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COEFFICIENT ESTIMATES AND FEKETE–SZEGÖ INEQUALITY

FOR NEW SUBCLASS OF BI–BAZILEVIČ FUNCTIONS BY

(s, t)–DERIVATIVE OPERATOR AND QUASI–SUBORDINATION

AOEN ∗ , SHUHAI LI AND HUO TANG

(Communicated by M. Krnić)

Abstract. In this paper we introduce and investigate a new generalized class of bi-bazilevič func-
tions defined by using (s,t) -derivative operator and quasi-subordination in the open unit disk
D . We obtain two kinds of coefficient estimate by using Faber polynomial expansion and get
Fekete–Szegö inequality for the new class and some of its subclasses.

1. Introduction

Let A denote the class of functions of the form

f (z) = z+
∞

∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1} . Also let S denote the
subclass of functions in A that are univalent in D .

For two analytic functions f and g , the function f is subordinate to g in D ,
written as follows

f (z) ≺ g(z), z ∈ D,

if there exists an Schwarz function ω with ω(0) = 0 and |ω(z)| < 1, z ∈ D such that

f (z) = g(ω(z)).

Furthermore, if the function g is univalent in D , then f (z) ≺ g(z) is equivalent to
f (0) = g(0) and f (D) ⊂ g(D) .

In 1970, Robertson [1] introduced the concept of quasi-subordination. For two
analytic functions f and g , the function f is quasi-subordinate to g in D , written as
follows

f (z) ≺q g(z), z ∈ D,
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if there exists an analytic functions h with |h(z)| � 1 such that f (z)
h(z) analytic in D and

f (z)
h(z)

≺ g(z), z ∈ D

that is, there exists a Schwarz function ω with ω(0) = 0 and |ω(z)| < 1, z ∈ D such
that

f (z) = h(z)g(ω(z)).

Observe that when h(z) = 1, then f (z) = g(ω(z)) , so that f (z) ≺ g(z) in D . Also
notice that if ω(z) = z , then f (z) = h(z)g(z) and it is said that f is majorized by
g and written f (z) � g(z) in D . Hence it is obvious that quasi-subordination is a
generalization of subordination as well as majorization. See [2–8] for works related to
quasi-subordination.

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent
in D . It is a well known fact that every function f ∈ S has an inverse functions f−1 ,
defined by

f−1( f (z)) = z (z ∈ D)

and

f ( f−1(ω)) = ω (|ω | < r0( f ), r0( f ) � 1
4
).

In fact, according to the Kobe One-Quarter Theorem [9], the inverse function f−1 is
given by

g(ω) = f−1(ω) = ω −a2ω2 +(2a2
2−a3)ω3 − (5a3

2−5a2a3 +a4)ω4 + · · ·
= ω +

∞

∑
n=2

bnωn. (1.2)

Let Σ denote the class of all bi-univalent functions in D given by the Taylor-
Maclaurin series expansion by (1.1). Coefficient estimate problem of bi-univalent func-
tion were widely researched in the literature. In 1967, Lewin [10] first introduced the
class Σ and studied the estimate for the coefficient |a2| of functions in Σ , and obtained
that |a2| � 1.51. Subsequently Branan and Clunie [11] improved Lewin’s result to
|a2| �

√
2 and later Netanyahu [12] proved that |a2| � 4/3. Kedzierawski [13] proved

the Brannan–Clunie conjecture for bi-starlike functions. In 1984, Tan [14] obtained that
|a2|< 1.485, which is the best known estimate for bi-univalent functions in Σ . Brannan
and Taha [15] also investigated certain subclasses of bi-univalent functions and found
the non-sharp estimates on the initial coefficients |a2| and |a3| . In recent years, many
researchers have been devoted various subclasses of the bi-univalent functions and ob-
tained the estimates on the initial coefficients |a2| and |a3| . The interest on estimates
for the initial coefficients |a2|, |a3| of the bi-univalent functions keep on by some re-
searchers(see, for example, Srivastava et al. [16], Frasin and Aouf [17], Hayami and
Owa [18], Xu et al. [19], and others [6, 7, 20–24]). Quite recently, only few works also
determined the Fekete–Szegö problem(i.e. estimate for the upper bound of |a3−μa2

2|)
for some subclasses of bi-univalent functions, for example [25–29]. In the meantime,
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the estimate on the general coefficients |an| (n � 4) of bi-univalent functions has at-
tracted the attention of some researchers. By using the Faber polynomial coefficient
expansions Jahangiri and Hamidi [30] obtained bounds for the coefficient |an| of bi-
univalent functions in certain subclass of Σ with a given gap series condition. Since
then, some of authors considered and studied the bound of general coefficient |an| for
bi-univalent functions in certain subclasses of Σ , for example [31–36]. The estimate on
the general coefficients |an| (n � 4) of bi-univalent functions is still an open problem.

Although many subclasses of bi-univalent functions have already been introduced
and studied some coefficient estimates, our focus is not only to further extend the bi-
univalent functions class, but also to study the above coefficient estimate problems and
Fekete–Szegö problem of the new classes of bi-univalent functions.

We begin by recalling the definition details of the following (s,t)-derivative oper-
ator (defined by Chakrabarti and Jagannathan [37], see also [38]), which will be used
in this paper.

