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A GENERALIZATION OF DARBO’S FIXED POINT THEOREM WITH

AN APPLICATION TO FRACTIONAL INTEGRAL EQUATIONS

SAID BELOUL, M. MURSALEEN ∗ AND ARSLAN HOJET ANSARI

(Communicated by J. Pečarić)

Abstract. In this paper, we give a new generalization of Darbo’s fixed point theorem of integral
type. An application for the solvability of nonlinear fractional integral equation is given to
illustrate our result.

1. Introduction

Kuratoski [15] introduced the concept of measure of noncompactness (MNC)
which played an important role in fixed point theory. Gohberg et al. [12] gave an-
other measure called Hausdorff measure of noncompactness. Later Darbo [11] used
Kuratoski’s measure of noncompactness to generalize the Schauder’s fixed point theo-
rem. After that many authors studied and solved some problems by using these MNCs
in differential equations, integral equations and integro-differential equations.

In 1980, Banaś [8] gave an axiomatic definition of MNC which was used by many
authors to study different problems, for instance see [1, 3, 4].

Aghajani et al. [3] gave an integral type generalization of Darbo’s theorem and
applied it in the existence of solution of functional integral equations. Jleli et.al. [13]
gave another generalization to Darbo’s theorem with an application. Recently, integral
equations of fractional orders were studied in [14] and [17] via measures of noncom-
pactness. For different types of integral equations, see [5], [19] and [20]. Cai et al. [10]
used shifting distance functions to establish some new generalizations. Agarwal and
Samet [2] studied solvability of fractional order via measure of compactness. Recently,
solvability of infinite systems of differential equations are studied in [16], [18] and [22].

In the present paper, we give a generalization of Darbo’s by using the concept of
C -class function and give an application of solvability to a nonlinear fractional integral
equation in Banach space.
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2. Preliminaries

DEFINITION 2.1. [7] Let E be a Banach space and BE a collection of bounded
subsets of E . A measure of noncompactness is a function μ : BE →R+ which satisfies
the following conditions:

1. The set kerμ = {X ∈ B(E) : μ(X) = 0} is no empty and kerμ ⊂ BE .

2. X ⊂ Y implies μ(X) ⊆ μ(Y ) .

3. μ(X) = μ(convX) = μ(X)

4. μ(λX +(1−λ )X) � λ μ(X)+ (1−λ )μ(X) .

5. if (Xn) is sequence of closed sets of BE such Xn+1 ⊆ Xn and lim
n→ μ(Xn) = 0.

Then the set X∞ = ∩∞
n=1Xn is nonempty and X∞ is precompact.

REMARK 2.1. Since μ(X∞) = μ(
∞⋂

n=1

Xn) � μ(Xn) , μ(X∞) = 0. So X∞ ∈ kerμ .

THEOREM 2.1. [1] [Schauder] Let Ω be a nonempty, bounded, closed and con-
vex subset of a Banach space E. If T : Ω → Ω is continuous and compact self mapping
on Ω , then T has at least a fixed point in Ω .

THEOREM 2.2. [11] [Darbo] Let Ω be a nonempty, bounded, closed and convex
subset of a Banach space E and let T : Ω → Ω be a continuous self mapping on Ω
satisfying for any subset X of Ω the following inequality:

μ(TX) � kμ(X),

where μ is a measure of noncompactness on E and k ∈ [0,1) . Then T has a fixed
point in Ω .

DEFINITION 2.2. [6] A continuous function F : [0,∞)2 → R is called C-class
function if it satisfies following axioms:

1. F(s, t) � s ;

2. F(s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

Note that for some F we have that F(0,0) = 0. We denote the set of C -class
functions by C .

