
Journal of
Mathematical

Inequalities

Volume 15, Number 3 (2021), 899–910 doi:10.7153/jmi-2021-15-62

A COMPLETE CONVERGENCE THEOREM FOR WEIGHTED

SUMS UNDER THE SUB–LINEAR EXPECTATIONS

FENGXIANG FENG ∗ AND HAIWU HUANG

(Communicated by X. Wang)

Abstract. In this article, we study a complete convergence theorem for weighted sums in sub-
linear expectations space. We establish a complete convergence theorem for weighted sums
under the optimal moment conditions in sub-linear expectations space. Our result extends and
improves the corresponding result of Cai (Metrika, 68:323-331, 2008) in some extent.

1. Introduction and notation

In the classical probability theory, probability and expectation are both additive.
But the uncertainty phenomenon can not be modeled using additive probabilities or ad-
ditive expectations in many areas of applications. Non-additive probabilities and non-
additive expectations are useful tools for studying uncertainties in statistics, measures
of risk, superhedging in finance and non-linear stochastic calculus [1–7]. Peng [6–8]
introduced the general framework of the sub-linear expectation in a general function
space by relaxing the linear property of the classical expectation to the sub-additivity
and positive homogeneity (cf. Definition 1.1 below). Under Peng’s sub-linear expec-
tation framework, many limit theorems have been established recently, including the
central limit theorem and weak law of large numbers [8–10], strong law of large num-
bers [11–15], the law of the iterated logarithm [16–17], Donsker’s invariance principle
and Chung’s law of the iterated logarithm [18], the moment inequalities for the max-
imum partial sums and the Kolomogov strong law of large numbers [19], complete
convergence theorems [20–22], self-normalized moderate deviation and law of the it-
erated logarithm [23], the asymptotic approximation of inverse moment [24], and so
on. Because sub-linear expectation and capacity are not additive, the study of the limit
theorems under sub-linear expectation becomes much more complex and challenging.
Extending the limit theorems in the traditional probability space to the case of sub-linear
expectation space is of great significance in the theory and application.

Complete convergence theorems are important limit theorems in probability the-
ory. Many of related results have been obtained in the probability space. We refer the
reader to [25–31]. Complete convergence for weighted sums are also important in sub-
linear expectation space, which can be applied to nonparametric regression models [22].
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Feng et al. [20] and Zhong and Wu [21] established complete convergence theorems in
sub-linear expectations space. We will establish a complete convergence theorem for
weighted sums under the optimal moment conditions in sub-linear expectations space.
Our complete convergence theorem is different from them. We prove our result by us-
ing capacity inequality under sub-linear expectations, fully combining the properties of
sub-linear expectations, skillfully using local Lipschitz function, truncating the random
variables and weights, and so on.

We use the framework and notations of Peng [8]. Let (Ω,F ) be a given measur-
able space and let H be a linear space of real functions defined on (Ω,F ) such that
if X1, · · ·,Xn ∈ H then ϕ(X1, · · ·,Xn) ∈ H for each ϕ ∈Cl.Lip(Rn) , where Cl.Lip(Rn)
denotes the linear space of (local Lipschitz) functions ϕ satisfying

|ϕ(x)−ϕ(y)| � C(1+ |x|m + |y|m)|x− y|, ∀x,y ∈ R
n,

for some C > 0,m ∈ N depending on ϕ . H is considered as a space of ”random
variables”. If X is an element of H , then we denote X ∈ H .

DEFINITION 1.1. A sub-linear expectation Ê on H is a function Ê : H → R

satisfying the following properties: for all X ,Y ∈ H , we have
(a) Monotonicity: If X � Y then Ê[X ] � Ê[Y ] ;
(b) Constant preserving: Ê[c] = c ;
(c) Sub-additivity: Ê[X +Y ] � Ê[X ]+ Ê[Y ] whenever Ê[X ]+ Ê[Y ] is not of the

form +∞−∞ or −∞+ ∞ ;
(d) Positive homogeneity: Ê[λX ] = λ Ê[X ],λ > 0.

