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ON (n,k)—-QUASI CLASS Q* OPERATORS

ILMI HOXHA AND NAIM L. BRAHA*

(Communicated by J. Mic¢i¢ Hot)

Abstract. Let T be a bounded linear operator on a complex Hilbert space H . In this paper we
introduce a new class of operators: (n,k)-quasi class Q* operators, superclass of (n,k)-quasi-
*-paranormal operators.

An operator T is said to be (n,k)-quasi class Q* if it satisfies

1
n+1
for all x € H and for some nonnegative integers n and k. We will prove structural and spectral

properties of this class of operators, and also prove the spectrum continuity of this class of
operators.

IT*(T%%)1* <

(1) |2+l 74 )

1. Introduction

Throughout this paper, let H be a complex Hilbert space with inner product (-,-).
Let L(H) denote the C* algebra of all bounded operators on H. For T € L(H), we
denote by ker(7) the null space and by T'(H) the range of 7. The null operator and
the identity on H will be denoted by O and I, respectively. If T is an operator, then
T* is its adjoint, and || T|| = || T*]| .

We shall denote the set of all complex numbers by C, the set of all positive integers
by N, the set of all nonnegative integers by Ny and the complex conjugate of a complex
number A by A. The closure of a set M will be denoted by M and we shall henceforth
shorten T — Al to T —A. An operator T € L(H) is a positive operator, T > O, if
(Tx,x) >0 forall xe H.

We write o(T'), 0,(T) and o,(T) for the spectrum, point spectrum and approx-
imate point spectrum, respectively. Sets of isolated points and accumulation points of
o(T) are denoted by isoo(T) and acco (T ), respectively. We write r(T') for the spec-
tral radius. It is well known that #(T) < ||T||. The operator T is called normaloid if
HT) = ||T]. -

We write o(T) = dimkerT, B(T) =dim(H\T(H)). An operator T € L(H) is
called an upper semi-Fredholm, if it has a closed range and o (T') < oo, while T is called
alower semi-Fredholmif B(7T) < e. However, T is called a semi-Fredholm operator if
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T is either an upper or a lower semi-Fredholm, and 7 is said to be a Fredholm operator
if it is both an upper and a lower semi-Fredholm. If 7 € L(H) is semi-Fredholm, then
the index is defined by

ind(T) = o(T) — B(T).

An operator T € L(H), is said to be paranormal [3], if
161> < |72
for any unit vector x in H. An operator T € L(H), is said to be *-paranormal [1], if
I7*x]|* < || 72x]

for any unit vector x in H.

In papers [8, 9], the author has proved that a k-quasi-*-class A operator is a k-
quasi- % -paranormal operator.

Hoxha and Braha, [6] introduced a new class of operators called k-quasi- *-para-
normal operators. An operator 7 is called k-quasi-*-paranormal if

IT*T x| < |72 | T

forall x € H, where k is a nonnegative integer number.

Q. Zeng and H. Zhong [12] introduced a new class of operators called (n, k)-quasi-
*-paranormal operators: An operator T € L(H) is said to be (n,k)-quasi-*-paranormal
operators if

T (TR < |7 (TR o TR
for all x € H and for some nonnegative integers n and k.
2. Structural properties

Now we introduce the class of (n,k)-quasi class Q* operators defined as follows:

DEFINITION 2.1. An operator T € L(H) is said to be (n,k)-quasi class Q* if

1T ()P < —— (I (T P+l 5 2)

1
n+1
for all x € H and for some nonnegative integer numbers n and k.

