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ON (n,k)–QUASI CLASS Q∗ OPERATORS

ILMI HOXHA AND NAIM L. BRAHA ∗

(Communicated by J. Mićić Hot)

Abstract. Let T be a bounded linear operator on a complex Hilbert space H . In this paper we
introduce a new class of operators: (n,k) -quasi class Q∗ operators, superclass of (n,k) -quasi-
∗ -paranormal operators.

An operator T is said to be (n,k) -quasi class Q∗ if it satisfies

‖T ∗(Tkx)‖2 � 1
n+1

(
‖Tn+1(T kx)‖2 +n‖Tkx‖2

)
,

for all x ∈ H and for some nonnegative integers n and k . We will prove structural and spectral
properties of this class of operators, and also prove the spectrum continuity of this class of
operators.

1. Introduction

Throughout this paper, let H be a complex Hilbert space with inner product 〈·, ·〉.
Let L(H) denote the C∗ algebra of all bounded operators on H. For T ∈ L(H), we
denote by ker(T ) the null space and by T (H) the range of T . The null operator and
the identity on H will be denoted by O and I , respectively. If T is an operator, then
T ∗ is its adjoint, and ‖T‖ = ‖T ∗‖ .

We shall denote the set of all complex numbers by C , the set of all positive integers
by N , the set of all nonnegative integers by N0 and the complex conjugate of a complex
number λ by λ . The closure of a set M will be denoted by M and we shall henceforth
shorten T − λ I to T − λ . An operator T ∈ L(H) is a positive operator, T � O, if
〈Tx,x〉 � 0 for all x ∈ H.

We write σ(T ), σp(T ) and σa(T ) for the spectrum, point spectrum and approx-
imate point spectrum, respectively. Sets of isolated points and accumulation points of
σ(T ) are denoted by isoσ(T ) and accσ(T ) , respectively. We write r(T ) for the spec-
tral radius. It is well known that r(T ) � ‖T‖. The operator T is called normaloid if
r(T ) = ‖T‖.

We write α(T ) = dimkerT, β (T ) = dim(H \T (H)) . An operator T ∈ L(H) is
called an upper semi-Fredholm, if it has a closed range and α(T ) < ∞ , while T is called
a lower semi-Fredholm if β (T ) < ∞ . However, T is called a semi-Fredholm operator if
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T is either an upper or a lower semi-Fredholm, and T is said to be a Fredholm operator
if it is both an upper and a lower semi-Fredholm. If T ∈ L(H) is semi-Fredholm, then
the index is defined by

ind(T ) = α(T )−β (T ).

An operator T ∈ L(H), is said to be paranormal [3], if

‖Tx‖2 � ‖T 2x‖

for any unit vector x in H. An operator T ∈ L(H), is said to be ∗ -paranormal [1], if

‖T ∗x‖2 � ‖T 2x‖

for any unit vector x in H.
In papers [8, 9], the author has proved that a k -quasi-∗ -class A operator is a k -

quasi-∗ -paranormal operator.
Hoxha and Braha, [6] introduced a new class of operators called k -quasi-∗ -para-

normal operators. An operator T is called k -quasi-∗ -paranormal if

‖T ∗Tkx‖2 � ‖Tk+2x‖‖Tkx‖,

for all x ∈ H , where k is a nonnegative integer number.
Q. Zeng and H. Zhong [12] introduced a new class of operators called (n,k)-quasi-

∗ -paranormal operators: An operator T ∈ L(H) is said to be (n,k)-quasi-∗ -paranormal
operators if

‖T ∗(Tkx)‖ � ‖Tn+1(Tkx)‖ 1
n+1 ‖Tkx‖ n

n+1 ,

for all x ∈ H and for some nonnegative integers n and k.

2. Structural properties

Now we introduce the class of (n,k)-quasi class Q∗ operators defined as follows:

DEFINITION 2.1. An operator T ∈ L(H) is said to be (n,k)-quasi class Q∗ if

‖T ∗(Tkx)‖2 � 1
n+1

(
‖Tn+1(Tkx)‖2 +n‖Tkx‖2

)
,

for all x ∈ H and for some nonnegative integer numbers n and k.

A (1,k)-quasi class Q∗ operator is a k -quasi class Q∗ operator:

‖T ∗(Tkx)‖2 � 1
2

(
‖Tk+2x‖2 +‖Tkx‖2

)
;

a (1,1)-quasi class Q∗ operator is a quasi class Q∗ operator:

‖T ∗(Tx)‖2 � 1
2

(‖T 3x‖2 +‖Tx‖2) ;
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a (1,0)-quasi class Q∗ operator is a class Q∗ operator:

‖T ∗x‖2 � 1
2

(‖T 2x‖2 +‖x‖2) ;
an (n,0)-quasi class Q∗ operator is an n -class Q∗ operator

‖T ∗x‖2 � 1
n+1

(‖Tn+1x‖2 +n‖x‖2) .
Q. Zeng and H. Zhong [12, Lemma 2.2] prove that an operator T ∈ L(H) is of the

(n,k)-quasi-∗ -paranormal if and only if

T ∗k
(
T ∗(n+1)T (n+1)− (n+1)λ nTT ∗ +nλ n+1I

)
Tk � O, for all λ > 0.

