3(s),D3(s) and D3(s), respectively, with u(t) and v(t) replaced

by u∗
(

1
t

)
t−2 and

[(
1
v

)∗ (t)
]−1

, respectively. Then the Fourier inequality (1.3) holds
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for all measurable functions f � 0 if and only if any of the quantities D∗
i (s) , i = 1,2,3,

is finite for any fixed s > 0. Moreover, for the best constant in (1.4) it yields that

C
<∼ min

i,s
D∗

i (s), i = 1,2,3, s > 0. (5.26)

REMARK 5.14. Some obvious substitutions show that the condition D∗
3

(
r
p′

)
< ∞

coincides with the condition (1.5). Hence, Theorem 5.13 is a generalization of Theorem
A (ii) e.g. with more possibilities to estimate the best constant in the Fourier inequality
(1.3).

Proof of Theorem 5.13. It is well known that any of the conditions Di(s) < ∞, i =
1,2,3 and any fixed s > 0 are necessary and sufficient to characterize the Hardy in-
equality (3.20). Moreover, for the best constant C it yields that C ≈ Ai(s), i = 1,2,3
and all s > 0. See [13, Theorem 1], or the book [8], Theorem 7.25a) in the case A1(s)
and A2(s) and [6, Theorem 2.1] concerning the case A3(s).

Next we note that the Maz’ya-Rozin constant BMR is equivalent to the constant

DMR :=
∞∫

0

Ur/q(x)Vr/q′(x)dV (x),

with U(x) and V (x) defined by (5.25). More exactly, Br
MR = q

p′ D
r
MR (see [16, Remark

on p. 93]).
Moreover, we observe that the condition (1.5), via the substitution x → 1/x (see

crucial observation 3.1), is equivalent to the condition DMR < ∞ with u(t) and v(t)

replaced by u∗
(

1
t

)
t−2 and

[(
1
v

)∗ (t)
]−1

, respectively. The proof follows by using

Theorem A(ii) and the equivalences and the relations above. The estimate (5.26) is just
a consequence of the corresponding estimates of C in Hardy inequalities. �

REMARK 5.15. The results in Theorem 5.13 may be interpreted in terms of
continuity of the Fourier operator in a similar way as in Remark 4.12 for the case
1 < p � q < ∞.

6. Continuity of the Fourier operator in Lorentz spaces

The techniques developed in this paper can be used also for other function spaces.
In this Section we shall illustrate this fact in the case of Lorentz spaces, thereby gener-
alizing also some other results by J. Benedetto and H. Heinig [1] in a similar way.

In Lorentz spaces, sufficient and for the radial characteristic function f (x) =
χ0,r(|x|) even necessary conditions insuring the continuity of the Fourier operator f̂ :
Λp(v) → Λq(u) for the case 1 < p � q, q � 2 are given in [1, Theorem 2]. According
to this result the continuity of the Fourier operator f̂ : Λp(v)→Λq(u) is connected with
the following inequality

‖ f̂ ∗‖q,u � C‖ f ∗‖p,v, (6.27)
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where u is non-increasing and v ∈ Bp. For the case 1 < p � q, q � 2 the inequality
(6.27) holds for all f ∈ L1 +L2 if the following condition is satisfied

E1 := sup
x>0

x

⎛
⎝ 1/x∫

0

u(t)dt

⎞
⎠

1/q ⎛
⎝ x∫

0

v(t)dt

⎞
⎠−1/p

< ∞. (6.28)

For the case 2 < q � p < ∞, it is shown in [1, Theorem 3] that the following condition
is sufficient for (6.27) to hold for all f ∈ L1 +L2 :

E2 :=

⎛
⎜⎝ ∞∫

0

⎡
⎢⎣1

x

⎛
⎝ x∫

0

u(t)dt

⎞
⎠1/p ⎛

⎝ 1/x∫
0

v(t)dt

⎞
⎠

−1/p⎤⎥⎦
r

u(x)dx

⎞
⎟⎠

1/r

< ∞. (6.29)

In this Section we will use our technique from previous Sections and improve the
Benedetto-Heinig result by proving that there are infinite many conditions, even scales
of them, which can replace (6.28) and (6.29), to guarantee that (6.27) holds.