EXAMPLE 2.3. [6] The following functions F : [0,∞)2 → R are elements of C .
For all s, t ∈ [0,∞)

(1) F(s, t) = ks , 0 < k < 1, F(s,t) = s ⇒ s = 0;
(2) F(s, t) = s− t , F(s,t) = s ⇒ t = 0;
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(3) F(s, t) = s
(1+t)r ; r ∈ (0,∞) , F(s,t) = s ⇒ s = 0 or t = 0;

(4) F(s, t) = (s+ l)(1/(1+t)r)− l , l > 1,r ∈ (0,∞) , F(s,t) = s ⇒ t = 0;
(5) F(s, t) = ln(1+as)/2, a > e , F(s,1) = s ⇒ s = 0;
(6) F(s, t) = log(t +as)/(1+ t) , a > 1, F(s,t) = s ⇒ s = 0 or t = 0;
(7) F(s, t) = φ(s) , F(s,t) = s⇒ s = 0, where φ : [0,∞)→ [0,∞) is an upper semi

continuous function such that φ(0) = 0, and φ(t) < t for t > 0;
(8) F(s, t) = sβ (s) , where β : [0,∞) → [0,1) is continuous function, F(s,t) =

s ⇒ s = 0;
(9) F(s, t) = sh(s,t) , F(s,t) = s ⇒ s = 0, where h : [0,∞)× [0,∞) → [0,∞) is a

continuous function such that h(t,s) < 1 for all t,s > 0.

Let Ψ be the set of all continuous functions ψ : [0,+∞) → [0,+∞) satisfying the
following conditions:

• ψ(t) = 0 if and only if t = 0,

• ψ is non decreasing,

• ψ(t) < t , ∀t > 0.

Let Φ denote the set of all continuous functions φ : R+ →R+ satisfying φ(0)= 0.

3. Main results

THEOREM 3.1. Let Ω be a nonempty, closed, bounded and convex subset of a
Banach space E and T : Ω → Ω a continuous mapping such that for any X in BE

ψ(

μ(TX)∫

0

ϕ(t)dt) � F(ψ(

μ(X)∫

0

ϕ(t)dt),φ(

μ(X)∫

0

ϕ(t)dt)), (1)

where μ is an arbitrary measure of noncompactness and ϕ : R+ → R+ is a Lebesgue-
integrable function, which is summable on each compact subset of R+ and satisfies

ε∫

0

ϕ(t)dt > 0, for all ε > 0.

Then T has at least one fixed point in X .

Proof. Firstly, we will construct a nested sequence and by using properties of
measure of noncompactness, we arrive to our main result. Define a sequence {Ωn} as
follows:

Ω0 = Ω, Ωn = conv(TΩn−1), for all n � 1,

where conv(TΩn−1) is the convex hall of TΩn−1 .
If there exists n0 such μ(Ωn0) = 0, so Ωn0 ∈ kerμ and Ωn0 is compact. Tince

T (Ωn0) ⊆ Ωn0 , from theorem 2.1, T has a fixed point in Ωn0 .
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Suppose now μ(Ωn) > 0 for all n � 0. We claim {
μ(Ωn)∫

0
ϕ(t)dt} is a decreasing

sequence. By using (1) we get

ψ(

μ(Ωn+1)∫

0

ϕ(t)dt) = ψ(

μ(conv(TΩn))∫

0

ϕ(t)dt

� F(ψ(

μ(Ωn)∫

0

ϕ(t)dt),φ(

μ(Ωn)∫

0

ϕ(t)dt))

� ψ(
Ωn∫

0

ϕ(t)dt),

since ψ is non decreasing function, we get

μ(Ωn+1)∫

0

ϕ(t)dt �
∫ μ(Ωn)

0
ϕ(t)dt.

Then {
μ(Ωn)∫

0
ϕ(t)dt} is decreasing and bounded below, so it converges to r =

inf{∫ Ωn
0 ϕ(t)dt}. Suppose r > 0. By using (1) we get

ψ(

Ωn+1∫

0

ϕ(t)dt) = ψ(

T (conv(Ωn))∫

0

ϕ(t)dt)

� F(ψ(

μ(Ωn)∫

0

ϕ(t)dt),φ(

μ(Ωn)∫

0

ϕ(t)dt)).