A (1,k)-quasi class Q* operator is a k-quasi class Q* operator:
1
1T (T2 < 5 (1742012 + I 742) 5

a (1,1)-quasi class Q" operator is a quasi class Q" operator:

T (7)1 < 5 (I + 7)) ;

N —
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a (1,0)-quasi class Q" operator is a class Q" operator:
1
2 2 912 2y.
172" < 5 (1T + [1]1°)

an (n,0)-quasi class Q" operator is an n-class Q* operator

1

T* 2<
76 <

(")) + nl|x)1%)

Q. Zeng and H. Zhong [12, Lemma 2.2] prove that an operator T € L(H) is of the
(n,k)-quasi-*-paranormal if and only if

T (T*<"+1)T<"+1) — (n+ DA'TT* +n7L"+11) 75> 0, forall 1 > 0.
THEOREM 2.2. Anoperator T € L(H) is of the (n,k)-quasi class Q*, if and only
if
T+ (T*("“)T("“) —(n+1)TT* +nl> T > 0,

where k and n are nonnegative integer numbers.

Proof. Since T is of the (n,k)-quasi class Q*, then
(n+ D)7 (A2 < (|7 (Ao 4 nl TA]2).
for all x € H, where k,n € Ny. Then,
<T*k (T*<"+1>T<"+1> (- )TT +n1) Tkx,x> >0

for all x € H, where k and n are nonnegative integer numbers. The last relation is
equivalent to

T+ (T*("“)T("“) — (+ DTT* +nl> T*>0. O

LEMMA 2.3. For positive real numbers a >0 and b > 0,
Aa+ ub > a*p*
holds for .. >0 and p > 0 such that A+ = 1.

LEMMA 2.4. If T is an (n,k)-quasi-*-paranormal operator, then T is an (n,k)-
quasi class Q* operator.

Proof. Let T be an (n,k)-quasi- *-paranormal operator. Then, we have

IT*(T50) |7 < (|7 (T )| 5 || T 7T
n

Tk 2
Tk

1
< Tn+l Tk 2
G
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so, T is an (n,k)-quasi class Q* operator. [

An operator T € £ (), is said to belong to k-quasi class <7, operator ([7]) if
T*k (\Tn+l|% _ |T*|2> Tk >0

for n,k € Ny.

From [7, Theorem 2.5] if T is a k-quasi class 7, operator, then T is an (n,k)-
quasi- x -paranormal operator, from the above theorem T is an (n,k)-quasi class Q*
operator.

If T is an (n,k)-quasi class Q* operator, then T is an (n,k+ 1)-quasi class Q"
operator. The inverse is not true, as it can be seen below.

Consider the unilateral weighted shift operators as an infinite dimensional Hilbert
space operator. Recall that given a bounded sequence of a positive numbers o : o, 0,
03,04,... (called weights) the unilateral weighted shift W, associated with weight «
is the operator on H = I, defined by Wye,, = O4pep 1 forall m > 1, where {e,n )5,
is the canonical orthonormal basis on /».

00000
a0 0 00
0w 0 00
Woe=1 0003 00
0000

Let diag({oy,},_,) = diag(a, 00, 03,...) denote an infinite diagonal matrix on
l>. Then,

Wik <W DWW + n) wk

—dlag({ O‘m+1 . ar%l+k—2a31+k—la31+kar%l+k+l'""azi-&-k-&-n—lazi-&-k-&-n};:l)
—("+1)dlag({0‘ Oy 1o Oy 2O k- 1Ok 1 Yt
+ndiag({o 0y 1+ O g1 Foet)
Then,
al’%l(szrl . a31+k 20C +k— l(am+kam+k+1 (Xr%l+k+n 1a1n+k+n

—(n+ 1oy +n) 0.

Thus, Wy, is an (n,k)-quasi class Q* operator, if and only if,

2 2 2 2
Ok O 1 Oy ki1 Oy — (n+1)am 4 +n=0,

form> 1.

If oy =2 and o, =1 for m > 2, then Wy, is a (2,2)-quasi class Q* operator but
isnota (2,1)-quasi class Q* operator.