THEOREM 2.2. An operator T ∈ L(H) is of the (n,k)-quasi class Q∗ , if and only
if

T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
Tk � O,

where k and n are nonnegative integer numbers.

Proof. Since T is of the (n,k)-quasi class Q∗, then

(n+1)‖T∗(Tkx)‖2 �
(
‖Tn+1(Tkx)‖2 +n‖Tkx‖2

)
,

for all x ∈ H , where k,n ∈ N0. Then,〈
T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
Tkx,x

〉
� 0

for all x ∈ H , where k and n are nonnegative integer numbers. The last relation is
equivalent to

T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
Tk � O. �

LEMMA 2.3. For positive real numbers a > 0 and b > 0,

λa+ μb � aλ bμ

holds for λ > 0 and μ > 0 such that λ + μ = 1.

LEMMA 2.4. If T is an (n,k)-quasi-∗ -paranormal operator, then T is an (n,k)-
quasi class Q∗ operator.

Proof. Let T be an (n,k)-quasi-∗ -paranormal operator. Then, we have

‖T ∗(Tkx)‖2 � ‖Tn+1(Tkx)‖ 2
1+n ‖Tkx‖ 2n

n+1

� 1
n+1

‖Tn+1(Tkx)‖2 +
n

n+1
‖Tkx‖2
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so, T is an (n,k)-quasi class Q∗ operator. �
An operator T ∈ L (H ), is said to belong to k -quasi class A ∗

n operator ([7]) if

T ∗k
(
|Tn+1| 2

n+1 −|T ∗|2
)

Tk � O

for n,k ∈ N0.
From [7, Theorem 2.5] if T is a k -quasi class A ∗

n operator, then T is an (n,k)-
quasi-∗ -paranormal operator, from the above theorem T is an (n,k)-quasi class Q∗
operator.

If T is an (n,k)-quasi class Q∗ operator, then T is an (n,k + 1)-quasi class Q∗
operator. The inverse is not true, as it can be seen below.

Consider the unilateral weighted shift operators as an infinite dimensional Hilbert
space operator. Recall that given a bounded sequence of a positive numbers α : α1,α2,
α3,α4, . . . (called weights) the unilateral weighted shift Wα associated with weight α
is the operator on H = l2 defined by Wαem = αmem+1 for all m � 1, where {em}∞

m=1
is the canonical orthonormal basis on l2.

Wα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 . . .
α1 0 0 0 0 . . .
0 α2 0 0 0 . . .
0 0 α3 0 0 . . .
0 0 0 α4 0 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Let diag({αm}∞
m=1) = diag(α1,α2,α3, . . .) denote an infinite diagonal matrix on

l2 . Then,

W ∗k
α

(
W ∗(n+1)

α W (n+1)
α − (n+1)WαW ∗

α +n
)
Wk

α

= diag({α2
mα2

m+1 · . . . ·α2
m+k−2α2

m+k−1α2
m+kα2

m+k+1 · . . . ·α2
m+k+n−1α2

m+k+n}∞
m=1)

−(n+1)diag({α2
mα2

m+1 · . . . ·α2
m+k−2α2

m+k−1α2
m+k−1}∞

m=1)

+ndiag({α2
mα2

m+1 · . . . ·α2
m+k−1}∞

m=1)

Then,

α2
mα2

m+1 · . . . ·α2
m+k−2α2

m+k−1(α
2
m+kα2

m+k+1 · . . . ·α2
m+k+n−1α2

m+k+n

−(n+1)α2
m+k−1 +n) � 0.

Thus, Wα is an (n,k)-quasi class Q∗ operator, if and only if,

α2
m+kα2

m+k+1 · . . . ·α2
m+k+n−1α2

m+k+n− (n+1)α2
m+k−1 +n � 0,

for m � 1.
If α1 = 2 and αm = 1 for m � 2, then Wα is a (2,2)-quasi class Q∗ operator but

is not a (2,1)-quasi class Q∗ operator.
Since (n,k)-quasi-∗ -paranormal is not a normaloid operator [12, Example 2.3(4)],

then (n,k)-quasi class Q∗ is not a normaloid operator for k � 2.
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THEOREM 2.5. If T is an (n,k)-quasi class Q∗ operator, which commutes with
a unitary S, then TS is an (n,k)-quasi class Q∗ operator.

