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INTEGRALS OF RATIOS OF FOX–WRIGHT AND INCOMPLETE

FOX–WRIGHT FUNCTIONS WITH APPLICATIONS
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Abstract. The main focus of the present paper is to establish definite integral formulae for ra-
tios of the Fox–Wright functions. As consequences of the master formula, some novel integral
formulae are derived for ratios of other special functions which are associated to Fox–Wright
Ψ function, like generalized hypergeometric function, modified Bessel function of the first kind
and Mittag–Leffler type functions of two and three parameters. Moreover, closed integral form
expressions are obtained for a family of Mathieu-type series and for the associated alternating
versions whose terms contain the incomplete Fox-Wright function. As applications, functional
bounding inequalities are established for the aforementioned series.
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