Since (n,k)-quasi-*-paranormal is not a normaloid operator [ 12, Example 2.3(4)],
then (n,k)-quasi class Q" is not a normaloid operator for k > 2.
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THEOREM 2.5. If T is an (n,k)-quasi class Q" operator, which commutes with
a unitary S, then TS is an (n,k)-quasi class Q* operator.

Proof. Let A=TS,TS=S8T, S*T*=T"S* and S§* =SS =1.

A*(n+k+l)A(Vl+k+1) _ (n + I)A*(k)AA*Ak +nA*kAk
=(T8)* ) (T 8) D) _ (4 1)(TS)™(TS)(TS)*(TS)* +n(TS) ™ (TS)k
— gk (T*<"+1>T<"+1> —(n+ DTT* + nl) T*sk > 0,

so that TS is an (n,k)-quasi class Q* operator. [J

THEOREM 2.6. Let T be an (n,k)-quasi class Q operator. If T is unitarily
equivalent to an operator S, then S is an (n,k)-quasi class Q" operator.

Proof. Since T is unitarily equivalent to an operator S, then S =U*TU . We have

S*k (S*(H+I)S(n+l) o (n_|_ I)Ss*+nl> Sk
—(U*TU)™ ((U*TU)*("“)(U*TU)("“) — (n+ V(U TU)U'TU)* +nl> (U*TU Y

—urT* (T*("“)T("“) —(n+1)TT* +n1) T'U > 0
so that S is an (n,k)-quasi class QO operator. [J

THEOREM 2.7. If T does not have a dense range, then the following statements
are equivalent:

(1) T is an (n,k)-quasi class Q* operator

(2)

A B P
T (0 C) on H=TF;H)®ker(T™),

where A*"DACHY) _(n 4 1)(AA* 4+ BB*) 4-nl > O, and C* = O. Furthermore, 6(T) =
o(A)U{0}.

Proof. (1) = (2) Consider the matrix representation of 7 with respect to the
decomposition H = T*(H) & ker(T**):

A B
r=(32).
Let P be the projection onto T*¥(H). Since T is an (n,k)-quasi class Q* operator, we
have

» (T*(n+l)T(n+1) — (4 )TT +nl> P>o0.
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Therefore
A DAY (L 1)(AA* 4 BB*) +-nl > 0.

Let x = (x ) € H = TK(H) @ ker(T*). Then,
2

(Ctxz,x0) = <T" (I—P)x, (I — P)x> - <(1 ~ P, T — P)x> -0,

thus CF = 0.

By [4, Corollary 7], 6(A)Uc(C) = o(T)U ¥, where ¥ is the union of the holes
in o(T), which happen to be a subset of 6(A)N o (C), and 6(A)No(C) has no interior
points. Therefore 6(T) = 6(A) Uc(C). Since C is nilpotent, we have 6(T) = 6(A)U

{0}.
(2) = (1) Suppose T = (g g) on H =TkH)@ker(T*), where

A DAY _ (4 1)(AA* 4+ BB*) 4+-nl > O
and C* = O. Since

Tk (ACZiSpATBC
0 0

we have

T+ (T*<"+1)T<"+1) —(n+1)TT* —|—nl> Tk
xk *(n+1) (n+1) * k
AB AB AB A B\ (AB AB
:<oc> ((00) (00) _(”“)(00) (00) +”I> (00)

B A*k O\ /D E\ [A* z’;;})Achk—l—f
—\@ialBc i 0) \ETF) \ 0 0

B A*DA¥ A*DYSZ  ATBCK 1
(ZiZpATBC*17)*DAK (Th_AIBCK 17Ty DY ATBCH 1

where
D =A*DAPH) _ (4 1)(AA* 4+ BB*) 4+n

n
E=A""DN AJBC"T — (n+1)BC*
j=0

= ZA’BC” 7) ZA’BC” )4t ) — (n 4+ 1)CC* +n
Jj=0 Jj=0
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Let v=x®y be a vectorin H = T*(H) G ker(T**), where x € TK(H) and y € ker(T*¥).
Then