DEFINITION 1.1. Let the function f ∈ A given by (1.1) and 0 < t < s � 1, the
(s,t)-derivative of the function f is defined as

(Ds,t f )(z) =

{
f (sz)− f (tz)

(s−t)z , z �= 0,

f ′(0), z = 0.

According to the above definition, we have

(Ds,t f )(z) = 1+
∞

∑
n=2

[n]s,t anz
n−1

where the symbol [n]s,t denotes the (s,t)-number or twin-basic number

[n]s,t =
sn − tn

s− t
.

Note that by putting s = 1, the (s,t)-derivative reduces to the Jackson t-derivative given
by (see [39])

(Dt f )(z) =

{
f (z)− f (tz)

(1−t)z , z �= 0,

f ′(0), z = 0.

And, for f ∈ A given by (1.1), we have

(Dt f )(z) = 1+
∞

∑
n=2

[n]t anz
n−1

where

[n]t =
1− tn

1− t
.

Also, by taking t → 1− , we have [n]t → n . So (Dt f )(z) reduces to f ′(z) for f ∈ A .
Now by using (s,t)-derivative operator and quasi-subordination we introduce a

generalization class of analytic and bi-Bazilevič functions.
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DEFINITION 1.2. Let λ � 1, α � 0. A function f (z) ∈ ∑ given by (1.1) is said
to be in the class Bq

∑(λ ,α,s,t,ϕ) if the following conditions are satisfied

(1−λ )
f (z)
z

+ λ (Ds,t f )(z)
(

f (z)
z

)α−1

−1 ≺q ϕ(z)−1, z ∈ D (1.3)

and

(1−λ )
g(ω)

ω
+ λ (Ds,tg)(ω)

(
g(ω)

ω

)α−1

−1 ≺q ϕ(ω)−1, ω ∈ D (1.4)

where g(ω) = f−1(ω) is defined by (1.2).

REMARK 1.3. There are some suitable choices of λ ,α,s,t which would provide
the following subclasses of the class Bq

∑(λ ,α,s,t,ϕ) .
(1) By taking s = 1 in Definition 1.2, the class Bq

∑(λ ,α,s,t,ϕ) reduces to the
class Bq

∑(λ ,α, t,ϕ) which is satisfied

(1−λ )
f (z)
z

+ λ (Dt f )(z)
(

f (z)
z

)α−1

−1 ≺q ϕ(z)−1, z ∈ D

and

(1−λ )
g(ω)

ω
+ λ (Dtg)(ω)

(
g(ω)

ω

)α−1

−1 ≺q ϕ(ω)−1, ω ∈ D.

(2) By taking α = 0 in Definition 1.2, the class Bq
∑(λ ,α,s,t,ϕ) reduces to the

class H q
∑ (λ ,s, t,ϕ) which is satisfied

(1−λ )
f (z)
z

+ λ
z(Ds,t f )(z)

f (z)
−1 ≺q ϕ(z)−1, z ∈ D

and

(1−λ )
g(ω)

ω
+ λ

ω(Ds,t g)(ω)
g(ω)

−1 ≺q ϕ(ω)−1, ω ∈ D.

Specially, for s = 1 and t → 1− , the class H q
∑ (λ ,s,t,ϕ) reduces to the class H q

∑ (λ ,ϕ)
which is satisfied

(1−λ )
f (z)
z

+ λ
z f ′(z)
f (z)

−1 ≺q ϕ(z)−1, z ∈ D

and

(1−λ )
g(ω)

ω
+ λ

ωg′(ω)
g(ω)

−1 ≺q ϕ(ω)−1, ω ∈ D.

(3) By taking α = 1 in Definition 1.2, the class Bq
∑(λ ,α,s,t,ϕ) reduces to the

class Rq
∑(λ ,s, t,ϕ) which is satisfied

(1−λ )
f (z)
z

+ λ (Ds,t f )(z)−1 ≺q ϕ(z)−1, z ∈ D
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and

(1−λ )
g(ω)

ω
+ λ (Ds,tg)(ω)−1 ≺q ϕ(ω)−1, ω ∈ D.

Specially, for s = 1 and t → 1− , the class Rq
∑(λ ,s,t,ϕ) reduces the class Rq

∑(λ ,ϕ)
introduced by Amol B. Patil1 and Uday H. Naik [6].

(4) By taking λ = 1 in Definition 1.2, the class Bq
∑(λ ,α,s,t,ϕ) reduces to the

class J q
∑(α,s, t,ϕ) which is satisfied

(Ds,t f )(z)
(

f (z)
z

)α−1

−1 ≺q ϕ(z)−1, z ∈ D

and

(Ds,t g)(ω)
(

g(ω)
ω

)α−1

−1 ≺q ϕ(ω)−1, ω ∈ D.

Specially, for s = 1 and t → 1− , the class J q
∑(α,s,t,ϕ) reduces the class J q

∑(α,ϕ)
introduced by S. P. Goyal, Onkar Singh and Rohit Mukherjee [7].

Our object of this paper is to study two kinds of coefficient estimate problems and
Fekete–Szegö problem for the class Bq

∑(λ ,α,s,t,ϕ) and some of its subclasses. Our
results are new in this direction and they give birth to many corollaries.