Letting n → ∞ , we get

ψ(r) � F(ψ(r),φ(r)) � ψ(r),

which implies
F(ψ(r),φ(r)) = ψ(r),

from (F2) we get ψ(r) = 0, or, φ(r) = 0. Hence r = 0.
Consequently and from the condition on ϕ , we obtain

lim
n→∞

μ(Ωn) = 0.

Then from (5) of Definition 2.1 Ω∞ =∩∞
n=0Ωn is a nonempty, closed and convex subset

of Ω , moreover Ω∞ ∈ kerμ which implies is compact. On other hand T (Ω∞) ⊆ Ω∞.
Therefore from Schauder’s theorem T has a fixed point in Ω . �

If ϕ(t) = 1, we get the following corollary
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COROLLARY 3.2. Let Ω be a nonempty, closed, bounded and convex subset of a
Banach space E and let T : Ω → Ω be a continuous mapping such that for any X in
BE , we have

ψ(μ(TX)) � F(ψ(μ(X)),φ(μ(X))),

where ψ ∈ Ψ and φ ∈ Φ . Then T has a fixed point in X .

If F(s, t) = s− t , we get the following corollary.

COROLLARY 3.3. Let Ω be a nonempty, closed, bounded and convex subset of a
Banach space E and let T : Ω → Ω be a continuous mapping such that for any X in
BE , we have

ψ(
∫ μ(TX)

0
ϕ(t)dt) � ψ(

∫ μ(X)

0
ϕ(t)dt)−φ(

∫ μ(X)

0
ϕ(t)dt),

where ϕ : R+ → R+ is a Lebesgue-integrable function, which is summable on each
compact subset of R+ and satisfies

ε∫

0

ϕ(t)dt > 0, for all ε > 0.

Then T has at least one fixed point in X .

If we combine Theorem 3.1 with Example 7, we get the following corollary:

COROLLARY 3.4. Let Ω be a nonempty, closed, bounded and convex subset of a
Banach space E and let T : Ω → Ω be a continuous mapping such for any X in BE

we have

ψ(

μ(TX)∫

0

ϕ(t)dt) � φ
( μ(X)∫

0

ϕ(t)dt
)
,

where ψ ∈ Ψ and φ : R+ → R+ is a upper semi continuous function such φ(0) = 0 ,
φ(t) < t for all t > 0 and ϕ : R+ → R+ is a Lebesgue-integrable function, which is
summable on each compact subset of R+ and satisfies

ε∫

0

ϕ(t)dt > 0, for all ε > 0.

Then T has a fixed point in X .

Combining Theorem3.1 with Example 8, we get the following corollary:
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COROLLARY 3.5. Let Ω be a nonempty, closed, bounded and convex subset of a
Banach space E and let T : Ω → Ω be a continuous mapping such that for any X in
BE we have:

ψ(

μ(TX)∫

0

ϕ(t)dt) � ψ(

μ(X)∫

0

ϕ(t)dt)β
(

ψ(

μ(X)∫

0

ϕ(t)dt)
)
,

where ψ ∈ Ψ , β : [0,∞) → [0,1) is a continuous function and ϕ : R+ → R+ is a
Lebesgue-integrable function, which is summable on each compact subset of R+ and
satisfies

ε∫

0

ϕ(t)dt > 0, for all ε > 0.

Then T has a fixed point in X .

REMARK 3.1.

1. If ϕ(t) = 1, ψ(t) = t and F(s,t) = ks , k ∈ [0,1) , we get theorem 2.2 (Darbo’s
theorem).

2. Corollary 3.3 improves and generalizes Theorem 2.7 of [10].

3. Corollary 3.4 improves and generalizes Theorem 2.1 of Aghajani et.al [4].

4. Application

In this section, we demonstrate an application of our results for the existence of
solution of fractional integral equation in Banach space.