Proof. Let A = TS , TS = ST , S∗T ∗ = T ∗S∗ and SS∗ = S∗S = I .

A∗(n+k+1)A(n+k+1)− (n+1)A∗(k)AA∗Ak +nA∗kAk

=(TS)∗(n+k+1)(TS)(n+k+1)− (n+1)(TS)∗k(TS)(TS)∗(TS)k +n(TS)∗k(TS)k

=S∗kT ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
TkSk � O,

so that TS is an (n,k)-quasi class Q∗ operator. �

THEOREM 2.6. Let T be an (n,k)-quasi class Q∗ operator. If T is unitarily
equivalent to an operator S , then S is an (n,k)-quasi class Q∗ operator.

Proof. Since T is unitarily equivalent to an operator S , then S =U∗TU . We have

S∗k
(
S∗(n+1)S(n+1)− (n+1)SS∗+nI

)
Sk

=(U∗TU)∗k
(
(U∗TU)∗(n+1)(U∗TU)(n+1)− (n+1)(U∗TU)(U∗TU)∗ +nI

)
(U∗TU)k

=U∗T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
TkU � O

so that S is an (n,k)-quasi class Q∗ operator. �

THEOREM 2.7. If T does not have a dense range, then the following statements
are equivalent:

(1) T is an (n,k)-quasi class Q∗ operator
(2)

T =
(

A B
O C

)
on H = Tk(H)⊕ker(T ∗k),

where A∗(n+1)A(n+1)−(n+1)(AA∗+BB∗)+nI � O, and Ck = O. Furthermore, σ(T )=
σ(A)∪{0}.

Proof. (1) ⇒ (2) Consider the matrix representation of T with respect to the
decomposition H = Tk(H)⊕ker(T ∗k) :

T =
(

A B
O C

)
.

Let P be the projection onto Tk(H). Since T is an (n,k)-quasi class Q∗ operator, we
have

P
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
P � O.
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Therefore

A∗(n+1)A(n+1)− (n+1)(AA∗+BB∗)+nI � O.

Let x =
(

x1

x2

)
∈ H = Tk(H)⊕ker(T ∗k). Then,

〈Ckx2,x2〉 =
〈
Tk(I−P)x,(I−P)x

〉
=
〈
(I−P)x,T ∗k(I−P)x

〉
= 0,

thus Ck = O.

By [4, Corollary 7], σ(A)∪σ(C) = σ(T )∪ϑ , where ϑ is the union of the holes
in σ(T ) , which happen to be a subset of σ(A)∩σ(C), and σ(A)∩σ(C) has no interior
points. Therefore σ(T ) = σ(A)∪σ(C). Since C is nilpotent, we have σ(T ) = σ(A)∪
{0}.

(2) ⇒ (1) Suppose T =
(

A B
O C

)
on H = Tk(H)⊕ker(T ∗k), where

A∗(n+1)A(n+1)− (n+1)(AA∗+BB∗)+nI � O

and Ck = O. Since

Tk =
(

Ak ∑k−1
j=0 AjBCk−1− j

O O

)

we have

T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
Tk

=
(

A B
O C

)∗k((
A B
O C

)∗(n+1)(
A B
O C

)(n+1)

− (n+1)
(

A B
O C

)(
A B
O C

)∗
+nI

)(
A B
O C

)k

=
(

A∗k O
(∑k−1

j=0 AjBCk−1− j)∗ O

)(
D E
E∗ F

)(
Ak ∑k−1

j=0 AjBCk−1− j

O O

)

=

(
A∗kDAk A∗kD∑k−1

j=0 AjBCk−1− j

(∑k−1
j=0 AjBCk−1− j)∗DAk (∑k−1

j=0 AjBCk−1− j)∗D∑k−1
j=0 AjBCk−1− j

)

where

D = A∗(n+1)A(n+1)− (n+1)(AA∗+BB∗)+n

E = A∗(n+1)
n

∑
j=0

AjBCn− j − (n+1)BC∗

F = (
n

∑
j=0

AjBCn− j)∗(
n

∑
j=0

AjBCn− j)+C∗(n+1)C(n+1)− (n+1)CC∗+n
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Let v = x⊕y be a vector in H = Tk(H)⊕ker(T ∗k) , where x∈ Tk(H) and y∈ ker(T ∗k).
Then 〈

T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
Tkv,v

〉

=
〈
A∗kDAkx,x

〉
+

〈
A∗kD

k−1

∑
j=0

AjBCk−1− jy,x

〉
+

〈
(
k−1

∑
j=0

AjBCk−1− j)∗DAkx,y

〉

+

〈
(
k−1

∑
j=0

AjBCk−1− j)∗D
k−1

∑
j=0

AjBCk−1− jy,y

〉

=

〈
D(Akx+

k−1

∑
j=0

AjBCk−1− jy),(Akx+
k−1

∑
j=0

AjBCk−1− jy)

〉

Since
D = A∗(n+1)A(n+1)− (n+1)(AA∗+BB∗)+n � O

we have 〈
T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
Tkv,v

〉
� 0,

hence
T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
Tk � O.

