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Abstract. A function f ∈ A1 is said to be stable with respect to g ∈ A1 if

sn( f (z))
f (z)

≺ 1
g(z)

, z ∈ D,

holds for all n ∈ N where A1 denote the class of analytic functions f in the unit disk D = {z ∈
C : |z| < 1} normalized by f (0) = 1 . Here sn( f (z)) , the nth partial sum of f (z) =

∞

∑
k=0

akz
k is

given by sn( f (z)) =
n

∑
k=0

akz
k , n ∈ N∪{0} . In this work, we consider the following function

vλ (A,B,z) =
(

1+Az
1+Bz

)λ

for −1 � B < A � 1 and 0 � λ � 1 for our investigation. The main purpose of this paper is

to prove that vλ (A,B,z) is stable with respect to vλ (0,B,z) =
1

(1+Bz)λ for 0 < λ � 1 and

−1 � B < A � 0 . Further, we prove that vλ (A,B,z) is not stable with respect to itself, when
0 < λ � 1 and −1 � B < A < 0 .

Introduction and Main Results

Let A denote the family of functions f that are analytic in the unit disk D :=
{z : |z| < 1} . Let A1 is the subset of A with the normalization f (0) = 1. A single
valued function f ∈ A1 is said to be univalent in a domain Δ ⊆ C if f is one-to-one
in Δ . The class of all univalent functions with the normalization f (0) = 0 = f ′(0)−1
is denoted by S . Let Ω be the family of functions ω , regular in D and satisfying the
conditions ω(0) = 0 and |ω(z)|< 1 for all z ∈ D . For f ,g ∈A , the function f is said
to be subordinate to g , denoted by f ≺ g if and only if there exists an analytic function
ω ∈ Ω such that f = g ◦ω . In particular, if g is univalent in D then f (0) = g(0) and
f (D) ⊆ g(D) hold.

The function z f (z) ∈ A1 is starlike of order λ if Re

(
z f ′(z)
f (z)

)
> λ for all z ∈ D

and 0 � λ < 1. The class of all starlike functions, denoted by S ∗(λ ) is a subclass of
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S . The nth partial sum sn( f (z)) of f (z) =
∞

∑
k=0

akz
k is given by sn( f (z)) =

n

∑
k=0

akz
k ,

n = 0,1,2, . . . . For more details about the univalent functions, its subclasses and subor-
dination properties, we refer [2, 3, 5].

The concept of stable functions was first introduced by Ruscheweyh and Salinas
[6], while discussing the class of starlike functions of order λ , where 1/2 � λ < 1.
However, the class of starlike functions of order λ ∈ [1/2,1) is comparatively a much
narrow class but it has many interesting properties too. Ruscheweyh and Salinas [6]
proved the following result.

THEOREM 1. [6] Let λ ∈ [1/2,1) and z f ∈ S ∗(λ ) , then

sn( f ,z)
f (z)

≺ (1− z)λ , n ∈ N,z ∈ D.

Theorem 1 has several applications in Gegenbauer polynomial sums and motivated
by Theorem 1, Ruscheweyh and Salinas [6] introduced the concept of Stable functions
which is stated as follows. For some n∈N , a function F is said to be n -stable function
with respect to G if

sn(F(z))
F(z)

≺ 1
G(z)

, for F,G ∈ A1 and z ∈ D.

Moreover, the function F is said to be stable with respect to G , if F is n -stable with
respect to G for every n ∈ N . Particularly, if the function F is n -stable with respect to
itself. Then for every n ∈ N , F is stable. In the present context, for −1 � B < A � 1,
we define a function

vλ (A,B,z) :=
(

1+Az
1+Bz

)λ
for z ∈ D and λ ∈ (0,1].

For λ = 1/2, Ruscheweyh and Salinas [7] proved that v1/2(1,−1,z) is stable function
with respect to itself. The stability of v1/2(1,−1,z) is equivalent to the simultaneous
non-negativity of general class of sine and cosine sums given by Vietoris [11], the most
celebrated theorem of positivity of trigonometric sums. Ruscheweyh and Salinas [7]
conjectured that vλ (1,−1,z) is stable for 0 < λ < 1/2. Using computer algebra, for
λ = 1/4 it was shown in [7] that v1/4(1,−1,z) is n -stable for n = 1,2,3, · · · ,5000. In
the limiting case, the validation of stability of vλ (1,−1,z) for 0 < λ < 1/2 interpreted
in terms of positivity of trigonometric polynomials.