The case 1 < p � q,q � 2. Let us define

Ũ(x) :=
∞∫

x

u(1/t)
t2

dt, Ṽ (x) :=
x∫

0

vp′−1(t)dt (6.30)

and
Ã1 := sup

x>0
Ũ1/qṼ 1/p′(x). (6.31)

The constant Ã1 in (6.31) has been defined using the Muckenhoupt-Bradley quantity
(see (3.21)). According to (the equivalence) Theorem 2.6, we can write infinitely many
equivalent quantities to (6.31) for s > 0 as follows:

Ã2(s) := sup
x>0

⎛
⎝ ∞∫

x

u(1/t)
t2

Ṽ
q( 1

p′ −s)(t)dt

⎞
⎠1/q

Ṽ s(x);

Ã3(s) := sup
x>0

⎛
⎝ x∫

0

v1−p′Ũ p′( 1
q−s)(t)dt

⎞
⎠1/p′

Ũs(x);

Ã4(s) := sup
x>0

⎛
⎝ x∫

0

u(1/t)
t2

Ṽ
q( 1

p′ +s)(t)dt

⎞
⎠1/q

Ṽ−s(x);

Ã5(s) := sup
x>0

⎛
⎝ ∞∫

x

v1−p′Ũ p′( 1
q +s)(t)dt

⎞
⎠1/p′

Ũ−s(x);
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Ã6(s) := sup
x>0

⎛
⎝ ∞∫

x

u(1/t)
t2

Ṽ
q

p′(1+sq) (t)dt

⎞
⎠

1+sq
q

Ũ−s(x);

Ã7(s) := sup
x>0

⎛
⎝ x∫

0

v]1−p′Ũ
p′

q(1+sp′) (t)dt

⎞
⎠

1+sp′
p′

Ṽ−s(x);

Ã8(s) := sup
x>0

⎛
⎝ x∫

0

u(1/t)
t2

Ṽ
q

p′(1−sq) (t)dt

⎞
⎠

1−sq
q

Ũ s(x), qs < 1;

Ã9(s) := sup
x>0

⎛
⎝ ∞∫

x

u(1/t)
t2

Ṽ
q

p′(1−sq) (t)dt

⎞
⎠

1−sq
q

Ũ s(x), qs > 1;

Ã10(s) := sup
x>0

⎛
⎝ ∞∫

x

v1−p′Ũ
p′

q(1−sp′) (t)dt

⎞
⎠

1−sp′
p′

Ṽ s(x), p′s < 1;

Ã11(s) := sup
x>0

⎛
⎝ x∫

0

[(
1
v

)∗
(t)

]1−p′

Ũ
p′

q(1−sp′) (t)dt

⎞
⎠

1−sp′
p′

Ṽ s(x), p′s > 1;

Ã12(h,s) := inf
h>0

sup
x>0

⎛
⎝ ∞∫

x

u(1/t)
t2

h(t)q( 1
p′ −s)

dt

⎞
⎠1/q

(h(x)+ Ṽ(x))s, p′s > 1;

Ã13(h,s) := inf
h>0

sup
x>0

⎛
⎝ x∫

0

v1−p′h(t)p′( 1
q−s)dt

⎞
⎠1/p′

(h(x)+Ũ(x))s, qs > 1;

Ã14(h,s) := inf
h>0

sup
x>0

⎛
⎝ x∫

0

u(1/t)
t2

(h(t)+ Ṽ(t))q( 1
p′ +s)

dt

⎞
⎠1/q

h−s(x);

Ã15(h,s) := inf
h>0

sup
x>0

⎛
⎝ ∞∫

x

v1−p′(h(t)+Ũ(t))p′( 1
q +s)(t)