Here R = [−∞,+∞] . The triple (Ω,H , Ê) is called a sub-linear expectation
space. Given a sub-linear expectation Ê , let us denote the conjugate expectation Ê
of Ê by

Ê [X ] := −Ê[−X ], ∀X ∈ H .

From the definition, we can easily get that Ê [X ] � Ê[X ], Ê[X + c] = Ê[X ] + c ,
Ê[X −Y ] � Ê[X ]− Ê[Y ] and |Ê[X ]− Ê[Y ]| � Ê[|X −Y |] . Further, if Ê[|X |] is finite,
then Ê [X ] and Ê[X ] are both finite.

DEFINITION 1.2. (See[8]). (i) (Identical distribution) Let X1 and X2 be two
n -dimensional random vectors defined respectively in sub-linear expectation spaces
(Ω1,H1, Ê1) and (Ω2,H2, Ê2) . They are called identically distributed, denoted by

X1
d= X2 , if Ê1[ϕ(X1 )] = Ê2[ϕ(X2 )] , ∀ϕ ∈Cl.Lip(Rn) , whenever the sub-expectations

are finite.
(ii) (Independence) In a sub-linear expectation space (Ω,H , Ê) , a random vector

Y = (Y1,Y2, · · ·,Yn), Yi ∈ H is said to be independent to another random vector X =
(X1,X2, · · ·,Xm), Xi ∈ H under Ê if for each test function ϕ ∈ Cl.Lip(Rm ×R

n) we

have Ê[ϕ(X ,Y )] = Ê[Ê[ϕ(x ,Y )]|x=X ] , whenever ϕ(x) := Ê[|ϕ(x ,Y )|] < ∞ for

all x and Ê[|ϕ(X )|] < ∞ .
(iii) (IID random variables) A sequence of random variables {Xn;n � 1} is said to

be independent if Xi+1 is independent to (X1,X2, · · ·,Xi) for each i � 1, and it is said

to be identically distributed if Xi
d= X1 , for each i � 1.
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We omit the definitions of extended independence and Negative dependence. For
these definitions, please refer to [8, 32, 17]. In view of the definition of identically
distribution, if {X ,Xn;n � 1} is a sequence of identically distributed random vari-
ables in the sub-linear expectation space(Ω,H , Ê) , then Ê[ϕ(Xn)] = Ê[ϕ(X)] , ∀ϕ ∈
Cl.Lip(R),n � 1. It can be showed that the independence implies the extended indepen-
dence [32].

Next, we introduce the capacities corresponding to the sub-linear expectations. Let
G ⊂ F . A function V : G → [0,1] is called a capacity if

V (φ) = 0, V (Ω) = 1, andV (A) � V (B) ∀A ⊂ B,A,B ∈ G .

It is called to be sub-additive if V (A∪B) �V (A)+V(B) for all A,B ∈ G with A∪B ∈
G .

Let (Ω,H , Ê) be a sub-linear space, and Ê be the conjugate expectation of Ê .
We denote a pair (V,V ) of capacities by

V(A) := inf{Ê[ξ ] : IA � ξ ,ξ ∈ H }, V (A) := 1−V(Ac), ∀A ∈ F ,

where Ac is the complement set of A . It is obvious that V is sub-additive and

Ê[ f ] � V(A) � Ê[g], Ê [ f ] � V (A) � Ê [g], if f � IA � g, f ,g ∈ H . (1.1)

This implies Markov inequality: ∀X ∈ H ,

V(|X | � x) � Ê[|X |p]/xp, ∀x > 0, p > 0

from I(|X | � x) � |X |p/xp ∈ H . By Lemma 4.1 of [17], we have H ö lder inequality:
∀X ,Y ∈ H , p,q > 1, satisfying p−1 +q−1 = 1,

Ê[|XY |] � (Ê[|X |p]) 1
p (Ê[|Y |q]) 1

q .

Particularly, Jensen inequality:

(Ê[|X |r]) 1
r � (Ê[|X |s]) 1

s , for 0 < r � s.