2. Preliminary results

In order to derive our main results, we need the following lemmas.
For β ∈ Z := {0,±1,±2, · · ·} , let Eβ

n−1 = Eβ
n−1(a2,a3, · · · ,an) be homogeneous

polynomial explicated in (see, for details, [40] and [41])

Eβ
n−1(a2,a3, · · · ,an) =

∞

∑
n=2

β !
j1 · · · jn−1

a j1
2 · · ·a jn−1

n for β � n−1, (2.1)

and the sum is taken over all nonnegative integers j1, · · · , jn−1 satisfying{
j1 + j2 + · · ·+ jn−1 = β ,

j1 +2 j2 + · · ·+(n−1) jn−1 = n−1.

It is clear that En−1
n−1(a2,a3, · · · ,an) = an−1

2 .

LEMMA 2.1. [40, 41] Let f (z) = z+ ∑∞
n=2 anzn ∈ A , then for any β ∈ Z(

f (z)
z

)β
= 1+

∞

∑
n=2

Kβ
n−1(a2,a3, · · · ,an)zn−1, (2.2)

where

Kβ
n−1(a2,a3, · · · ,an) = βan +

β (β −1)
2

E2
n−1 +

β !
(β −3)!3!

E3
n−1

+ · · ·+ β !
(β −n+1)!(n−1)!

En−1
n−1 ,
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with Eβ
n−1 is given by (2.1). In particular, the first three terms of Kβ

n−1 are

K1
1 = 2a2, K2

2 = 2a3 +a2
2, K2

3 = 2a4 +2a2a3, K2
4 = 2a5 +2a2a4 +a2

3.

LEMMA 2.2. Let f (z) ∈Bq
∑(λ ,α,s,t,ϕ) , then we have the following expansions

(1−λ )
f (z)
z

+ λ (Ds,t f )(z)
(

f (z)
z

)α−1

−1

=
∞

∑
n=2

(
(1−λ )an + λ

n

∑
i=1

[n+1− i]s,tan+1−iAi

)
zn−1 (2.3)

where a1 = A1 = 1 , Ai = Kα−1
i−1 (a2,a3, · · · ,ai) (i � 2). In particular, the coefficients of

z and z2 on the right-hand side of the equation are

[1+ λ ([2]s,t −α)]a2

and

[1+ λ ([3]s,t −α)]a3 + λ (1−α)
(
[2]s,t − α

2

)
a2

2.

Proof. For f (z) = z+ ∑∞
n=2 anzn , by applying Lemma 2.1 we have

(
f (z)
z

)α−1

= 1+
∞

∑
n=2

Anz
n−1, (2.4)

where An = Kα−1
n−1 (a2,a3, · · · ,an).

Since (Ds,t f )(z) = 1+ ∑∞
n=2[n]s,tanzn−1 , we have

(Ds,t f )(z)
(

f (z)
z

)α−1

=

(
1+

∞

∑
n=2

[n]s,tanz
n−1

)(
1+

∞

∑
n=2

Anz
n−1

)

= 1+([2]s,ta2 +A2)z+([3]s,ta3 +[2]s,ta2A2 +A3)z2 + · · ·
+([n]s,tan +[n−1]s,tan−1A2 + · · ·+[2]s,ta2An−1 +An)zn−1 + · · · .

Let a1 = 1,A1 = 1, we have

(Ds,t f )(z)
(

f (z)
z

)α−1

= 1+
∞

∑
n=2

(
n

∑
i=1

[n+1− i]s,tan+1−iAi

)
zn−1. (2.5)

From (2.4) and (2.5), we can obtain (2.3). This evidently completes the proof of Lemma
2.2. �
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LEMMA 2.3. [40] Let f (z) = z+ ∑∞
n=2 anzn ∈ A , then the inverse map g = f−1

of f is given in terms of the Faber polynomials of f with

g(ω) = f−1(ω) = ω +
∞

∑
n=2

1
n
K−n

n−1(a2,a3, · · · ,an)ωn, (2.6)

where

K−n
n−1(a2,a3, · · · ,an) =

(−n)!
(−2n+1)!(n−1)!

an−1
2 +

(−n)!
(−2n+2)!(n−3)!

an−3
2 a3

+
(−n)!

(−2n+3)!(n−4)!
an−4

2 a4 +
(−n)!

(−2n+4)!(n−5)!
an−5

2 [a5 +(n−2)a2
3]

+
(−n)!

(−2n+5)!(n−6)!
an−5

2 [a6 +(−2n+5)a3a4]+ ∑
j�7

an− j
2 Vj,

such that Vj (7 � j � n) is a homogeneous polynomial in the variables a2,a3, · · · ,an

(see [42]). In particular, the first three terms of K−n
n−1 are

K−2
1 = −2a2, K−3

2 = 3(2a2−a3), K−4
3 = −4(5a3

2−5a2a3 +a4).

LEMMA 2.4. Let f (z) ∈Bq
∑(λ ,α,s,t,ϕ) , then we have the following expansions

(1−λ )
(

g(ω)
ω

)
+ λ (Ds,tg)(ω)

(
g(ω)

ω

)α−1

−1

=
∞

∑
n=2

(
(1−λ )bn + λ

n

∑
i=1

[n+1− i]s,tbn+1−iBi

)
ωn−1, (2.7)

where g(ω) = f−1(ω) , b1 = 1 , bn = 1
nK−n

n−1(a2,a3, · · · ,an) (n � 2) , B1 = 1 , Bi =
K1−α

i−1 (b2,b3, · · · ,bi) (i � 2). In particular, the coefficients of ω and ω2 on the right-
hand side of the equation are

[1+ λ ([2]s,t −α)]b2

and
[1+ λ ([3]s,t −α)]b3 + λ (1−α)

(
[2]s,t − α

2

)
b2

2.