<T*k (T*<"+1)T<"+1) ()T —|—nl> Tk, v>

k—1 k—1
— <A*kDAkx,x> + <A*kD ZAchk—l—fy,x> + <( > AIBCK177)*DA*x, y>

Jj=0 J=0

k—1
<(2AJBCk 1= *DZA’BCk =iy, y>

J=0 J=0

k-1 k-1
= <D(A’<x + Y A/BCHTy), (ARx 4 Y AjBCk_l_jy)>

j=0 J=0
Since
D =A*FUACHD _ (L 1)(AA* +BB*) +n > 0
we have
<T*k (T*<"+1)T<"+1) —(+ DTT —|—nl> Tkv,v> >0,
hence

T+ (T*("“)T("“) — (n+1)TT* +nl> T*> 0.
Thus, T is an (n,k)-quasi class Q" operator. [J

COROLLARY 2.8. If T is an (n,k)-quasi class Q* operator and T*(H) is not
dense range, then

- A B k xk
T_<0C) on H=TFH)&ker(T™),
where A is an n-class Q* operator on T*(H), and C* = 0.

THEOREM 2.9. If T is an (n,k)-quasi class Q* operator and M is an invariant
subspace for T, then the restriction T |y is also an (n,k)-quasi class Q* operator.

Proof. Let P be the projection onto M. Then TP = PTP, sothat (T |y)* = PT*P.
Hence, for x € M we have

(T 1) ((T 1))

I PYPTRIS? = [P TP < T (T
(71 () P 4 ml| 7))

//\

n—|—1

= —— (I (T ) P+l (T 7). O

THEOREM 2.10. Let T € L(H). If A73T isan operator of the (n,k)-quasi class
Q" then T is (n,k)-quasi-*-paranormal for all 2 > 0.
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Proof. Let A~2T bean operator of (n,k)-quasi class Q*, then
AT (AT DA AT)) — (i HAAT)ATAT) +al) AATS 0

A-ST (JL’("“)T*("“)T(”H) —(+ VAT —|—nl> ATETE > 0,

1

T+ (T*("“)T("“) — (n+ DA'TT" +n/l("+1>) T¢> 0

for all A > 0. By this it is proved that the operator T is an (n,k)-quasi-*-paranormal
operator. [

THEOREM 2.11. Let us suppose that T is (n,k)-quasi class Q" and T > 421,
then it follows that 2-T, is (%,k) -quasi class QF, for n =4r+3 and r integer
greater then 10.

Proof. Let us suppose that T is (n,k)-quasi class Q* and T > 421. Then we have
to prove that

1 -3

341

lery ()W) < (Ier = @rfa + e ).

for every n > 44. Let us suppose that last relation is valid, then we get

<L (ﬁr"—wk P+ "3 T 2)

T* Tk 2
7l <

From fact that T is (n,k)-quasi class Q* and T > 421, we obtain that

1

1 3
L Tk 12 T* ) T Tk 2, 52 )
— (I @ Pl TP) < — (2717 (TP + "2 T

Hence, 2T, is (“52,k)-quasi class Q*, forn >44. O

3. Spectral properties

For T € L(H), the smallest nonnegative integer p such that ker(7”) = ker(T?*!)
is called the ascent of T and is denoted by p(T). If no such integer exists, we set
p(T) = oo. We say that T € L(H) is of finite ascent if p(T — A1) < oo, forall A € C.

PROPOSITION 3.1. If T is (n,k)-quasi class Q*, and T > 421, then it is (* 43,k) -
quasi-x-paranormal, for n = 4r+3 and r integer greater then 10. T has finite ascent
under above conditions.