Further extensions of Vietoris Theorem and stable functions to Cesàro stable func-
tions and Generalized Cesàro stable functions have been studied in [4] and [9] respec-
tively. In this direction, conjectures are also proposed in [9] that linked Generalized
Cesàro stable functions with the positivity of trigonometric sums. Chakraborty and
Vasudevarao [1] considered A = 1−2α , B = −1 and proved the following result.
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THEOREM 2. [1] For 0 < λ � 1 and 1/2 � α < 1 ,

vλ (1−2α,−1,z) =
(

1+(1−2α)z
1− z

)λ

is stable with respect to vλ (0,−1,z) =
1

(1− z)λ .

Chakraborty and Vasudevarao [1] also proved that vλ (1−2α,−1,z) is not stable with
repsect to itself when 1/2< α < 1 and 0< λ � 1. For λ = 1, the function v1(A,B,z) =
1+Az
1+Bz

have been studied widely by many researchers. The analytic functions of A1

subordinate to
1+Az
1+Bz

have been studied by Janowski [3] and the class of such func-

tions is denoted by P(A,B) . The functions of P(A,B) are called Janowski func-

tions. Moreover, the set of functions z f ∈A1 , for which
z f ′(z)
f (z)

≺ 1+Az
1+Bz

holds, called

Janowski starlike functions and the class of such functions is denoted by S ∗(A,B) . It
can be easily seen that S ∗(1,−1) ≡ S ∗ .

In this paper, we show that vλ (A,B,z) is stable with respect to vλ (0,B,z) = 1/(1+
Bz)λ for 0 < λ � 1 and −1 � B < A � 0. Further, vλ (A,B,z) is not stable with respect
to itself, when 0 < λ � 1 and −1 � B < A < 0. We can write vλ (A,B,z) as,

vλ (A,B,z) =
(

1+Az
1+Bz

)λ

= (1+Az)λ (1+Bz)−λ

=

(
1+

∞

∑
k=1

[λ ]k
k!

Akzk

)(
1+

∞

∑
k=1

(λ )k

k!
(−B)kzk

)

= 1+
∞

∑
n=1

(
n

∑
k=0

[λ ]k
k!

(λ )n−k

(n− k)!
Ak(−B)n−k

)
zn, (1)

where [λ ]k and (λ )k denote the factorial polynomials given as⎧⎨
⎩

[λ ]k = λ (λ −1)(λ −2)(λ −3) · · ·(λ − k+1), and

(λ )k = Γ(λ+k)
Γ(λ ) = λ (λ +1) · · ·(λ + k−1)

for k = 1,2, · · · respectively with [λ ]0 = 1 = (λ )0 and Γ is well-known gamma func-
tion. So vλ (A,B,z) can be written as

vλ (A,B,z) = 1+
∞

∑
n=1

an(A,B,λ )zn,

where

an := an(A,B,λ ) =
n

∑
k=0

[λ ]k
k!

(λ )n−k

(n− k)!
Ak(−B)n−k.
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Now, we state two lemmas which will helpful to prove our main results.

LEMMA 1. For 0 < λ � 1 and −1 � B < A � 0 , we have

n

∑
k=0

[λ ]k
k!

(λ )n−k

(n− k)!
Ak(−B)n−k > 0.

LEMMA 2. Let vλ (A,B,z) be defined by (1). Then for λ ∈ (0,1] and −1 � B <
A � 0 ,

(m+1)(n+1)

(
n+1

∑
k=0

[λ ]k
k!

(λ )n+1−k

(n+1− k)!
AkBn+1−k

)

−mn

(
n

∑
k=0

[λ ]k
k!

(λ )n−k

(n− k)!
AkBn−k

)
� 0 (2)

holds for all m, n ∈ N .

Now, we state main results of this paper which are about the stability of vλ (A,B,z)
with repsect to vλ (0,B,z) and vλ (A,B,z) itself.

THEOREM 3. For λ ∈ (0,1] and −1 � B < A � 0 , vλ (A,B,z) given in (1) is

stable with respect to vλ (0,B,z) =
1

(1+Bz)λ .

If we substitute A = 0 in Theorem 3, we get the following corollary which is also
a generalization of the result given by Ruscheweyh and Salinas [6].

COROLLARY 1. For λ ∈ (0,1] and −1 � B < 0 , vλ (0,B,z) =
1

(1+Bz)λ is stable

function.

Now for 0 < μ � λ � 1, we have the following corollary of Theorem 3.

COROLLARY 2. For 0 < μ � λ � 1 and for −1 � B < 0 we have

sn(vμ(0,B,z))
vλ (0,B,z)

≺ 1
vλ (0,B,z)

, for z ∈ D.