Proof. Suppose that f (z) = z+∑∞
n=2 anzn and g(ω) = f−1(ω) = ω +∑∞

n=2 bnωn .
By applying Lemma 2.3 we have

g(ω) = ω +
∞

∑
n=2

1
n
K−n

n−1(a2,a3, · · · ,an)ωn = ω +
∞

∑
n=2

bnωn.

Similar to the proof of Lemma 2.2, we can also prove the result (2.7). This evidently
completes the proof of Lemma 2.4. �
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LEMMA 2.5. Let analytic functions u(z) = c1z+c2z2+ · · · , v(ω) = d1ω +d2ω2 +
· · · and ϕ(z) = 1+ ξ1z+ ξ2z2 + · · · ∈ A , then we have the following expansions

ϕ(u(z))−1 =
∞

∑
n=1

n

∑
k=1

ξkE
k
n(c1,c2, · · · ,cn)zn (2.8)

and

ϕ(v(ω))−1 =
∞

∑
n=1

n

∑
k=1

ξkE
k
n(d1,d2, · · · ,dn)ωn. (2.9)

Proof. For ϕ(z) = 1+ ξ1z+ ξ2z2 + · · · , u(z) = c1z+ c2z2 + · · · , we have

ϕ(u(z))−1 = ξ1u(z)+ ξ2(u(z))2 + ξ3(u(z))3 + · · ·
= ξ1c1z+(ξ1c2 + ξ2c

2
1)z

2 +(ξ1c3 +2ξ2c1c2 + ξ3c
3
1)z

3 + · · ·
=

∞

∑
n=1

n

∑
k=1

ξkE
k
n(c1,c2, · · · ,cn)zn.

Similarly, for ϕ(z) = 1+ ξ1z+ ξ2z2 + · · · ,v(ω) = d1ω +d2ω2 + · · · , we can get (2.9).
This evidently completes the proof of Lemma 2.5. �

LEMMA 2.6. [43] If p ∈ P , then |pn| � 2 for each n, where P is the family
of all function p analytic in D for which Re p(z) > 0, p(z) = 1+ p1z+ p2z2 + · · · for
z ∈ D .

3. Main results

In the sequel, it is assumed that ϕ(z) is an analytic function with positive real
part in D, ϕ(D) is symmetric with respect to the real axis and starlike with respect to
ϕ(0) = 1 and ϕ ′(0) > 0. And function ϕ(z) has the Taylor series expansion of the
form

ϕ(z) = 1+ ξ1z+ ξ2z
2 + · · · , ξ1 > 0. (3.1)

Suppose that ψ(z) and φ(z) are analytic in the unit disk D with |ψ(z)| < 1, |φ(ω)| <
1, and suppose that

ψ(z) = h0 +h1z+h2z
2 + · · · , φ(ω) = l0 + l1ω + l2ω2 + · · · . (3.2)

3.1. Coefficient estimates problem

In this section, we obtain the coefficient estimates for the function class Bq
∑(λ ,α,

s,t,ϕ) .
By using Faber polynomial expansions we prove our first main result which pro-

vides an estimates for the general coefficients |an| of functions in Bq
∑(λ ,α,s,t,ϕ)

subject to a given gap series condition.
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THEOREM 2.1. Let the function f (z) ∈ Bq
∑(λ ,α,s,t,ϕ) be given by (1.1). If

am = 0 (2 � m � n−1) , then

|an| � 2
|1+ λ ([n]s,t −α)| min

{
n−1

∑
i=0

|hi|
(

n−i−1

∑
k=1

|Ek
n−i−1(c1,c2, · · · ,cn−i−1)|

)
,

n−1

∑
i=0

|li|
(

n−i−1

∑
k=1

|Ek
n−i−1(d1,d2, · · · ,dn−i−1)|

)}
(3.3)

Proof. Since f ∈Bq
∑(λ ,α,s,t,ϕ) , then there exist two Schwarz functions u(z) =

c1z+c2z2 + · · · , v(ω) = d1ω +d2ω2 + · · · and analytic functions ψ ,φ defined by (3.2)
such that

(1−λ )
f (z)
z

+ λ (Ds,t f )(z)
(

f (z)
z

)α−1

−1 = ψ(z)[ϕ(u(z))−1]

and

(1−λ )
g(ω)

ω
+ λ (Ds,tg)(ω)

(
g(ω)

ω

)α−1

−1 = φ(ω) [ϕ(v(ω))−1] .