ON (n,k) -QUASI CLASS Q* OPERATORS 1011

Proof. From theorem 2.11 we obtain that 2- T, is (“;2,k)-quasi class Q*. On
the other side from theorem 2.10, we have that V4 - T is (
respectively 7 is (“72,k) -quasi--paranormal for every A >
4.5 ([12)), it follows that T has finite ascent. [

k) -quasi class Q*,
Now from corollary

13 k
7
0.

THEOREM 3.2. If T is an (n,k)-quasi class Q* operator, 0 # A € 6,(T) and T

is the form T = (g 2) on H=ker(T— 1)@ (ker(T — 1))*, then A = 0.

Proof. Let P be the orthogonal projection onto ker(T —A) and x € ker(T—4).
Since T is an (n,k)-quasi class Q operator, and x = 5 T*x € T¥(H), we have
P (T*("“)T("“) —(n+1)TT* +n> P>o0.

then
22040 _ (4 1)(A2+AA") +n >0

which yields that
22050 _(n 4 1DA2 40> (n+1)AA*

hence A=0. O

COROLLARY 3.3. If T is an (n,k)-quasi class Q* operator, 0 # A then Tx = Ax
implies T*x = Ax.

Proof. We may assume that x # 0. Let M be a span of {x}. Then M is an
invariant subspace of 7. We have

(LA _ n
T_<OB> on H=M&M—,

and P the orthogonal projection of H onto M. Since T is an (n,k)-quasi class Q*
operator, then we have

P (T*<"+1>T("+1> —(n+1)TT +n> P>0.

From above theorem we have A = O. Thus
. 0 0 \(x
roae=(2,%,) (2)=o. o

A complex number A is said to be in the point spectrum 6,(7) of T if there is a
nonzero x € H such that (T — A)x = 0. If in addition, (T —A)*x =0, then A is said
to be in the joint point spectrum 6;,(T) of T. Clearly 6;,(T) C 6,(T). In general

0jp(T) # 0p(T).
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COROLLARY 3.4. If T is an (n,k)-quasi class Q" operator, then cj,(T)\ {0} =

op(T)\ {0}

COROLLARY 3.5. Let T be an (n,k)-quasi class Q" operator, then ker(T —A) =
ker(T — )%, for A #0 € C.

Proof. We have to tell that ker(T — A1) = ker(T — 1)?. To do that, it is sufficient
enough to show that ker(7 — A)? C ker(T — 1), since ker(T — 1) C ker(T — 1)?
clear.

Let x € ker(T — A)?, then (T — A)?x = 0. From Corollary 3.3 we have (T —
A)*(T —A)x=0. Hence,

(T =) = (T = 2)*(T = A)x,x) =0,

so we have (T — A)x = 0, which implies ker(7 —1)> Cker(T —1). O

REMARK 3.6. If T isan (n,k)-quasiclass Q" operator, and lim,,_.
oo, for k € N. Then there exists an (e, k)-quasi class Q* operator.

[T (k) 2
n+1 <

THEOREM 3.7. Let T be an (o0,k)-quasi class Q* operator, and (T — A )x,, — 0,
as m— oo for A #£0. Then (x,,) is in the resolvent set of (T* —1).

Proof. Let (T —A)x,, — 0, as m — oo, ||x,|| = 1 and r € N. Then we have
(T" = A")xpm — 0,

because
-

T"=(T—A+A) 2<>)L”T AY A

From the last relation we get:

A [ = [I(T" = A7)t [| < 1T 2| = [|A"20m + (T = A7)

<|
A Xl [+ [(T" = A7),
and ||T"xm|| — |A|". Knowing that
x(AT * (o r 2 * (F
7 A"l = 1T (77 = A" )2 [* < || T*(T"2m) |

and that T is an (n,k)-quasi class Q" operator, we obtain

lim sup || 7" x,,||*> < (|2 +n).
Mm—oo

n+1

Now we will distinguish two cases:
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DIf 0 <|A| < 1, then we have
— — n+1
75 = Aol P2 = (T "0 — Tt )
= 2 n+1
= (I3l = KU~ Apm) = 2o (T = A — [AP)

and

2 |121+2 n+l
71|T+ni—}-l_x|2) —)0738 n — oo,

m-—oo

lim sup ||T*x,, — Ax,||*" 2 < (

From the last relation we get that

1T — Ao < 1,
respectively (T* — 1) is invertible, and (x,,) € p(T* — 1).
II) Let now consider that |A| > 1. Then we have