We define the Choquet integrals/expectations (CV,CV ) by

CV [X ] :=
∫ ∞

0
V (X � x)dx+

∫ 0

−∞
(V (X � x)−1)dx

with V being replaced by V and V , respectively. If limc→∞ Ê[(|X |− c)+] = 0, then
Ê[|X |] � CV[|X |] . (see Lemma 4.5(iii) of [17])

Throughout this paper, C stands for a positive constant which may differ from
one place to another. Let an � bn denote that there exists a constant c > 0 such that
an � cbn for sufficiently large n , I(.) denote an indicator function.
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2. Main results

THEOREM 2.1. Let {X ,Xn;n � 1} be a sequence of independent identically dis-
tributed random variables in the sub-linear expectation space (Ω,H , Ê) . Let 1 < α <
2 and α < γ . Set bn = n1/α(logn)1/γ . Assume that {ani;1 � i � n, n � 1} is an array
of real numbers satisfying

n

∑
i=1

|ani|α = O(n). (2.1)

If Ê[|X |γ ] � CV[|X |γ ], ∑∞
k=1 kγ

V(k < |X | � k+1) < ∞ and Ê[X ] = Ê [X ] = 0 , then for
any ε > 0 ,

∞

∑
n=1

1
n

V

(
|

n

∑
i=1

aniXi| > εbn

)
< ∞. (2.2)

Conversely, if (2.2) holds for any positive array {ani} satisfying (2.1), then CV[|X |γ ] <
∞ .

REMARK 2.1. In the classical probability space ∑∞
k=1 kγ

V(k < |X | � k + 1) <
∞ ⇔ E[|X |γ ] < ∞ . We give the condition ∑∞

k=1 kγ
V(k < |X | � k+1) < ∞ in sub-linear

expectation space is equality to the moment condition in the classical probability space.
By ∑∞

k=1 kγ
V(k < |X | � k + 1) < ∞ , we have CV[|X |γ ] < ∞ . But CV[|X |γ ] < ∞ dose

not imply ∑∞
k=1 kγ

V(k < |X | � k+1) < ∞ in sub-linear expectation space.

REMARK 2.2. Cai [34] obtained analogous result of (2.2) under much stronger
moment condition E exp(h|X |γ) < ∞ in the classical probability space. Theorem 2.1
is established under the optimal moment conditions. Our Theorem 2.1 extends and
improves the corresponding result of Cai [34] in some extent.

3. Proofs of main results

In order to prove our results, we need the following lemmas.

LEMMA 3.1. ([17]) Let {Xn;n � 1} be a sequence of negatively dependent ran-
dom variables in (Ω,H , Ê) , with Ê[Xn] � 0 . Let Sn = ∑n

i=1 Xi, Bn = ∑n
i=1 Ê[X2

i ] . Then
for any q � 2 , there exists a constant Cq � 1 such that for all x > 0 and 0 < δ � 1

V(Sn � x) � Cqδ−2q ∑n
i=1 Ê[|Xi|q]

xq + exp

(
− x2

2Bn(1+ δ )

)
.

REMARK 3.1. By the fact if Y is independent to X , then Y is negatively depen-
dent to X [19], obviously Lemma 3.1 holds for independent randomvariables sequence.

LEMMA 3.2. Under the conditions of Theorem 2.1 , we have

I :=
∞

∑
n=1

1
n

n

∑
i=1

V(|aniX | > bn) < ∞.
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Proof. (i) When |ani| � 1, we have

I �
∞

∑
n=1

1
n

n

∑
i=1

V(|X | > bn)

�
∞

∑
n=1

b−γ
n Ê[|X |γ ]

=
∞

∑
n=1

n−γ/α(logn)−1
Ê[|X |γ ] < ∞.

(ii) When |ani| > 1, similar to the proof of Lemma 2.3 (replace P by V) of [33],
we have

I �
∞

∑
k=1

kγ
V(k < |X | � k+1)+

∞

∑
n=1

∞

∑
k=[n1/α (logn)1/γ ]+1

V(k < |X | � k+1)

=: I1 + I2.

By the condition of Theorem 2.1, we have I1 < ∞ . Note that

I2 � C
∞

∑
k=1

kα/(logk)α/γ
V(k < |X | � k+1)

� C
∞

∑
k=1

kα
V(k < |X | � k+1) <

∞

∑
k=1

kγ
V(k < |X | � k+1) < ∞.