Thus, T is an (n,k)-quasi class Q∗ operator. �

COROLLARY 2.8. If T is an (n,k)-quasi class Q∗ operator and T k(H) is not
dense range, then

T =
(

A B
O C

)
on H = Tk(H)⊕ker(T ∗k),

where A is an n-class Q∗ operator on T k(H), and Ck = O.

THEOREM 2.9. If T is an (n,k)-quasi class Q∗ operator and M is an invariant
subspace for T , then the restriction T |M is also an (n,k)-quasi class Q∗ operator.

Proof. Let P be the projection onto M . Then TP = PTP , so that (T |M)∗ = PT ∗P .
Hence, for x ∈ M we have

‖(T |M)∗((T |M)kx)‖2 = ‖(PT ∗P)(PTP)kx‖2 = ‖P(T ∗Tkx)‖2 � ‖T ∗(Tkx)‖2

� 1
n+1

(
‖Tn+1(Tkx)‖2 +n‖Tkx‖2

)
=

1
n+1

(
‖(T |M)n+1((T |M)kx)‖2 +n‖(T |M)kx‖2

)
. �

THEOREM 2.10. Let T ∈ L(H). If λ− 1
2 T is an operator of the (n,k)-quasi class

Q∗ then T is (n,k)-quasi-∗ -paranormal for all λ > 0.
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Proof. Let λ− 1
2 T be an operator of (n,k)-quasi class Q∗, then

(λ− 1
2 T )∗k

(
(λ− 1

2 T )∗(n+1)(λ− 1
2 T )(n+1)− (n+1)(λ− 1

2 T )(λ− 1
2 T )∗ +nI

)
(λ− 1

2 T )k � O

λ− k
2 T ∗k

(
λ−(n+1)T ∗(n+1)T (n+1)− (n+1)λ−1TT ∗ +nI

)
λ− k

2 Tk � O,

1
λ n+k+1 T ∗k

(
T ∗(n+1)T (n+1)− (n+1)λ nTT ∗ +nλ (n+1)

)
Tk � O,

T ∗k
(
T ∗(n+1)T (n+1)− (n+1)λ nTT ∗ +nλ (n+1)

)
Tk � O

for all λ > 0. By this it is proved that the operator T is an (n,k)-quasi-∗ -paranormal
operator. �

THEOREM 2.11. Let us suppose that T is (n,k)-quasi class Q∗ and T � 42I,
then it follows that 2 · T, is

(
n−3
4 ,k

)
-quasi class Q∗, for n = 4r + 3 and r integer

greater then 10.

Proof. Let us suppose that T is (n,k)-quasi class Q∗ and T � 42I. Then we have
to prove that

‖(2T )∗((2T )kx)‖2 � 1
n−3
4 +1

(
‖(2T )1+ n−3

4 ((2T )kx)‖2 +
n−3

4
‖(2T )kx‖2

)
,

for every n � 44. Let us suppose that last relation is valid, then we get

‖T ∗(Tkx)‖2 � 1
n+1

(
2

n−3
2 ‖T n+1

4 (Tkx)‖2 +
n−3
42 ‖Tkx‖2

)
.

From fact that T is (n,k)-quasi class Q∗ and T � 42I, we obtain that

1
n+1

(
‖Tn+1(Tkx)‖2 +n‖Tkx‖2

)
� 1

n+1

(
2

n−3
2 ‖T n+1

4 (Tkx)‖2 +
n−3
42 ‖Tkx‖2

)
.

Hence, 2 ·T, is
(

n−3
4 ,k

)
-quasi class Q∗, for n � 44. �

3. Spectral properties

For T ∈ L(H), the smallest nonnegative integer p such that ker(T p) = ker(T p+1)
is called the ascent of T and is denoted by p(T ). If no such integer exists, we set
p(T ) = ∞. We say that T ∈ L(H) is of finite ascent if p(T −λ ) < ∞, for all λ ∈ C.