* T |2n+2 |A[>+2 n 2\" 1
: : _ < li - —
nhm lim sup || T*x,, — Ax|| < nhm ( 1 + 1 [A] ) =

: M2 92 _
ehm,ﬁm(l A= (n+1) 1)—>O,as 1 —s oo,

Hence, like the above, we have that (T* — 1) is invertible, and (x,,) € p(T*—1). O

COROLLARY 3.8. If T is an (n,k)-quasi class Q* operator, and o, € 6,(T) \
{0} with o # B, then ker(T — o) L ker(T — B).

Proof. Let x € ker(T — o) and y € ker(T — f3). Then Tx = ox and Ty = By.
Therefore

ofx,y) = (Tx,y) = (x,T"y) = <X7By> =B x,y),
then (x,y) = 0. Therefore, ker(T — o) Lker(T —f3). O
Let Hol(o(T)) be the space of all analytic functions in an open neighborhood
of o(T). We say that T € L(H) has the single valued extension property (SVEP) at
A € C, if for every open neighborhood U of A the only analytic function f: U — H
which satisfies the equation (T —A)f (1) = 0, is the constant function f =0 on U.
The operator T is said to have SVEP if T has SVEP at every 4 € C.

COROLLARY 3.9. If T is an (n,k)-quasi class Q* operator, then T has SVEP.

Proof. Let f be an analytic function such that (T —A)f(A) =0 on an open set
U. By assumption, f(A) € ker(T —A) for each A € U. Thus f(A) L f(u) for any
two different nonzero numbers A and p in U by Corollary 3.8. Therefore, for any
sequence {l,} of non-zero complex numbers such that y, — A, thus

IF)? = Jim (F(4), f(tm)) = 0.
Thatis, T has SVEP. U
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LEMMA 3.10. [2] Let H be a complex Hilbert space. Then there exists a Hilbert
space Y suchthat H CY andamap ¢ : L(H) — L(Y) such that:
(1). @ is a faithful x-representation of the algebra L(H) on Y, so:

o(In) =1y, o(T") = (9(T))", ¢(TS) = (T)p(S)
o(aT+BS)=ae(T)+ Bo(S) forany T,S € L(H) and o, € C,

(2). (T) >0 forany T >0 in L(H),
(3). 0u(T) = 0u (@(T)) = 0, (9(T)) forany T € L(H),

COROLLARY 3.11. If T is an (n,k)-quasi class Q* operator, then @(T) is an
(n,k)-quasi class Q* operator.

Proof. Let ¢ : L(H) — L(K) be Berberian’s faithful *-representation. First we
show that @(T) belongs to the (n,k)-quasi class Q*. Since T is a (n,k)-quasi class
Q" we have

(o(T))* [((P(T))*("“)(w(T))("“) —(n+1)(T)(@(T))" +n| (@(T))*
—¢ (T*k (T*<"+1)T<"+1) —(n+ )TT* —|—nl> Tk> >0

thus @(T) is an (n,k)-quasi class Q" operator. [J

COROLLARY 3.12. If T is an (n,k)-quasi class Q* operator, for every non zero
A € 0,(T), the matrix representation of T with respect to the decomposition H =

ker(T—A)@ker(T—A)" is T = (g g) for some operator B satisfying A & 6,(B)
and o(T)={A}Uc(B).