By using Lemma 2.5 we have

ψ(z)[ϕ(u(z))−1] =
∞

∑
n=1

[
n

∑
i=0

hi

(
n−i

∑
k=1

ξkE
k
n−i(c1,c2, · · · ,cn−i)

)]
zn (3.4)

and

φ(ω) [ϕ(v(ω))−1] =
∞

∑
n=1

[
n

∑
i=0

li

(
n−i

∑
k=1

ξkE
k
n−i(d1,d2, · · · ,dn−i)

)]
ωn. (3.5)

By using Lemma 2.2 and comparing the corresponding coefficients of (2.3) and (3.4),
for any n � 2 we have

(1−λ )an + λ
n

∑
i=1

[n+1− i]s,tan+1−iK
α−1
i−1 (a2,a3, · · · ,ai)

=
n−1

∑
i=0

hi

(
n−i−1

∑
k=1

ξkE
k
n−i−1(c1,c2, · · · ,cn−i−1)

)
(3.6)

and similarly, by using Lemma 2.4 and comparing the corresponding coefficients of
(2.7) and (3.4) we have

(1−λ )bn + λ
n

∑
i=1

[n+1− i]s,tbn+1−iK
α−1
i−1 (b2,b3, · · · ,bi)

=
n−1

∑
i=0

li

(
n−i−1

∑
k=1

ξkE
k
n−i−1(d1,d2, · · · ,dn−i−1)

)
. (3.7)
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For am = 0 (2 � m � n−1) , we get bm = 0 (2 � m � n−1) and bn = −an . Hence

[1+ λ ([n]s,t −α)]an =
n−1

∑
i=0

hi

(
n−i−1

∑
k=1

ξkE
k
n−i−1(c1,c2, · · · ,cn−i−1)

)
(3.8)

and

− [1+ λ ([n]s,t −α)]an =
n−1

∑
i=0

li

(
n−i−1

∑
k=1

ξkE
k
n−i−1(d1,d2, · · · ,dn−i−1)

)
. (3.9)

Finally, by taking the moduli in both sides of (3.8) and (3.9) and using Lemma 2.6, we
get the desired estimate on |an| as asserted in (3.3). This evidently completes the proof
of Theorem 3.1. �

By taking special values of parameters λ ,α,s,t in Theorem 3.1, we easily obtain
the following results.

COROLLARY 3.2. Let the function f (z) ∈ Bq
∑(λ ,α, t,ϕ) be given by (1.1). If

am = 0 (2 � m � n−1) , then

|an| � 2
|1+ λ ([n]t −α)| min

{
n−1

∑
i=0

|hi|
(

n−i−1

∑
k=1

|Ek
n−i−1(c1,c2, · · · ,cn−i−1)|

)
,

n−1

∑
i=0

|li|
(

n−i−1

∑
k=1

|Ek
n−i−1(d1,d2, · · · ,dn−i−1)|

)}

COROLLARY 3.3. Let the function f (z) ∈ H q
∑ (λ ,s,t,ϕ) be given by (1.1). If

am = 0 (2 � m � n−1) , then

|an| � 2
|1+ λ [n]s,t| min

{
n−1

∑
i=0

|hi|
(

n−i−1

∑
k=1

|Ek
n−i−1(c1,c2, · · · ,cn−i−1)|

)
,

n−1

∑
i=0

|li|
(

n−i−1

∑
k=1

|Ek
n−i−1(d1,d2, · · · ,dn−i−1)|

)}

COROLLARY 3.4. Let the function f (z) ∈ Rq
∑(λ ,s,t,ϕ) be given by (1.1). If

am = 0 (2 � m � n−1) , then

|an| � 2
|1+ λ ([n]s,t −1)| min

{
n−1

∑
i=0

|hi|
(

n−i−1

∑
k=1

|Ek
n−i−1(c1,c2, · · · ,cn−i−1)|

)
,

n−1

∑
i=0

|li|
(

n−i−1

∑
k=1

|Ek
n−i−1(d1,d2, · · · ,dn−i−1)|

)}
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COROLLARY 3.5. Let the function f (z) ∈ J q
∑(α,s,t,ϕ) be given by (1.1). If

am = 0 (2 � m � n−1) , then

|an| � 2
|[n]s,t +1−α|min

{
n−1

∑
i=0

|hi|
(

n−i−1

∑
k=1

|Ek
n−i−1(c1,c2, · · · ,cn−i−1)|

)
,

n−1

∑
i=0

|li|
(

n−i−1

∑
k=1

|Ek
n−i−1(d1,d2, · · · ,dn−i−1)|

)}

REMARK 3.6. For λ = 1, s = 1, ψ(z) = φ(ω) = 1 and t → 1− in Theorem 3.6,
we obtain the bounds on |an| which are the improved results ([33], Theorem 1).

Our next main result provide estimates for the initial coefficients |a2| and |a3| of
functions in Bq

∑(λ ,α,s,t,ϕ) with no gap series restrictions imposed.

THEOREM 3.7. Let the function f (z) ∈ Bq
∑(λ ,α,s,t,ϕ) be given by (1.1), then

|a2| � min

⎧⎨
⎩

√
2(h2

0 + l20)

|1+ λ ([2]s,t −α)| ,
√

2(|h0|+ |l0|)+ (|h1|+ |l1|)
|1+ λ ([3]s,t −α)+ λ (1−α)

2 (2[2]s,t −α)|

⎫⎬
⎭ (3.10)

|a3| � min
{

2(h2
0+l20)

[1+λ ([2]s,t−α)]2 + 2(|h0|+|l0|)+(|h1|+|l1|)
|1+λ ([3]s,t−α)| ,

|4+λ [4([3]s,t−α)+(1−α)(2[2]s,t−α)]|(2|h0|+|h1|)+|λ (1−α)(2[2]s,t−α)|(2|l0|+|l1|)
|[1+λ ([3]s,t−α)](2+λ [2([3]s,t−α)+(1−α)(2[2]s,t−α)])|