PROPOSITION 3.1. If T is (n,k)-quasi class Q∗, and T � 42I, then it is
(

n−3
4 ,k

)
-

quasi-∗ -paranormal, for n = 4r+3 and r integer greater then 10. T has finite ascent
under above conditions.
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Proof. From theorem 2.11 we obtain that 2 · T, is
(

n−3
4 ,k

)
-quasi class Q∗. On

the other side from theorem 2.10, we have that
√

4 · T is
(

n−3
4 ,k

)
-quasi class Q∗,

respectively T is
(

n−3
4 ,k

)
-quasi-∗ -paranormal for every λ > 0. Now from corollary

4.5 ([12]), it follows that T has finite ascent. �

THEOREM 3.2. If T is an (n,k)-quasi class Q∗ operator, 0 �= λ ∈ σp(T ) and T

is the form T =
(

λ A
O B

)
on H = ker(T−λ )⊕ (ker(T−λ ))⊥, then A = O.

Proof. Let P be the orthogonal projection onto ker(T−λ ) and x ∈ ker(T−λ ).
Since T is an (n,k)-quasi class Q∗ operator, and x = 1

λ k T
kx ∈ Tk(H) , we have

P
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +n

)
P � O.

then
λ 2(n+1)− (n+1)(λ 2 +AA∗)+n � 0

which yields that
λ 2(n+1)− (n+1)λ 2 +n � (n+1)AA∗

hence A = O. �

COROLLARY 3.3. If T is an (n,k)-quasi class Q∗ operator, 0 �= λ then Tx = λx
implies T ∗x = λx.

Proof. We may assume that x �= 0. Let M be a span of {x} . Then M is an
invariant subspace of T. We have

T =
(

λ A
O B

)
on H = M⊕M⊥,

and P the orthogonal projection of H onto M. Since T is an (n,k)-quasi class Q∗
operator, then we have

P
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +n

)
P � O.

From above theorem we have A = O. Thus

(T −λ )∗x =
(

O O
O B−λ

)∗(
x
0

)
= 0. �

A complex number λ is said to be in the point spectrum σp(T ) of T if there is a
nonzero x ∈ H such that (T −λ )x = 0. If in addition, (T −λ )∗x = 0, then λ is said
to be in the joint point spectrum σ jp(T ) of T . Clearly σ jp(T ) ⊆ σp(T ). In general
σ jp(T ) �= σp(T ).
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COROLLARY 3.4. If T is an (n,k)-quasi class Q∗ operator, then σ jp(T )\{0}=
σp(T )\ {0}.

COROLLARY 3.5. Let T be an (n,k)-quasi class Q∗ operator, then ker(T −λ )=
ker(T −λ )2, for λ �= 0 ∈ C.

Proof. We have to tell that ker(T −λ ) = ker(T −λ )2 . To do that, it is sufficient
enough to show that ker(T − λ )2 ⊆ ker(T − λ ) , since ker(T − λ ) ⊆ ker(T − λ )2 is
clear.

Let x ∈ ker(T − λ )2 , then (T − λ )2x = 0. From Corollary 3.3 we have (T −
λ )∗(T −λ )x = 0. Hence,

‖(T −λ )x‖2 = 〈(T −λ )∗(T −λ )x,x〉 = 0,

so we have (T −λ )x = 0, which implies ker(T −λ )2 ⊆ ker(T −λ ) . �

REMARK 3.6. If T is an (n,k)-quasi class Q∗ operator, and limn→∞
‖Tn+1(Tkx)‖2

n+1 <
∞, for k ∈ N. Then there exists an (∞,k)-quasi class Q∗ operator.

THEOREM 3.7. Let T be an (∞,k)-quasi class Q∗ operator, and (T −λ )xm → 0,
as m → ∞ for λ �= 0. Then (xm) is in the resolvent set of (T ∗ −λ).

Proof. Let (T −λ )xm → 0, as m → ∞, ||xm|| = 1 and r ∈ N. Then we have

(T r −λ r)xm → 0,

because

Tr = (T −λ + λ )r =
r

∑
j=1

(
r
j

)
λ r− j(T −λ ) j + λ r.

From the last relation we get:

|||λ rxm||− ||(Tr −λ r)xm||| � ||Trxm|| = ||λ rxm +(Tr −λ r)xm||
� ||λ rxm||+ ||(Tr −λ r)xm||,

and ||Trxm|| → |λ |r. Knowing that

|||T ∗(λ rxm)||− ||T∗(T r −λ r)xm|||2 � ||T ∗(T rxm)||2

and that T is an (n,k)-quasi class Q∗ operator, we obtain

lim
m→∞

sup ||T ∗xm||2 � 1
n+1

(|λ |2n+2 +n
)
.