We complete the proof of Lemma 3.2. �

Proof of Theorem 2.1. We may assume that ∑n
i=1 |ani|α � n . Since ani = a+

ni−a−ni ,
we also assume that ani > 0. We just need to prove

∞

∑
n=1

1
n

V

(
n

∑
i=1

aniXi > εbn

)
< ∞ (3.1)

because of considering {−Xi; i � 1} instead of {Xi; i � 1} in (3.1), we can obtain (2.2).
For 1 � i � n and n � 1, let

X (1)
ni = −bn(logn)−β I(aniXi < −bn(logn)−β )+aniXiI(|aniXi| � bn(logn)−β )

+bn(logn)−β I(aniXi > bn(logn)−β ),

X (2)
ni = (aniXi −bn(logn)−β )I(bn(logn)−β < aniXi � εbn/(4N)),

X (3)
ni = (aniXi +bn(logn)−β )I(−εbn/(4N) � aniXi < −bn(logn)−β ),

X (4)
ni = (aniXi −bn(logn)−β )I(aniXi > εbn/(4N))+ (aniXi +bn(logn)−β )I(aniXi

< −εbn/(4N)),
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where 0 < β < 1/γ and N is large enough. Then aniXi = X (1)
ni +X (2)

ni +X (3)
ni +X (4)

ni and

{X (1)
ni ,1 � i � n, n � 1} is a sequence of independent random variables. It follows that

∞

∑
n=1

1
n

V

(
n

∑
i=1

aniXi > εbn

)

�
∞

∑
n=1

1
n

V

(
n

∑
i=1

X (1)
ni > εbn/4

)
+

∞

∑
n=1

1
n

V

(
n

∑
i=1

X (2)
ni > εbn/4

)

+
∞

∑
n=1

1
n

V

(
n

∑
i=1

X (3)
ni > εbn/4

)
+

∞

∑
n=1

1
n

V

(
n

∑
i=1

X (4)
ni > εbn/4

)
:= J1 + J2 + J3 + J4.

In order to prove J1 < ∞ , we first show that

1
bn

∣∣∣∣∣ n

∑
i=1

Ê[X (1)
ni ]

∣∣∣∣∣→ 0, n → ∞. (3.2)

For 0 < μ < 1, let g(x) ∈ Cl.Lip(R) , 0 � g(x) � 1 for all x , g(x) = 1 if |x| � μ ,
g(x) = 0 if |x| > 1 and g(x) is non-increasing function when x > 0. Then

I(|x| � μ) � g(x) � I(|x| � 1), I(|x| > 1) � 1−g(x) � I(|x| > μ). (3.3)

In view of Ê[Xi] = 0, we have that

bn
−1

∣∣∣∣∣ n

∑
i=1

Ê[X (1)
ni ]

∣∣∣∣∣
� bn

−1
n

∑
i=1

|Ê[X (1)
ni ]|

= bn
−1

n

∑
i=1

|Ê[aniXi]− Ê[X (1)
ni ]|

� bn
−1

n

∑
i=1

Ê[|aniXi−X (1)
ni |]

= bn
−1

n

∑
i=1

Ê[|(aniXi +bn(logn)−β )I(aniXi < −bn(logn)−β )

+ (aniXi−bn(logn)−β )I(aniXi > bn(logn)−β )|]

� 2bn
−1

n

∑
i=1

|ani|Ê|X |
(

1−g

(
ani(logn)β X

bn

))

� 2bn
−α(logn)β (α−1)

n

∑
i=1

|ani|α Ê|X |α
(

1−g

(
ani(logn)β X

bn

))
= CÊ[|X |α ](logn)β (α−1)−α/γ → 0



A COMPLETE CONVERGENCE THEOREM FOR WEIGHTED SUMS 905

as n → ∞ , since 0 < β < 1/γ and Ê|X |α � (Ê[|X |γ ])α/γ < ∞ . In order to prove that
J1 < ∞ , it is enough to show that