}
. (3.11)

Proof. Putting n = 2 and n = 3 in (3.6) and (3.7) respectively, we obtain

[1+ λ ([2]s,t −α)]a2 = h0ξ1c1 (3.12)

[1+ λ ([3]s,t −α)]a3 + λ (1−α)
(
[2]s,t − α

2

)
a2

2 = (h0c2 +h1c1)ξ1 +h0c
2
1ξ2 (3.13)

and
−([1+ λ ([2]s,t −α)]b2 = l0ξ1d1

[1+ λ ([3]s,t −α)]b3 + λ (1−α)
(
[2]s,t − α

2

)
b2

2 = (l0d2 + l1d1)ξ1 + l0d
2
1ξ2.

According to Lemma 2.3, we have b2 = −a2,b3 = 2a2
2−a3 . Hence

− ([1+ λ ([2]s,t −α)]a2 = l0ξ1d1 (3.14)

[1+ λ ([3]s,t −α)](2a2
2−a3)+ λ (1−α)

(
[2]s,t − α

2

)
a2

2 = (l0d2 + l1d1)ξ1 + l0d
2
1ξ2.

(3.15)
From (3.12) and (3.14), we obtain

a2
2 =

ξ 2
1 (h2

0c
2
1 + l20d

2
1)

2[1+ λ ([2]s,t −α)]2
. (3.16)
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Also, from (3.13) and (3.15), we find

a2
2 =

ξ1(h0c2 +h1c1 + l0d2 + l1d1)+ ξ2(h0c2
1 + l0d2

1)
2[1+ λ ([3]s,t −α)]+ λ (1−α)(2[2]s,t −α)

. (3.17)

For the coefficients of the Schwarz functions u(z) and v(ω) we have |cn| � 1 and
|dn| � 1 (see [9]). Taking the moduli in both sides of (3.16) and (3.17), and applying
Lemma 2.6 we get

|a2| �
√

2(h2
0 + l20)

|1+ λ ([2]s,t −α)|
and

|a2| �
√

2(|h0|+ |l0|)+ (|h1|+ |l1|)
|1+ λ ([3]s,t −α)+ λ (1−α)

2 (2[2]s,t −α)|
which gives us the desired estimate on |a2| as asserted in (3.10).

Next, in order to find the bound on |a3| , by subtracting (3.15) from (3.13), we
obtain

a3 = a2
2 +

ξ1(h0c2 +h1c1 − l0d2− l1d1)+ ξ2(h0c2
1− l0d2

1)
2[1+ λ ([3]s,t −α)]

. (3.18)

Thus, upon substituting the value of a2
2 from (3.16) into (3.18), it follows that

a3 =
ξ 2

1 (h2
0c

2
1 + l20d

2
1)

2[1+ λ ([2]s,t −α)]2
+

ξ1(h0c2 +h1c1− l0d2− l1d1)+ ξ2(h0c2
1− l0d2

1)
2[1+ λ ([3]s,t −α)]

which yields

|a3| � 2(h2
0 + l20)

[1+ λ ([2]s,t −α)]2
+

2(|h0|+ |l0|)+ (|h1|+ |l1|)
|1+ λ ([3]s,t −α)| . (3.19)

On the other hand, upon substituting the value of a2
2 from (3.17) into (3.18), we obtain

a3 =
ξ1(h0c2 +h1c1 + l0d2 + l1d1)+ ξ2(h0c2

1 + l0d2
1)

2[1+ λ ([3]s,t −α)]+ λ (1−α)(2[2]s,t −α)

+
ξ1(h0c2 +h1c1− l0d2− l1d1)+ ξ2(h0c2

1− l0d2
1)

2[1+ λ ([3]s,t −α)]
.

It follows that

|a3| � |4+λ [4([3]s,t−α)+(1−α)(2[2]s,t−α)]|(2|h0|+|h1|)+|λ (1−α)(2[2]s,t−α)|(2|l0|+|l1|)
|[1+λ ([3]s,t−α)](2+λ [2([3]s,t−α)+(1−α)(2[2]s,t−α)])| . (3.20)

Combining (3.19) and (3.20), we get the desired estimate on the coefficient |a3| as
asserted in (3.11). This evidently completes the proof of Theorem 3.7. �

REMARK 3.8. (1) For α = 1, s = 1 and t → 1− in Theorem 3.7, we obtain the
bounds on |a2| and |a3| which are the improved results ([6], Theorem 2.2). (2) For
λ = 1, s = 1 and t → 1− in Theorem 3.7, we obtain the bounds on |a2| and |a3| which
are the improved results ([7], Theorem 2.1). (3) For λ = 1, s = 1, ψ(z) = φ(ω) = 1
and t → 1− in Theorem 3.7, we obtain the bounds on |a2| and |a3| which are the
improved results ([33], Theorem 2).



COEFFICIENT ESTIMATES AND FEKETE-SZEGÖ INEQUALITY 935

3.2. Fekete-Szegö problem

In this section, we obtain Fekete-Szeg ö inequality for the function class Bq
∑(λ ,α,

s,t,ϕ) .