Now we will distinguish two cases:
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I) If 0 < |λ | � 1, then we have

||T ∗xm −λxm||2n+2 =
(
||T ∗xm −λxm||2

)n+1

=
(
||T ∗xm||2 −λ〈(T −λ )xm,xm〉−λ 〈xm,(T −λ )xm〉− |λ |2

)n+1
,

and

lim
m→∞

sup ||T ∗xm −λxm||2n+2 �
( |λ |2n+2

n+1
+

n
n+1

−|λ |2
)n+1

→ 0,as n → ∞.

From the last relation we get that

||T ∗xm −λxm|| < 1,

respectively (T ∗ −λ) is invertible, and (xm) ∈ ρ(T ∗ −λ).
II) Let now consider that |λ | > 1. Then we have

lim
n→∞

lim
m→∞

sup ||T ∗xm −λxm||2n+2 � lim
n→∞

( |λ |2n+2

n+1
+

n
n+1

−|λ |2
)n+1

=

elimn→∞ (λ 2n+2−λ 2(n+1)−1) → 0,as n → ∞.

Hence, like the above, we have that (T ∗−λ ) is invertible, and (xm) ∈ ρ(T ∗−λ). �

COROLLARY 3.8. If T is an (n,k)-quasi class Q∗ operator, and α,β ∈ σp(T )\
{0} with α �= β , then ker(T −α) ⊥ ker(T −β ).

Proof. Let x ∈ ker(T −α) and y ∈ ker(T − β ) . Then Tx = αx and Ty = βy .
Therefore

α〈x,y〉 = 〈Tx,y〉 = 〈x,T ∗y〉 = 〈x,βy〉 = β 〈x,y〉,
then 〈x,y〉 = 0. Therefore, ker(T −α) ⊥ ker(T −β ). �

Let Hol(σ(T )) be the space of all analytic functions in an open neighborhood
of σ(T ). We say that T ∈ L(H) has the single valued extension property (SVEP) at
λ ∈ C, if for every open neighborhood U of λ the only analytic function f : U → H
which satisfies the equation (T − λ ) f (λ ) = 0, is the constant function f ≡ 0 on U .
The operator T is said to have SVEP if T has SVEP at every λ ∈ C.

COROLLARY 3.9. If T is an (n,k)-quasi class Q∗ operator, then T has SVEP.

Proof. Let f be an analytic function such that (T −λ ) f (λ ) = 0 on an open set
U . By assumption, f (λ ) ∈ ker(T −λ ) for each λ ∈ U . Thus f (λ ) ⊥ f (μ) for any
two different nonzero numbers λ and μ in U by Corollary 3.8. Therefore, for any
sequence {μn} of non-zero complex numbers such that μn −→ λ , thus

‖ f (λ )‖2 = lim
m−→∞

〈 f (λ ), f (μm)〉 = 0.

That is, T has SVEP. �
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LEMMA 3.10. [2] Let H be a complex Hilbert space. Then there exists a Hilbert
space Y such that H ⊂ Y and a map ϕ : L(H) → L(Y ) such that:

(1). ϕ is a faithful ∗ -representation of the algebra L(H) on Y, so:

ϕ(IH) = IY , ϕ(T ∗) = (ϕ(T ))∗, ϕ(TS) = ϕ(T )ϕ(S)

ϕ(αT + βS) = αϕ(T )+ β ϕ(S) for any T,S ∈ L(H) and α,β ∈ C,

(2). ϕ(T ) � 0 for any T � 0 in L(H),
(3). σa(T ) = σa (ϕ(T )) = σp (ϕ(T )) for any T ∈ L(H),

COROLLARY 3.11. If T is an (n,k)-quasi class Q∗ operator, then ϕ(T ) is an
(n,k)-quasi class Q∗ operator.

Proof. Let ϕ : L(H) → L(K) be Berberian’s faithful ∗ -representation. First we
show that ϕ(T ) belongs to the (n,k)-quasi class Q∗ . Since T is a (n,k)-quasi class
Q∗ we have

(ϕ(T ))∗k
[
(ϕ(T ))∗(n+1)(ϕ(T ))(n+1)− (n+1)ϕ(T)(ϕ(T ))∗ +n

]
(ϕ(T ))k

=ϕ
(
T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
Tk
)

� O

thus ϕ(T ) is an (n,k)-quasi class Q∗ operator. �

COROLLARY 3.12. If T is an (n,k)-quasi class Q∗ operator, for every non zero
λ ∈ σp(T ) , the matrix representation of T with respect to the decomposition H =

ker(T−λ )⊕ ker(T−λ )⊥ is T =
(

λ O
O B

)
for some operator B satisfying λ �∈ σp(B)

and σ(T ) = {λ}∪σ(B) .

Proof. By Corollary 3.3, if λ �= 0 and λ ∈σp(T ) , we have ker(T−λ ) reduces T .