Consider the integral equation:

x(t) = f (t,x(t))+
1

Γ(α)

t∫

0

u(t,x(s))
(t − s)1−α ds, (2)

where t ∈ [0,T ] , 0 � α < 1 and f : [0,T ]×R → R is continuous function. Assume
the following assumptions hold:

1. There exists an upper semi continuous function φ : [0,∞) → [0,∞) such φ(0) =
0, φ(t) < t , for all t ∈ [0,T ] and

| f (t,x(t))− f (t,y(t))∫

0

ϕ(τ)dτ � φ(

|x−y|∫

0

ϕ(τ)dτ),
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where ϕ : R+ → R+ is a Lebesgue-integrable function, which is summable on
each compact subset of R+ and satisfies

ε∫

0

ϕ(τ)dτ > 0, for all ε > 0

and for positive numbers a,b, we have

a+b∫

0

ϕ(τ)dτ �
a∫

0

ϕ(τ)dτ +
b∫

0

ϕ(τ)dτ.

2. The function u : [0,T ]× [0,∞) → [0,∞) is continuous and there exists a nonde-
creasing function θ ; [0,∞) → [0,∞) satisfying

|u(t,x)| � θ (|x|), (t,x) ∈ [0,T ]× [0,∞).

3. There exists r0 > 0 such

φ(
r0∫

0

ϕ(τ)dτ)+

M+ θ (r0)Tα
Γ(α+1)∫

0

ϕ(τ)dτ �
r0∫

0

ϕ(τ)dτ,

where M = max{| f (t,0)|,t ∈ [0,T ]}.
Let E be the space of bounded and continuous functions, which is a Banach space

with the norm
‖x‖ = sup

0�t�T
|x(t)|, x ∈ E

Let BE be set of non empty and bounded subsets of E and let X ⊆ BE . For x ∈ X and
two arbitrary numbers ε > 0 and T > 0, set

ωT (x,ε) = sup{|x(s)− x(t)| : t,s ∈ [[0,1], |s− t|� ε}
ωT (X ,ε) = sup{ωT (x,ε),x ∈ X}

ωT
0 (X) = lim

ε→0
ωT (X ,ε), ω0(X) = lim

T→0
ωT (X).

Banas et.al [7] proved that ω0 : BE → R+ is a measure of noncompactness.

THEOREM 4.1. Under the assumptions (1)–(4) , equation 2 has at least a solu-
tion in E .

Proof. Consider a mapping:

Hx(t) = f (t,x(t))+
1

Γ(α)

∫ t

0

u(t,x(s))
(t− s)1−α ds.
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We show that T maps E into itself. Let {xn} be a sequence in E , which is convergent
to x , so we have:

|Hxn(t)−Hx(t)|∫

0

ϕ(τ)dτ �
| f (t,xn)− f (t,x)|+ 1

Γ(α)
∫ |u(t,xn)−u(t,x)|

(t−s)1−α ds

0∫

0

ϕ(τ)dτ,

letting n → ∞ , and since f and u are continuous, we get

|H(xn(t),H(x(t)))|∫

0

ϕ(τ)dτ → 0,

from condition on ϕ this yield that H is continuous.

Let Br0 be the closed ball of the rayon r0 centered at the origin, i.e,

Br0 = {x ∈ E,‖x(t)‖ � r0}.