Proof. By Corollary 3.3,if A #0 and A € 0,,(T), we have ker(T — A) reduces T .
So we have that T = g g on H =ker(T— 1)@ (ker(T — 4))* for some operator
B satisfying A ¢ 6,(B) and o(T) ={A}Uc(B). O

4. Spectrum continuity on the set of (n,k)-quasi class O operator

Let {E;}men be a sequence of compact subsets of C. Let’s define the infe-
rior and superior limits of {E, }en, denoted respectively by liminf,, ..{E,} and
limsup,,_,..{Ex} as it follows:

). liminf,—w{Ey} = {A € C: for every € > 0, there exists N € N such that

B(A,e)NE, #0forallm>N},

2). limsup,,_.{En} = {4 € C:for every € > 0, there exists J C N infinite such that

B(A,e)NE, #0forallmeJ}.

If liminf,,—w{Ey, } =limsup,, .. {Ex}, then lim,,..{E,} is defined by this com-
mon limit.
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A mapping p, defined on L(H), whose values are compact subsets on C is said to
be upper semi-continuous at T, if T,, — T then limsup,, .., p(T,) C p(T), and lower
semi-continuous at 7', if T,, — T then p(T) C liminf,—. p(T,,). If p is both upper
and lower semi-continuous at 7, then it is said to be continuous at 7 and in this case
limy—ee p(T) = p(T).

The spectrum ¢ : T — o(T) is upper semi-continuous by [5, Problem 102], but it
is not continuous in general, [1 1, Example 4.6]

LEMMA 4.1. [10] If {T,,} C L(H) and T € L(H) are such that T, converges,
according to the operator norm topology to T, then isoo(T) C liminf,, . 6 (T,).

THEOREM 4.2. The spectrum o is continuous on the set of (n,k)-quasi class Q"
operators.

Proof. Let {T,,} be a sequence of operators from (n,k)-quasi class Q* operators
and limy e || T,y — T|| = 0, where T is an (n,k)-quasi class Q* operator. Since the
function o is upper semi-continuous, limsup,, .., 5(7,,) C o(T). Therefore, to prove
the theorem, it will be sufficient to prove that 6(7') C liminf,,—... 6(7},). From Lemma
4.1 it will be sufficient to prove acco(T) C liminf,—.. 6(Tp).

Let ¢(T) be the Berberian extension to 7. From Lemma 3.10 we have o(T) =
o(¢(T)), 0(Tn) = 0(@(T)m) and 0, (T) = 0u(@(T)) = 0p(@(T)).

If T is an (n,k)-quasi class Q* operator, from Corollary 3.11 ¢@(7T) is an (n,k)-
quasi class Q" operator, therefore

acco(T) C liminfo(T;,) <= acco(@(T)) C iminfo (Q(T)n).
Now, assume that A € acco(@(T)). Consider two cases:
Case I Let

A ea(e(T))\ou(e(T)) (4.1)

So @(T) — A is upper semi-Fredholm operator and o/(@(T)— 1) =0.

Suppose the contrary, A ¢ liminf, . 6(@(T),). Then, there exists a 6 > 0,
a neighborhood Z5(A) of A and a subsequence {@(T),,} of {@(T),} such that
o(@(T)m)NDs(A) =0 for every | > 1. This implies that ¢(7T'),,, — u is a Fredholm
operator and ind(¢@(7T),,, — 1) = 0 for every u € Zs(A) and

Jim [[(@(T)m, — 1) = (@(T) = )| = 0.

From the continuity of the index follows that ind(¢(7) —u) =0 and ¢(T) — u
is a Fredholm operator. Since o(¢(T)—u) =0, u & o(e(T)) for every u in a €-
neighborhood of A. This is a contradiction of relation 4.1, therefore we must have
A € liminf—e 6(Q(T)m).