So we have that T =
(

λ O
O B

)
on H = ker(T−λ )⊕ (ker(T−λ ))⊥ for some operator

B satisfying λ �∈ σp(B) and σ(T ) = {λ}∪σ(B) . �

4. Spectrum continuity on the set of (n,k)-quasi class Q∗ operator

Let {Em}m∈N be a sequence of compact subsets of C . Let’s define the infe-
rior and superior limits of {Em}m∈N , denoted respectively by liminfm→∞{Em} and
limsupm→∞{Em} as it follows:

1). liminfm→∞{Em} = {λ ∈ C : for every ε > 0, there exists N ∈ N such that
B(λ ,ε)∩Em �= /0 for all m > N},
2). limsupm→∞{Em}= {λ ∈C : for every ε > 0, there exists J⊆N infinite such that
B(λ ,ε)∩Em �= /0 for all m ∈ J}.
If liminfm→∞{Em}=limsupm→∞{Em} , then limm→∞{Em} is defined by this com-

mon limit.
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A mapping p , defined on L(H) , whose values are compact subsets on C is said to
be upper semi-continuous at T , if Tm → T then limsupm→∞ p(Tm) ⊂ p(T ), and lower
semi-continuous at T , if Tm → T then p(T ) ⊂ liminfm→∞ p(Tm) . If p is both upper
and lower semi-continuous at T , then it is said to be continuous at T and in this case
limm→∞ p(Tm) = p(T ) .

The spectrum σ : T → σ(T ) is upper semi-continuous by [5, Problem 102], but it
is not continuous in general, [11, Example 4.6]

LEMMA 4.1. [10] If {Tm} ⊂ L(H) and T ∈ L(H) are such that Tm converges,
according to the operator norm topology to T, then isoσ(T ) ⊆ liminfm→∞ σ(Tm).

THEOREM 4.2. The spectrum σ is continuous on the set of (n,k)-quasi class Q∗
operators.

Proof. Let {Tm} be a sequence of operators from (n,k)-quasi class Q∗ operators
and limm→∞ ‖Tm −T‖ = 0, where T is an (n,k)-quasi class Q∗ operator. Since the
function σ is upper semi-continuous, limsupm→∞ σ(Tm) ⊂ σ(T ). Therefore, to prove
the theorem, it will be sufficient to prove that σ(T )⊂ liminfm→∞ σ(Tm) . From Lemma
4.1 it will be sufficient to prove accσ(T ) ⊂ liminfm→∞ σ(Tm).

Let ϕ(T ) be the Berberian extension to T . From Lemma 3.10 we have σ(T ) =
σ(ϕ(T )) , σ(Tm) = σ(ϕ(T )m) and σa(T ) = σa(ϕ(T )) = σp(ϕ(T )) .

If T is an (n,k)-quasi class Q∗ operator, from Corollary 3.11 ϕ(T ) is an (n,k)-
quasi class Q∗ operator, therefore

accσ(T ) ⊂ liminf
m→∞

σ(Tm) ⇐⇒ accσ(ϕ(T )) ⊂ liminf
m→∞

σ(ϕ(T )m).

Now, assume that λ ∈ accσ(ϕ(T )) . Consider two cases:
Case I: Let

λ ∈ σ(ϕ(T ))\σa(ϕ(T )) (4.1)

So ϕ(T )−λ is upper semi-Fredholm operator and α(ϕ(T )−λ ) = 0.
Suppose the contrary, λ �∈ liminfm→∞ σ(ϕ(T )m). Then, there exists a δ > 0,

a neighborhood Dδ (λ ) of λ and a subsequence {ϕ(T )ml} of {ϕ(T )m} such that
σ(ϕ(T )ml )∩Dδ (λ ) = /0 for every l � 1. This implies that ϕ(T )ml − μ is a Fredholm
operator and ind(ϕ(T )ml − μ) = 0 for every μ ∈ Dδ (λ ) and

lim
m→∞

‖(ϕ(T )ml − μ)− (ϕ(T)− μ)‖= 0.

From the continuity of the index follows that ind(ϕ(T )− μ) = 0 and ϕ(T )− μ
is a Fredholm operator. Since α(ϕ(T )− μ) = 0, μ �∈ σ(ϕ(T )) for every μ in a ε -
neighborhood of λ . This is a contradiction of relation 4.1, therefore we must have
λ ∈ liminfm→∞ σ(ϕ(T )m).

Case II: Let λ ∈ σa(ϕ(T )). Then λ ∈ σp(ϕ(T )). By Corollary 3.12 ϕ(T ) has a
representation

ϕ(T ) = λ ⊕B on H = ker(ϕ(T )−λ )⊕ (ker(ϕ(T )−λ ))⊥ and ker(B−λ ) = {0}.
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Therefore B−λ is upper semi-Fredholm operator and α(B−λ ) = 0. There exists
a ε > 0 such that B− (λ − μ0) is upper semi-Fredholm operator with ind(B− (λ −
μ0)) = ind(B−λ ) and α(B− (λ − μ0)) = 0 for every μ0 such that 0 < |μ0| < ε.