J
′
1 :=

∞

∑
n=1

1
n

V

(
n

∑
i=1

(X (1)
ni − Ê[X (1)

ni ]) > εbn/8

)
< ∞. (3.4)

Note that for any m > 0, by Cr inequality and (3.3), we have

|X (1)
ni |m � |ani|m|Xi|mI(|aniXi| � bn(logn)−β )+bm

n (logn)−mβ I(|aniXi| > bn(logn)−β )

� |ani|m|Xi|mg

(
μani(logn)β Xi

bn

)
+bm

n (logn)−mβ

(
1−g

(
ani(logn)β Xi

bn

))
,

thus

Ê[|X (1)
ni |m] � |ani|mÊ

[
|Xi|mg

(
μani(logn)β Xi

bn

)]
+bm

n (logn)−mβ
V(|aniXi| > μbn(logn)−β ).

(3.5)

We will prove J
′
1 < ∞ in two cases (γ < 2 and γ � 2). When α < γ < 2, by Markov’s

inequality, Lemma 3.1 and (3.5), we have

J
′
1 � C

∞

∑
n=1

n−1b−2
n

n

∑
i=1

Ê[X (1)
ni − Ê[X (1)

ni ]]2 +C
∞

∑
n=1

n−1 exp

(
− Cb2

n

∑n
i=1 Ê[X (1)

ni − Ê[X (1)
ni ]]2

)

� C
∞

∑
n=1

n−1b−2
n

n

∑
i=1

Ê[X (1)
ni

2
]+C

∞

∑
n=1

n−1 exp

(
− Cb2

n

∑n
i=1 Ê[X (1)

ni ]2

)

� C
∞

∑
n=1

n−1b−2
n

n

∑
i=1

[
a2

niÊ

[
X2

i g

(
μani(logn)β Xi

bn

)]

+b2
n(logn)−2β

V(|aniXi| > μbn(logn)−β )

]

+C
∞

∑
n=1

n−1 exp

(
− Cb2

n

∑n
i=1 Ê[X (1)

ni ]2

)

� C
∞

∑
n=1

n−1b−2
n

n

∑
i=1

|ani|γ Ê|X |γ(bn(logn)−β )2−γ

+C
∞

∑
n=1

n−1b−2
n b2

n(logn)−2β (bn(logn)−β )−γ
n

∑
i=1

|ani|γ Ê|X |γ

+C
∞

∑
n=1

n−1 exp

(
− Cb2

n

∑n
i=1 Ê[X (1)

ni ]2

)

� C
∞

∑
n=1

n−1b−2
n (bn(logn)−β )2−γ

n

∑
i=1

|ani|γ Ê|X |γ
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+C
∞

∑
n=1

n−1 exp

(
− Cb2

n

(bn(logn)−β )2−γ ∑n
i=1 |ani|γ Ê|X |γ

)

= C
∞

∑
n=1

n−1(logn)−β (2−γ))(bn)−γ(
n

∑
i=1

|ani|α)γ/α
Ê|X |γ

+C
∞

∑
n=1

n−1 exp

(
− Cb2

n

(bn(logn)−β )2−γ ∑n
i=1 |ani|γ Ê|X |γ

)

� C
∞

∑
n=1

1
n
(logn)−β (2−γ)−1 +C

∞

∑
n=1

n−1 exp
(
−C(logn)1+β (2−γ)

)
< ∞. (3.6)

When γ � 2, taking p > γ , by Lemma 3.1, we have

J
′
1 � C

∞

∑
n=1

n−1b−p
n

n

∑
i=1

Ê[|X (1)
ni − Ê[X (1)

ni ]|p]

+C
∞

∑
n=1

n−1 exp

(
− Cb2

n

∑n
i=1 Ê[X (1)

ni − Ê[X (1)
ni ]]2

)

� C
∞

∑
n=1

n−1b−p
n

n

∑
i=1

Ê[|X (1)
ni |p]+C

∞

∑
n=1

n−1 exp

(
− Cb2

n

∑n
i=1 Ê[X (1)

ni ]2

)
:= J

′
11 + J

′
12.