Theorem 3 also generalizes result of Chakraborty and Vasudevarao [1] as if we
substitute A = 1− 2α and B = −1 in Theorem 3, reduces to Theorem 2. In other
words, Theorem 2 is a particular case of Theorem 3.

THEOREM 4. For λ ∈ (0,1] and −1 � B < A < 0 , vλ (A,B,z) =
(

1+Az
1+Bz

)λ
is

not stable with respect to itself.
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Proof of Main Results

Proof of Lemma 1. Consider,

1 = (1− z)λ (1− z)−λ

= 1+
∞

∑
n=1

(
n

∑
k=0

[λ ]k
k!

(λ )n−k

(n− k)!
(−1)k

)
zn

Comparing the coefficients of zn on both the sides we have

n

∑
k=0

[λ ]k
k!

(λ )n−k

(n− k)!
(−1)k = 0,

which can be expanded as

(λ )(λ +1) · · ·(λ +n−1)
(n)!

+
(λ )(λ +1) · · ·(λ +n−2)

(n−1)!

(
λ
1!

)
(−1)

+
(λ )(λ +1) · · ·(λ +n−3)

(n−2)!
λ (λ −1)

2!
(−1)2 + · · ·

+
λ
1!

(λ )(λ −1) · · ·(λ −n+2)
(n−1)!

(−1)n−1 +
(λ )(λ −1) · · ·(λ −n+1)

n!
(−1)n = 0.

Since 0 � λ < 1, so only first term in the above equation is positive. By multiplying

2nd,3rd , · · · , (n+1)th terms by
α
β

,
α2

β 2 , · · · , αn

β n respectively, we obtain for 0 � α < β ,

(λ )(λ +1) · · ·(λ +n−1)
(n)!

+
(λ )(λ +1) · · ·(λ +n−2)

(n−1)!

(
λ
1!

)
(−1)

α
β

+
(λ )(λ +1) · · ·(λ +n−3)

(n−2)!
λ (λ −1)

2!

(−α
β

)2

+ · · ·

+
λ
1!

(λ )(λ −1) · · ·(λ −n+2)
(n−1)!

(−α
β

)n−1

+
(λ )(λ −1) · · ·(λ −n+1)

n!

(−α
β

)n

� 0.

After multiplying by β n we obtain

β n
n

∑
k=0

[λ ]k
k!

(λ )n−k

(n− k)!
(−1)k

(
α
β

)k

� 0 (3)

By substituting α = −A , β = −B in (3) so that for −1 � B < A � 0, the lemma is
proved. �
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Proof of Lemma 2. Let vλ (A,B,z) be defined by (1). Then,

vλ (A,B,z) =
(

1+Az
1+Bz

)λ
= 1+a1z+a2z

2 +a3z
3 + · · ·

v′λ (A,B,z) = λ
(

1+Az
1+Bz

)λ−1( (1+Bz)A− (1+Az)B
(1+Bz)2

)

= λ (A−B)
(1+Az)λ−1

(1+Bz)λ+1

(1+Bz)v′λ (A,B,z) = λ (A−B)(1+Az)λ−1(1+Bz)−λ (4)

Since 0 > A > B , 0 < λ � 1, (1+Az)λ−1 = 1+(λ −1)Az+ (λ−1)(λ−2)
2! A2z2 + · · · and

(1 + Bz)−λ = 1− λBz + λ (λ+1)
2! B2z2 + · · · have positive Taylor series coefficients. A

simple computation yields that

(1+Bz)v′λ(A,B,z) = (a1 +2a2z+3a3z
2 + · · ·)(1+Bz)

= a1 +
∞

∑
n=1

((n+1)an+1 +Bnan)zn. (5)

Since right hand side of (4) has positive Taylor coefficients, from (4) and (5) we con-
clude that

(n+1)an+1 +Bnan > 0, n ∈ N. (6)

The left hand side of the expression given in (2) can be rewritten as

(m+1)(n+1)an+1+mnBan. (7)

Equivalently, (7) can be written as

m((n+1)an+1 +Bnan)+ (n+1)an+1.

Using (6) and the fact that an � 0 for m,n ∈ N , the lemma is proved for λ ∈ (0,1] and
−1 � B < A � 0. �

Before going to proceed further for the proof of Theorem 3, it is easy to verify the
following relations.

s′n(vλ (A,B,z),z) = sn−1(v′λ (A,B,z),z),
zs′n(vλ (A,B,z),z) = sn(zv′λ (A,B,z),z),

z2s′n(vλ (A,B,z),z) = sn(z2v′λ (A,B,z),z).

(8)

Now, we are ready to give the proof of Theorem 3.