⎞
⎠1/p′

h−s(x). (6.32)

Our main result in this case reads

THEOREM 6.16. Let 1 < p � q and q � 2, let u and v be weight functions
on (0,∞), let h be a measurable function positive a.e. on (0,∞) and let Ũ and Ṽ
be defined by (6.30). If any of the quantities E1, Ã1 or Ãi(s) for any fixed s > 0 ,
i = 2,3, . . . ,15, is finite then the Fourier inequality (6.27) holds for all f ∈ L1 + L2.
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Moreover, for the best constant in (6.27) (the operator norm) it yields that

C
<∼ min

i,s

(
E1, Ã1, Ãi(s)

)
,

where s > 0 , i = 2,3, . . . ,15, and further restricted as in (6.32)

Proof. Suppose that Ã1 is finite. According to [1, Theorem 2] inequality (6.27) is
true if the quantity D1 in (6.28) is finite. Indeed it is so since by making the substitution
t = 1/x and using Hölder’s inequality we get that

x

⎛
⎝ 1/x∫

0

u(t)dt

⎞
⎠

1/q ⎛
⎝ x∫

0

v(t)dt

⎞
⎠−1/p

= x

⎛
⎝ ∞∫

x

u(1/t)
t2

dt

⎞
⎠1/q ⎛

⎝ x∫
0

v(t)dt

⎞
⎠−1/p

=

⎛
⎝ x∫

0

v−1/p(t)v1/p(t)dt

⎞
⎠

⎛
⎝ ∞∫

x

u(1/t)
t2

dt

⎞
⎠1/q ⎛

⎝ x∫
0

v(t)dt

⎞
⎠−1/p

�

⎛
⎝ x∫

0

v1−p′(t)dt

⎞
⎠1/p′ ⎛⎝ x∫

0

v(t)dt

⎞
⎠1/p ⎛

⎝ ∞∫
x

u(1/t)
t2

dt

⎞
⎠1/q ⎛

⎝ x∫
0

v(t)dt

⎞
⎠−1/p

=

⎛
⎝ ∞∫

x

u(1/t)
t2

dt

⎞
⎠1/q ⎛

⎝ x∫
0

v1−p′(t)dt

⎞
⎠1/p′

= Ã1.

Hence, D1 � Ã1.
Moreover, according to Theorem 2.6, the finiteness of Ã1 is equivalent to the

finiteness of any of the conditions Ãi(s) < ∞. The proof is complete. �
The case 2 < q � p < ∞. Now we introduce the following condition based on the

Maz’ya-Rozin condition in (3.22) to characterize Hardy’s inequality (3.20):

B̃1 :=

⎛
⎜⎝ ∞∫

0

⎛
⎝ ∞∫

x

u(1/t)
t2

dt

⎞
⎠r/p ⎛

⎝ x∫
0

v1−p′(t)dt

⎞
⎠r/p′

u(1/x)
x2 dx

⎞
⎟⎠

1/r

< ∞.

Similarly, it is natural to consider the alternative condition based on the Persson-Stepanov
condition (see (3.23)):

B̃2 :=

⎛
⎜⎝ ∞∫

0

⎛
⎝ x∫

0

u(1/t)
t2

⎛
⎝ t∫

0

v1−p′(τ)dτ

⎞
⎠dt

⎞
⎠r/p ⎛

⎝ x∫
0

v1−p′(t)dt

⎞
⎠q−r/p

u(1/x)
x2 dx

⎞
⎟⎠

1/r

< ∞,
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where 1
r = 1

q − 1
p . By using the notation (6.30) we have that

B̃1 :=

⎛
⎝ ∞∫

0

Ũr/p(x)Ṽ r/p′(x)
u(1/x)

x2 dx

⎞
⎠1/r

and

B̃2 :=

⎛
⎜⎝ ∞∫

0

⎛
⎝ x∫

0

u(1/t)
t2

Ṽ q(t)dt

⎞
⎠r/p

u(1/x)
x2 Ṽ q−r/p(x)dx

⎞
⎟⎠

1/r

.