THEOREM 3.9. Let the function f (z) ∈ Bq
∑(λ ,α,s,t,ϕ) be given by (1.1), then

for any number μ ∈ C and λ ([3]s,t −α) > −1

|a3− μa2
2| �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)
2[1+λ ([3]s,t−α)] ,

0 � |M(μ)| � 1
2[1+λ ([3]s,t−α)] ,

[2ξ1(|l0|+ |l1|)+ |ξ2− ξ1|(|h0|+ |l0|)]|M(μ)|,

|M(μ)| � 1
2[1+λ ([3]s,t−α)] .

(3.21)

For any number μ ∈ C and λ ([3]s,t −α) < −1

|a3− μa2
2| �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[2ξ1(|l0|+ |l1|)+ |ξ2− ξ1|(|h0|+ |l0|)]|M(μ)|,

0 � |M(μ)| � − 1
2[1+λ ([3]s,t−α)] ,

− 2ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)
2[1+λ ([3]s,t−α)] ,

|M(μ)| � − 1
2[1+λ ([3]s,t−α)] ,

(3.22)

where

M(μ) = h0l0ξ 2
1 (1−μ)

[2(1+λ ([3]s,t−α))+λ (1−α)(2[2]s,t−α)]h0l0ξ 2
1 −[1+λ ([2]s,t−α)]2(h0+l0)(ξ2−ξ1)

.

Proof. Since f (z) ∈ Bq
∑(λ ,α,s,t,ϕ) , then there exist analytic functions u,v :

D → D , with u(0) = 0 = v(0) , |u(z)| < 1, |v(ω)| < 1 and analytic functions ψ ,φ
defined by (3.2) such that

(1−λ )
f (z)
z

+ λ (Ds,t f )(z)
(

f (z)
z

)α−1

−1 = ψ(z)[ϕ(u(z))−1] (3.23)

and

(1−λ )
g(ω)

ω
+ λ (Ds,tg)(ω)

(
g(ω)

ω

)α−1

−1 = φ(ω) [ϕ(v(ω))−1] . (3.24)

Define the functions p1 and p2 in P given by

p1(z) =
1+u(z)
1−u(z)

= 1+ p1z+ p2z
2 + · · ·
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and

p2(ω) =
1+ v(ω)
1− v(ω)

= 1+q1ω +q2ω2 + · · · .

It follows

u(z) =
p1(z)−1
p1(z)+1

=
1
2

p1z+
1
2

(
p2− p2

1

2

)
z2 + · · · (3.25)

and

v(ω) =
p2(ω)−1
p2(ω)+1

=
1
2
q1ω +

1
2

(
q2− q2

1

2

)
ω2 + · · · . (3.26)

Using (3.1), (3.2), (3.25) and (3.26), it is evident that

ψ(z)[ϕ(u(z))−1] =
1
2
h0ξ1p1z+

[
1
2
h1ξ1p1 +

1
2
h0ξ1p2 +

1
4
h0(ξ2 − ξ1)p2

1

]
z2 + · · ·

(3.27)
and

φ(ω)[ϕ(v(ω))−1] =
1
2
l0ξ1q1ω +

[
1
2
l1ξ1q1 +

1
2
l0ξ1q2 +

1
4
l0(ξ2− ξ1)q2

1

]
ω2 + · · · .

(3.28)
Using (2.3) and (3.27) in (3.23) and comparing the coefficient of z and z2 , we get

[1+ λ ([2]s,t −α)]a2 =
1
2
h0ξ1p1, (3.29)

[1+ λ ([3]s,t −α)]a3 + λ (1−α)
(
[2]s,t − α

2

)
a2

2

=
1
2
h1ξ1p1 +

1
2
h0ξ1p2 +

1
4
h0(ξ2− ξ1)p2

1. (3.30)

Similarly using (2.7) and (3.28) in (3.24) and comparing the coefficient of ω and ω2 ,
we get

− [1+ λ ([2]s,t −α)]a2 =
1
2
l0ξ1q1, (3.31)

[1+ λ ([3]s,t −α)](2a2
2−a3)+ λ (1−α)

(
[2]s,t − α

2

)
a2

2

=
1
2
l1ξ1q1 +

1
2
l0ξ1q2 +

1
4
l0(ξ2 − ξ1)q2

1. (3.32)

Subtracting (3.32) from (3.30), we get

a3 = a2
2 +

1
2 (h1p1− l1q1)ξ1 + 1

2 (h0p2 − l0q2)ξ1 + 1
4 (ξ2 − ξ1)(h0p2

1− l0q2
1)

2[1+ λ ([3]s,t −α)]
. (3.33)

By adding (3.30) and (3.32), we have

a2
2 =

1
2 (h1p1 + l1q1)ξ1 + 1

2 (h0p2 + l0q2)ξ1 + 1
4(ξ2 − ξ1)(h0p2

1 + l0q2
1)

2[1+ λ ([3]s,t −α)+ λ (1−α)([2]s,t − α
2 )]

. (3.34)
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Using (3.29) and (3.31), we obtain

h0p2
1 + l0q

2
1 =

4[1+ λ ([2]s,t −α)]2(h0 + l0)
h0l0ξ 2 a2

2. (3.35)

From (3.32)–(3.34), we get

a3− μa2
2 =

ξ1

2

[(
M(μ)+

1
2[1+ λ ([3]s,t −α)]

)
(h1p1 +h0p2)

+
(

M(μ)− 1
2[1+ λ ([3]s,t −α)]

)
(l1q1 + l0q2)

]

+
(ξ2− ξ1)(h0p2

1− l0q2
1)

8[1+ λ ([3]s,t −α)]
(3.36)

where

M(μ) = h0l0ξ 2
1 (1−μ)

[2(1+λ ([3]s,t−α))+λ (1−α)(2[2]s,t−α)]h0l0ξ 2
1 −[1+λ ([2]s,t−α)]2(h0+l0)(ξ2−ξ1)

.