Proof of Theorem 3. To show that vλ (A,B,z) is stable with respect to vλ (0,B,z) ,
it is enough to show that

sn(vλ (A,B,z),z)
vλ (A,B,z),z

≺ 1
vλ (0,B,z)

, z ∈ D
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for all n ∈ N , i.e., to prove that

(1+Bz)λ sn(vλ (A,B,z),z)
(1+Az)λ ≺ (1+Bz)λ , z ∈ D,

which can be equivalently written as

(1+Bz)sn(vλ (A,B,z),z)
1
λ

(1+Az)
≺ (1+Bz).

To show that , it is enough to prove that∣∣∣∣∣ (1+Bz)sn(vλ (A,B,z),z)
1
λ

(1+Az)
−1

∣∣∣∣∣� |B| � 1, z ∈ D.

For fixed n and λ , we consider the following function

h(z) = 1− (1+Bz)sn(vλ (A,B,z),z)
1
λ

(1+Az)
, z ∈ D.

It is easy to see that

v′λ (A,B,z) = λ (A−B)
(1+Az)λ−1

(1+Bz)λ+1
= λ (A−B)

vλ (A,B,z)
(1+Bz)(1+Az)

,

which can be rewritten in the following form

vλ (A,B,z)− (1+(A+B)z+ABz2)
λ (A−B)

v′λ (A,B,z) = 0 for z ∈ D. (9)

A simple calculations gives that

h′(z) =
A−B

(1+Az)2 sn(vλ (A,B,z),z)1/λ

− (1+Bz)
(1+Az)λ

sn(vλ (A,B,z),z)
1
λ −1s′n(vλ (A,B,z),z)

=
(A−B)sn(vλ (A,B,z),z)

1
λ

(1+Az)2

(
sn(vλ (A,B,z),z)− (1+Az)(1+Bz)

(A−B)λ
s′n(vλ (A,B,z),z)

)
(10)

Using relations (8) in (10), we get

h′(z) =
(A−B)sn(vλ (A,B,z),z)

1
λ −1

(1+Az)2

[
sn

(
vλ (A,B,z)− (1+Az)(1+Bz)

(A−B)λ
v′λ (A,B,z),z

)

+
(n+1)

λ (A−B)

n+1

∑
k=0

[λ ]k
k!

(λ )n−k+1

(n− k+1)!
Ak(−B)n−k+1zn

− nAB
λ (A−B)

n

∑
k=0

[λ ]k
k!

(λ )n−k

(n− k)!
Ak(−B)n−kzn+1

]
.

(11)
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Substituting (9) in (11) and using definition of an , the following form of h′(z) can be
obtained.

h′(z) =
znsn(vλ (A,B,z),z)

1
λ −1

λ (1+Az)2 ((n+1)an+1−ABznan)

=
znsn(vλ (A,B,z),z)

1
λ −1

λ
((n+1)an+1−ABznan) (1+Az)−2

=
znsn(vλ (A,B,z),z)

1
λ −1

λ
((n+1)an+1−ABznan) (1−2Az+3A2z2 −4A3z3 + · · ·)

=
znsn(vλ (A,B,z),z)

1
λ −1

λ

(
(n+1)an+1 +

∞

∑
m=1

(m+1)(n+1)an+1+mnBan(−A)mzm

)

Since A ∈ (−1,0] , we have −A � 0. Therefore in view of Lemma 1, we obtain an > 0
for all n ∈ N . Further, from Lemma 2, we obtain (m+1)(n+1)an+1 +Bmnan > 0 for
all n,m ∈ N . Thus

(n+1)an+1 +
∞

∑
m=0

[(m+1)(n+1)an+1+Bmnan](−A)mzm

represents a series of positive Taylor’s coefficients. Since an > 0 for all n ∈ N , the
function vλ (A,B,z) has a series representation with positive Taylor coefficients. Hence,

|sn(vλ (A,B,z),z)| � sn(vλ (A,B,z), |z|)
holds and consequently

|h′(z)| � h′(|z|), for all z ∈ D holds. (12)

Since h(0) = 0 and h(−B) = 1, using (12) we obtain

|h(z)| =
∣∣∣∣
∫ z

0
h′(t)dt

∣∣∣∣�
∫ −B

0
h′
(−tz

B

)
dt �

∫ −B

0
h′(t)dt = 1, z ∈ D.

Therefore, ∣∣∣∣∣(1+Bz)(sn(v(A,B,z),z))
1
λ

(1+Az)
−1

∣∣∣∣∣< 1, z ∈ D.

which implies that

sn(vλ (A,B,z),z)
vλ (A,B,z)

≺ 1
vλ (0,B,z)

.