Similarly as in Section 5 it is natural to introduce the following scales around these
constants:

B̃1(s) :=

⎛
⎜⎝ ∞∫

0

⎡
⎣ ∞∫

x

u(1/t)
t2

Ṽ
q( 1

p′ −s)(t)dt

⎤
⎦r/p

Ṽ
q( 1

p′ −s)(x)+rs(x)
u(1/x)

x2 dx

⎞
⎟⎠

1/r

,

B̃2(s) :=

⎛
⎜⎝ ∞∫

0

⎡
⎣ x∫

0

u(1/t)
t2

Ṽ
q( 1

p′ +s)(t)dt

⎤
⎦r/p

Ṽ
q( 1

p′ +s)−rs(x)
u(1/x)

x2 dx

⎞
⎟⎠

1/r

,

and also the alternative Kufner-Kuliev scale (see[6]),

B̃3(s) :=

⎛
⎜⎝ ∞∫

0

⎡
⎣ ∞∫

x

u(1/t)
t2

Ṽ
q( 1

p′ −s/r)(t)dt

⎤
⎦r/p

Ṽ s−1(x)v1−p′(x)dx

⎞
⎟⎠

1/r

.

Here s > 0, B̃1

(
1
p′

)
= B̃1 and B̃2

(
1
p

)
= B̃2.

The main theorem in this case reads:

THEOREM 6.17. Let 2 < q � p < ∞, let u and v be weight functions on (0,∞),
such that u is non-increasing and v ∈ Bp. Moreover, let Ũ and Ṽ be defined by (6.30).
If any of E2, B̃1(s), B̃2(s), B̃3(s) is finite for any s > 0, then there is C > 0 so that the
Fourier inequality (6.27) holds for all f ∈ L1 +L2.

Proof. As before, the equivalence of the quantities B̃1(s), B̃2(s) and B̃3(s) for
any s > 0 is a direct consequence of [6, Theorem 2.1] and [13, Theorem 1].

Assume now that B̃1 = B̃1

(
1
p′

)
is finite. Then also the constant E2 defined by

(6.29) is finite since, by Hölder’s inequality and the substitution x → 1/x, (t → 1/t )
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we find that

Er
2 :=

∞∫
0

⎡
⎢⎣1

x

⎛
⎝ x∫

0

u(t)dt

⎞
⎠1/p ⎛

⎝ 1/x∫
0

v(t)dt

⎞
⎠

−1/p⎤⎥⎦
r

u(x)dx

=
∞∫

0

⎛
⎝ x∫

0

v−1/p(t)v1/p(t)dt

⎞
⎠r ⎛⎝ x∫

0

u(t)dt

⎞
⎠r/p ⎛

⎝ 1/x∫
0

v(t)dt

⎞
⎠

−r/p

u(x)dx

�
∞∫

0

⎛
⎝ 1/x∫

0

v1−p′(t)dt

⎞
⎠

r/p′ ⎛
⎝ x∫

0

u(t)dt

⎞
⎠r/p

u(x)dx

=
∞∫

0

⎛
⎝ 1/x∫

0

u(t)dt

⎞
⎠

r/p ⎛
⎝ x∫

0

v1−p′(t)dt

⎞
⎠r/p′

u(1/x)
x2 dx

=
∞∫

0

⎛
⎝ ∞∫

x

u(1/t)
t2

dt

⎞
⎠r/p ⎛

⎝ x∫
0

v1−p′(t)dt

⎞
⎠r/p′

u(1/x)
x2 dx = B̃

r
1.

The proof follows by using these two facts together with [1, Theorem 3]. �

RE F ER EN C ES

[1] J. J BENEDETTO AND H. P. HEINIG, Weighted Fourier inequalities: new proofs and generalizations,
J. Fourier Anal. Appl., 9 (1): 1–37, 2003.
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