Choose 0< ε < δ and set μ = λ −μ0 , and we have ϕ(T )−μ = (λ −μ)⊕(B−μ)
is upper semi-Fredholm operator, ind(ϕ(T )−μ) = ind(B−μ) and α(ϕ(T )−μ) = 0.

Suppose the contrary, λ �∈ liminfm→∞ σ(ϕ(T )m). Then ϕ(T )ml −μ is a Fredholm
operator and ind(ϕ(T )ml − μ) = 0 and

lim
m→∞

‖(ϕ(T )ml − μ)− (ϕ(T)− μ)‖= 0.

It follows from the continuity of the index that ind(ϕ(T )− μ) = 0 and ϕ(T )− μ
is a Fredholm operator. Since α(ϕ(T )− μ) = 0, μ �∈ σ(ϕ(T )) for every μ in a ε -
neighborhood of λ . This contradicts the assumption λ ∈ σa(ϕ(T )) , therefore we must
have λ ∈ liminfm→∞ σ(ϕ(T )m). �

5. Tensor product

Let T be any (n,k)-quasi class Q∗ operator. We claim that T ⊗ I and I ⊗T are
both (n,k)-quasi class Q∗ operator. This can be seen by using the fact that the tensor
product of two positive operators is positive and the following computations:

(T ⊗ I)∗k
(
(T ⊗ I)∗(n+1)(T ⊗ I)(n+1)− (n+1)(T ⊗ I)(T ⊗ I)∗ +n(I⊗ I)

)
(T ⊗ I)k

=(T ∗k ⊗ I)
(
(T ∗(n+1)T (n+1))⊗ I− (n+1)(TT ∗)⊗ I +n(I⊗ I)

)
(Tk ⊗ I)

=
[
T ∗k
(
T ∗(n+1)T (n+1)− (n+1)TT ∗ +nI

)
Tk
]
⊗ I � O

By the above relation, we proved that if T is an (n,k)-quasi class Q∗ operator,
then the tensor product T ⊗ I is an (n,k)-quasi class Q∗ operator. However, if T is
an (n,k)-quasi class Q∗ operator, then T ⊗T is not necessarily (n,k)-quasi class Q∗
operator. Let’s see this through an example:

LEMMA 5.1. Let S =⊕∞
n=1Hn, where Hn

∼= R
2. For given positive operators A,B

on R2 and for any fixed n ∈ N , the operator T = TA,B on S is defined as follows:

T (x1,x2, . . .) = (0,Ax1,Bx2,Bx3,Bx4, . . .),

and the adjoint operator of T is

T ∗(x1,x2, . . .) = (Ax2,Bx3,Bx4,Bx5, . . .).

The operator TA,B is an (n,1)-quasi class Q∗ operator, if and only if,

A(B2n+2− (n+1)A2 +n)A � O

and
B2n+2− (n+1)B4 +nB2 � O.
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EXAMPLE 5.2. In this example we will prove that if T is an (2,1)-quasi class
Q∗, then their tensorial product is not (2,1)-quasi class Q∗.

Take A and B as

A =
(

1 0.94
0.94 2

) 1
2

and B =
(

1 2.82
2.82 8

) 1
6

.

Then

B6−3B4 +2B2 =
(

0.2534 −0.0263
−0.0263 0.1882

)
� 0,

and

A(B6−3A2 +2I)A =
(

0.6912 2.2477
2.2477 7.3088

)
� 0.

So, TA,B is a (2,1)-quasi class Q∗ operator, and

AB6A⊗AB6A−3A4⊗A4 +2A2⊗A2 =

⎛
⎜⎜⎝

10.2094 24.2748 24.2748 55.8379
24.2748 54.3848 55.8379 120.9860
24.2748 55.8379 54.3848 120.9860
55.8379 120.9860 120.9860 258.9975

⎞
⎟⎟⎠

is not positive. Then, T ⊗T is not a (2,1)-quasi class Q∗ operator.

Conclusion. In this paper we have defined new class of operators named (n,k)-
quasi class Q∗ and operator T is from that class if it satisfies

‖T ∗(Tkx)‖2 � 1
n+1

(
‖Tn+1(Tkx)‖2 +n‖Tkx‖2

)
,

for all x ∈ H and for some nonnegative integers n and k . We have prove structural
and spectral properties of this class of operators, and also it is proven the spectrum
continuity of this class of operators.
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