(3.7)

From the prove of (3.6), we have J
′
12 < ∞. By (3.5), we have that

J
′
11 � C

∞

∑
n=1

n−1b−p
n

n

∑
i=1

(
Ê

[
|ani|p|Xi|pg

(
μani(logn)β Xi

bn

)]

+bp
n(logn)−pβ

V(|aniXi| > μbn(logn)−β )

)

� C
∞

∑
n=1

n−1b−p
n (bn(logn)−β )p−γ

n

∑
i=1

|ani|γ Ê|X |γ

� C
∞

∑
n=1

n−1(logn)−β (p−γ))(bn)−γ(
n

∑
i=1

|ani|α)γ/α
Ê|X |γ

� C
∞

∑
n=1

n−1(logn)−β (p−γ)−1 < ∞.

(3.8)

Hence, we have proved J1 < ∞ .
Now we prove J2 < ∞ . We should note that the identical distribution is de-

fined under Ê , not under V (see Definition 2.2 of [17]). Xi identical distribution im-
plies Ê[ f (Xi)] = Ê[ f (X1)] for f (.) ∈ Cl.Lip(R) , but does not imply V( f (Xi) ∈ A) =
V( f (X1) ∈ A) . Therefore, in the calculation of V( f (Xi) ∈ A) , we need to convert V to



A COMPLETE CONVERGENCE THEOREM FOR WEIGHTED SUMS 907

Ê . As to J2 , by the definition of X (2)
ni , the definition of independent, (3.3) and Markov

inequality we have

V

(
n

∑
i=1

X (2)
ni > εbn/4

)
� V(there exist at least N indices i such that aniXi > bn(logn)−β )

� ∑
1�i1<i2<···<iN�n

V

(
ani1Xi1 > bn(logn)−β ), · · ·,aniNXiN > bn(logn)−β )

)
� ∑

1�i1<i2<···<iN�n

Ê

[(
1−g

(
ani1(logn)β Xi1

bn

))
· · ·
(

1−g

(
aniN (logn)β XiN

bn

))]

= ∑
1�i1<i2<···<iN�n

Ê

[
1−g

(
ani1(logn)β Xi1

bn

)]
· · · Ê

[
1−g

(
aniN (logn)β XiN

bn

)]
� ∑

1�i1<i2<···<iN�n

V(ani1Xi1 > μbn(logn)−β ) · · ·V(aniNXiN > μbn(logn)−β )

�
(

n

∑
i=1

V(aniXi > μbn(logn)−β )

)N

� C

(
Ê|X |γb−γ

n (logn)β γ
n

∑
i=1

|ani|γ
)N

� C(Ê|X |γ)N(logn)(−1+β γ)N,

which implies that J2 < ∞ for large enough N such that (1−β γ)N > 1. Similarly, we
can have J3 < ∞ . By Lemma 3.2, we can have

J4 �
∞

∑
n=1

1
n

n

∑
i=1

V(|aniXi| > εbn/4) < ∞.

Therefore (2.2) holds.
Conversely, suppose that (2.2) holds for any array {ani} satisfying (2.1). For each

n � 1, we take an1 = n1/α and ani = 0 for 2 � i � n . Then {ani} obviously satisfies
(2.1). By the assumption, we get that for any ε > 0,

∞ >
∞

∑
n=1

1
n

V

(
|X1| > ε(logn)1/γ

)
=

∞

∑
k=0

2k+1−1

∑
n=2k

1
n

V

(
|X1| > ε(logn)1/γ

)

�
∞

∑
k=0

2k+1−1

∑
n=2k

1
2k+1 V

(
|X1| > ε(log2k+1)1/γ

)
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=
∞

∑
k=0

2k 1
2k+1 V

(
|X1| > ε((k+1) log2)1/γ

)
�

∞

∑
k=0

1
2

V(|X1| > Ck1/γ).

Note that for any c > 0

CV[|X1|γ/c] =
∫ ∞

0
V(|X1|γ � cx)dx < ∞ ⇔

∞

∑
n=1

V(|X1|γ � cn) < ∞.

Hence, we have CV[|X1|γ ] < ∞ . We complete the proof of Theorem 2.1. �
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