
Journal of
Mathematical

Inequalities

Volume 15, Number 3 (2021), 1019–1029 doi:10.7153/jmi-2021-15-69
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Abstract. In this work, by the weighted arithmetic-geometric mean inequality, we show if a,b >
0 and 0 � ν � 1. Then for all positive integer m, we have
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where r0 = min{ν ,1−ν}, rm = min{2mrm
0 ,(1− r0)m− rm

0 } and χI(ν) the characteristic func-
tion. This inequality provides a generalization of an important refinement of the Young inequal-
ity obtained by J. Zhao and J. Wu. As applications we give some new generalized refinements
of Young type inequalities for the determinants, p -norms and traces, of positive τ -measurable
operators.
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