By taking the moduli on both sides of (3.36) and applying Lemma 2.6, we finally obtain
(3.21) and (3.22). This evidently completes the proof of Theorem 3.9. �

Setting α = 1, s = 1 and t → 1− in Theorem 3.9, we get the following result.

COROLLARY 3.10. Let the function f (z) ∈ Rq
∑(λ ,ϕ) be given by (1.1), then for

any number μ ∈ C

|a3− μa2
2| �

⎧⎨
⎩

2ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)
2(1+2λ ) , 0 � |M(μ)| � 1

2(1+2λ ) ,

[2ξ1(|l0|+ |l1|)+ |ξ2− ξ1|(|h0|+ |l0|)]|M(μ)|, |M(μ)| � 1
2(1+2λ ) .

where

M(μ) =
h0l0ξ 2

1 (1− μ)
2(1+2λ )h0l0ξ 2

1 − (1+ λ )2(h0 + l0)(ξ2 − ξ1)
.

Setting λ = 1, s = 1 and t → 1− in Theorem 3.8, we get the following result.

COROLLARY 3.11. Let the function f (z) ∈ J q
∑(α,ϕ) be given by (1.1), then for

any number μ ∈ C and 0 � α < 4

|a3− μa2
2| �

⎧⎨
⎩

2ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)
2(4−α) , 0 � |M(μ)| � 1

2(4−α) ,

[2ξ1(|l0|+ |l1|)+ |ξ2− ξ1|(|h0|+ |l0|)]|M(μ)|, |M(μ)| � 1
2(4−α) .

For any number μ ∈ C and α > 4

|a3−μa2
2|�

⎧⎨
⎩

[2ξ1(|l0|+ |l1|)+ |ξ2− ξ1|(|h0|+ |l0|)]|M(μ)|, 0 � |M(μ)| � 1
2(α−4) ,

2ξ1(|h0|+|h1|)+|ξ2−ξ1|(|h0|+|l0|)
2(α−4) , |M(μ)| � 1

2(α−4) ,



938 AOEN, S. LI AND H. TANG

where

M(μ) =
h0l0ξ 2

1 (1− μ)
(4−α)(3−α)h0l0ξ 2

1 − (3−α)2(h0 + l0)(ξ2 − ξ1)
.

Acknowledgements. The present investigation is supported by the Natural Science
Foundation of China (Grant No. 11561001), the Natural Science Foundation of Inner
Mongolia of China (Grant No. 2020MS01010), and the Higher School Foundation of
Inner Mongolia of China (Grant No. NJZY19211).

RE F ER EN C ES

[1] M. S. ROBERTSON, Quasi-subordination and coefficient conjectures, Bulletin of the American Math-
ematical Society 76, 1–9 (1970).

[2] S. Y. LEE, Quasi-subordinate functions and coefficient conjectures, Journal of the Korean Mathemat-
ical Society 12 (1), 43–50 (1975).

[3] F. Y. REN, S. OWA, S. FUKUI, Some inequalities on quasi-subordinate functions, Quasi-subordinate
functions and coefficient conjecturesBulletin of the Australian Mathematical Society 43 (2), 317–324
(1991).
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[25] P. ZAPRAWA, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math.
Soc. Simon Stevin 21 (1), 169–178 (2014).
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associated with generalized Sǎlǎgean q-differential operator, Konuralp Journal of Mathematics, 7 (1),
25–32 (2019).

[37] R. CHAKRABARTI, R. JAGANNATHAN, A (p,q) -oscillator realization of two-parameter quantum
algebras, J. Phys. A, 24, 711–718 (1991).

[38] A. MOTAMEDNEZHAD, S. SALEHIAN, New subclass of bi-univalent functions by (p,q) -derivative
operator, Honan Mathematical J. 41 (2), 381–390 (2019).

[39] F. H. JACKSON, On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh, 46,
253–281 (1908).

[40] H. AIRAULT, A. BOUALL, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (3),
179–222 (2006).

[41] H. AIRAULT, Remarks on Faber polynomials, Int. Math. Forum, 3 (9–12), 449–456 (2008).



940 AOEN, S. LI AND H. TANG

[42] H. AIRAULT, JIAGANG REN, An algebra of differential operators and generating functions on the set
of univalent functions, Bull. Sci. Math., 126 (5), 343–367 (2002).

[43] C. POMMERENKE, Univalent functions, Vandenhoeck and Rupercht, Gottingen, 1975.

(Received March 24, 2020) Aoen
Chifeng University

School of Mathematics and Statistics
Inner Mongolia 024000, People’s Republic of China

e-mail: cfxyaoen@sina.com

Shuhai Li
School of Mathematics and Statistics

Chifeng University
Inner Mongolia 024000, People’s Republic of China

Huo Tang
School of Mathematics and Statistics

Chifeng University
Inner Mongolia 024000, People’s Republic of China

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