We claim H maps continuously Br0 into itself, in fact for x ∈ Br0 and t ∈ [0,T ] we
have:

|Hx(t)|∫

0

ϕ(τ)dτ =
∫ | f (t,x(t))+ 1

Γ(α)

t∫
0

u(t,x(s))
(t−s)1−α ds|

0
ϕ(τ)dτ

�
| f (t,x(t))− f (t,0)+ f (t,0)|∫

0

ϕ(τ)dτ +

1
Γ(α)

∫ t
0

|u(t,x(s))|
(t−s)1−α ds∫

0

ϕ(τ)dτ

� φ(

|x(t)|∫

0

ϕ(τ)dτ)+
∫ M+ θ (|x|)

Γ(α+1) t
α

0
ϕ(τ)dτ

� � φ(
∫ r0

0
ϕ(τ)dτ)+

∫ M+ θ (r0)
Γ(α+1) Tα

0
ϕ(τ)dτ

�
r0∫

0

ϕ(τ)dτ.

Hence H maps Br0 into itself. Now we will show that’s H is continuous mapping, let
x,y ∈ Br0 and ε > 0 such that:

‖x− y‖� ε.
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For all t ∈ [0,T ] , we have:

|Hx(t)−Hy(t)|∫

0

ϕ(τ)dτ �
∫ | f (t,x(t))− f (t,y(t))|

0
ϕ(τ)dτ +

1
Γ(α)

∫ t
0
|u(t,x(s))−u(t,y(s))|

(t−s)1−α ds∫

0

ϕ(τ)dτ

� φ(

|x(t)−y(t)|∫

0

ϕ(τ)dτ)+

ωε
Γ(α+1) Tα∫

0

ϕ(τ)dτ,

where

ωε = sup{|u(t,x(t))−u(t,y(t))|,−r0 � x,y � r0, |x− y|� ε,t ∈ [0,T ]},
the uniform continuity of u on [0,T ]× [−r0,r0] , implies lim

ε→0
ωε = 0, then

‖Hx(t)−Hy(t)‖∫

0

ϕ(τ)dτ � φ(
∫ ε

0
ϕ(τ)dτ).

Hence H is continuous on Br0 .
Let W be a non empty subset of Br0 , for a fixed number δ > 0, x ∈ W and

t1,t2 ∈ [0;T ] , suppose t1 � t2 , we have:

|Hx(t2)−Hx(t1)|∫

0

ϕ(τ)dτ �

| f (t2,x(t2))− f (t1,x(t1))|+ 1
Γ(α) (

t2∫
0

|u(t2,x(s))|
(t2−s)1−α ds−

t1∫
0

|u(t1,x(s))|
(t1−s)1−α ds)∫

0

ϕ(τ)dτ

=

| f (t2,x(t2))− f (t1,x(t1))|+ 1
Γ(α) (

∫ t2
0

|u(t2,x(s))|
(t2−s)1−α ds−∫ t1

0
|u(t1,x(s))|
(t1−s)1−α ds)∫

0

ϕ(τ)dτ

� φ(

|x(t2)−x(t1|∫

0

ϕ(τ)dτ)

+

| f (t1,x(t2))− f (t2,x(t1))|+ θ (|x|)
Γ(α) (

t2∫
0
(t2−s)α−1ds−

t1∫
0
(t1−s)α−1ds)∫

0

ϕ(τ)dτ,

� φ(
ωx∫

0

ϕ(τ)dτ)+

ω f∫

0

ϕ(τ)dτ +

θ (r0)
Γ(α+1) |tα

2 −tα
1 |∫

0

ϕ(τ)dτ),

where

ω f = sup{| f (t1,x)− f (t2,x)|,t1,t2 ∈ [0,T ], |t1− t2| � ε, |x| � r0}
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and
ωx = sup{|x(t1)− x(t2)|,t1,t2 ∈ [0,T ], |t1 − t2| � ε,}.

Letting ε → 0, we get limε→0 ω f = 0 and

lim
ε→0

θ (r0)
Γ(α +1)

|tα
2 − tα

1 | = 0,

then
ωT

0 (H(X)) � φ(ωT
0 (X)),

taking T → 0, we get:
ω0(H(X)) � φ(ω0(X)).

Consequently, from Corollary 3.4 (with ψ(t) = t ) the equation (2) has a solution in
E . �
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