Therefore, vλ (A,B,z) is n -stable with respect to vλ (0,B,z) for all n ∈ N . Hence
vλ (A,B,z) is stable with respect to vλ (0,B,z) for all 0 < λ � 1 and −1 � B < A �
0. �

For the proof of Corollary 2, we need the following proposition which follows the
same procedure as given in [8].
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PROPOSITION 1. Let α,β > 0 and B ∈ [−1,0) . If F ≺ (1 + Bz)α and G ≺
(1+Bz)β then FG ≺ (1+Bz)α+β for z ∈ D .

Proof. The function log(1+Bz) is convex univalent for z ∈ D and B ∈ [−1,0) .
Our claim follows from

1
α + β

log(F(z)G(z)) =
α

α + β
log(1+Bu(z))+

β
α + β

log(1+Bv(z))

≺ log(1+Bz),

where u,v are analytic functions such that |u(z)| � |z| and |v(z)| � |z| for z ∈ D . �
Now we are ready to give proof of Corollary 2.

Proof of Corollory 2. For 0 < μ � λ � 1 we have,

1
λ

log
(
(1+Bz)λ sn(vμ(0,B,z),z)

)
=

1
λ

log
[
(1+Bz)λ−μ(1+Bz)μsn(vμ(0,B,z),z)

]
=

1
λ

log(1+Bz)λ−μ +
1
λ

log
[
(1+Bz)μsn(vμ(0,B,z),z)

]
=

1
λ

log(1+Bu(z))λ−μ +
1
λ

log(1+Bw(z))μ

≺ (1+Bz)λ

for |u(z)| � |z| and |w(z)| � |z| . Therefore, (1 + Bz)λ sn(vμ(0,B,z),z) ≺ (1 + Bz)λ

holds for all z ∈ D and 0 < μ � λ � 1. �

Now we prove that vλ (A,B,z) is not stable with respect to itself for λ ∈ (0,1] and
−1 � B < A � 0.

Proof of Theorem 4. For −1 � B < A � 0, to prove that vλ (A,B,z) is stable with
respect to itself, we need to show that

sn(vλ (A,B,z),z)
vλ (A,B,z)

≺ 1
vλ (A,B,z)

, z ∈ D. (13)

Equivalently G(z) ≺ H(z) where

G(z) :=
(1+Bz)sn(vλ (A,B,z),z)

1
λ

1+Az
and H(z) :=

1+Bz
1+Az

Since G(z) and H(z) are analytic in D for −1 � B < A � 0 and H(z) is univalent
in D . In the point of view of the subordination, we have G(z) ≺ H(z) if and only
if G(0) = H(0) and G(D) ⊆ H(D) and G = H ◦ω1 , where ω1 ∈ Ω analytic in D
satisfying ω1(0) = 0 and |ω1(z)| < 1.
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In view of the Schwartz Lemma, we have |ω1(z)|� |z| for z∈ D and |ω ′
1(0)|� 1.

If G ≺ H , it follows that |G′(0)| � |H ′(0)| and G(|z| � r) ⊆ H(|z| � r) , 0 � r < 1.

Let ω = H(z) =
1+Bz
1+Az

, then z =
1+Bω
1+Aω

. Therefore, the image of |z| � r under

H(z) is

∣∣∣∣1+Bω
1+Aω

∣∣∣∣ � r which after simplification is equivalent to |w−C(r,A,B)| �
R(r,A,B) where

C(r,A,B) :=
r2A−B

B2 − r2A2

and

R(r,A,B) :=
r(A−B)
B2− r2A2 .

To show that G ⊀ H , it is enough to show that G(|z| � r) � H(|z| � r) . To prove
that G(|z| � r) � H(|z| � r) , it is enough to choose a point z0 with |z0| � r0 such that
G(z0) does not lie in the disk |ω −C(r,A,B)| � R(r,A,B) for some −1 � B < A � 0.

Figure 1: G(z0,A,B) ⊀ H(z0,A,B) for z0 = 0.915282−0.357037i , A = −0.679 , B = −0.97,
and λ = 0.3 .

Choose z0 = 0.915282−0.357037i , r0 = 0.98, A =−0.679,B =−0.97, λ = 0.3
and n = 1. Then G(z0) = 0.8697+0.5845i , C(r0,A,B) = 0.634444 and R(r0,A,B) =
0.576521. Clearly G(z0) does not lie in the disk |ω −C(r0,A,B)|� R(r0,A,B) . There-
fore G ⊀ H i.e., (13) does not hold. The graphical illustration of these values is also
given here in Figure . Hence vλ (A,B,z) is not stable with respect to itself. �
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