Case II: Let A € 0,(@(T)). Then A € 6,(¢(T)). By Corollary 3.12 ¢(T') has a
representation

o(T)=A®BonH =ker(o(T)— 1) (ker(¢(T) — A))* and ker(B— 1) = {0}.
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Therefore B— A is upper semi-Fredholm operator and o/(B —A) = 0. There exists
a € > 0 such that B— (A — lp) is upper semi-Fredholm operator with ind(B — (A —
Ho)) =ind(B—A) and o(B— (A — up)) =0 for every o such that 0 < |up| < €.

Choose 0 < & < 6 and set t =A — g, and we have @(T)—pu=(A—u)®(B—u)
is upper semi-Fredholm operator, ind(¢@(7T) — u) =ind(B—pu) and o(@(T)—u) =0.

Suppose the contrary, A ¢ liminf,, ... (@ (T),). Then ¢(T),, — u is a Fredholm
operator and ind(¢(7T),, — 1) =0 and

lim [[(@(T)m, — ) = (¢(T) — )| = 0.

n—00

It follows from the continuity of the index that ind(¢@(7T) —u) =0 and @(T)—u
is a Fredholm operator. Since o(¢(T)—u) =0, u & o(e(T)) for every u in a €-
neighborhood of A. This contradicts the assumption A € 6,(¢(T)), therefore we must
have A € liminf,, .. 0(@(T),). O

5. Tensor product

Let T be any (n,k)-quasi class Q* operator. We claim that T®1 and I®@ T are
both (n,k)-quasi class Q* operator. This can be seen by using the fact that the tensor
product of two positive operators is positive and the following computations:

(To)™ ((T L) (T D) — (- 1)(TRI)(T 1) +n(l®1)> (T ok
—(T* 1) ((T*<"+‘)T("+1>) ®1—(n+1)(TT*) ®1+n(1®1)) (T 1)
- [T*" (T*<"+1>T<"+1> —(n+ )TT" + nl) Tk} ®1>0

By the above relation, we proved that if T is an (n,k)-quasi class Q* operator,
then the tensor product 7 ® I is an (n,k)-quasi class Q" operator. However, if T is
an (n,k)-quasi class Q* operator, then T ® T is not necessarily (n,k)-quasi class Q*
operator. Let’s see this through an example:

LEMMA 5.1. Let S =®,_H,, where H, =~ R2. For given positive operators A, B
on R? and for any fixed n € N the operator T =Ty g on S is defined as follows:

T (x1,x,...) = (0,Ax;,Bxp,Bx3,Bxa,...),
and the adjoint operator of T is
T*(x1,x2,...) = (Axy, Bx3, Bx4,Bxs,...).
The operator Ty p is an (n,1)-quasi class Q* operator, if and only if,
AB* 2 —(n+ 1A’ +n)A =0

and
B2 — (n+1)B*+nB*>> 0.
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EXAMPLE 5.2. In this example we will prove that if T is an (2, 1)-quasi class

Q*, then their tensorial product is not (2, 1)-quasi class Q*.
Take A and B as

1 1
1 0.94)\2 1 2.82\°
A= (0.94 2 ) and = (2.82 8 ) '

0.2534 —0.0263> 0

Then

6 aph 2_
B =3B 28 (—0.0263 0.1882

and

6 airiom,  (0.691222477
A(B"—347+2D)A = (2.2477 7.3088) =

So, Ty p is a (2,1)-quasi class Q* operator, and

10.2094 24.2748 24.2748 55.8379
24.2748 54.3848 55.8379 120.9860
24.2748 55.8379 54.3848 120.9860
55.8379 120.9860 120.9860 258.9975

AB°A @ AB°A —3A* 2 A* +2A% @ A% =

is not positive. Then, T ® T is not a (2, 1)-quasi class Q* operator.

Conclusion. In this paper we have defined new class of operators named (n,k)-
quasi class Q* and operator T is from that class if it satisfies

1
17T < — (I (TR0 P+l P

for all x € H and for some nonnegative integers n and k. We have prove structural
and spectral properties of this class of operators, and also it is proven the spectrum
continuity of this class of operators.
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