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SOME MULTIDIMENSIONAL OPIAL TYPE INEQUALITIES

SONGTING YIN

(Communicated by J. Pečarić)

Abstract. In this note, we establish some multidimensional Opial type inequalities, which are
generalized from the one-dimensional case. Based on calculus and some fundamental inequal-
ities, we first present an elementary proof in Euclidean spaces. Then by using the property of
the Minkowski gradient and the so called adapted frame field, we further extend the multidimen-
sional Opial type inequalities to a Minkowski space.

1. Introduction

Due to considerable applications in ordinary, partial and difference equations and
some important theoretical value, Opial-type inequalities and their variant extensions
have been studied by many people for about sixty years. The classical Opial inequality
[4] shows that if a function g � 0 is continuously differentiable on a closed interval
[0,h] with g(0) = g(h) = 0, then

∫ h

0
|g(t)g′(t)|dt � h

4

∫ h

0
|g′(t)|2dt,

where h
4 is the best possible constant. Immediately after Opial’s work, Olech [3] ob-

served that positivity of g(t) is not necessary and if g(t) is absolutely continuous in
[0,h] and satisfies g(0) = 0, then it holds that

∫ h

0
|g(t)g′(t)|dt � h

2

∫ h

0
|g′(t)|2dt,

with h
2 being the best possible constant. Among a large number of papers, Yang [7]

gave a generalization in the following.

THEOREM 1.1. [7] Let f (x) be an absolutely continuous function on [a,b] , and
f (a) = 0 . Then for p � 0,q � 1 ,

∫ b

a
| f (x)|p| f ′(x)|qdx � q

p+q
(b−a)p

∫ b

a
| f ′(x)|p+qdx.
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By using calculus and some fundamental inequalities, He [2] offered a simple
proof of Theorem 1.1. On the other hand, Pachpatte [5] discussed the multidimensional
case and obtained the following result.

THEOREM 1.2. [5] Let Q = {(x1, · · · ,xn)∈R
n|ak � xk � bk,1 � k � n} . Suppose

f is a C1 function on Q and satisfies f |∂Q = 0 . Then for any p,q � 1 ,

∫
Q
| f |p|∇ f |qdx � M

∫
Q
|∇ f |p+qdx,

where M = 1
n2p [∑n

k=1(bk −ak)α ]β ,α = p(p+q)
q ,β = q

p+q , ∇ f is the gradient of f , and
dx = dx1 · · ·dxn .

REMARK 1.3. Recently, Opial’s type inequalities involving higher order partial
derivatives, which generalizes Pachpatte’s type inequality, were obtained in [8].

2. Multidimensional Opial type inequality in Euclidean spaces

By borrowing the skill from He [2], we first generalize Theorem 1.1 into the mul-
tidimensional case in Euclidean spaces as follows.

THEOREM 2.1. Let Q = {(x1, · · · ,xn) ∈ R
n|ak � xk � bk,1 � k � n} . Suppose f

is an absolutely continuous function on Q and satisfies f |xk=ak = 0,∀k . Then for any
p � 0,q � 1 ,

∫
Q
| f |p|∇ f |qdx � M

∫
Q
|∇ f |p+qdx, (2.1)

where M = q
p+q min{(bk − ak)p,1 � k � n} , ∇ f is the gradient of f , and dx =

dx1 · · ·dxn .

REMARK 2.2. Theorem 2.1 is different from Theorem 1.2 since f vanishes on the
boundary {xk = ak}∩∂Q for 1 � k � n and p � 0, while in Theorem 1.2 f vanishes on
the whole boundary and p � 1, and thus our condition is a bit weakly than Pachpatte’s.
In Theorem 2.1 we give a new control constant M for Opial’s type inequalities. In
addition, by similar arguments as in [8], we can also derive the corresponding result for
higher order partial derivatives.

Proof. To prove Theorem 2.1, we follow the arguments in [2] with some necessary
modifications. Since Inequality (2.1) obviously holds if p = 0, we might as well con-
sider p > 0 in the following proof. With no loss of generality, we can assume ak = 0
for 1 � k � n . Let

Q = {(x2, · · · ,xn) ∈ R
n−1|0 � xk � bk,2 � k � n}.
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Set

F(t) =
qt p

p+q

∫ t

0
ds

∫
Q
|∇ f (s, x)|p+qd x−

∫ t

0
ds

∫
Q
| f (s, x)|p|∇ f (s, x)|qd x,

where dx = dx2 · · ·dxn . Then for almost every t � 0, we have

F ′(t) =
pqt p−1

p+q

∫ t

0
ds

∫
Q
|∇ f (s, x)|p+qd x +

qt p

p+q

∫
Q
|∇ f (t, x)|p+qd x

−
∫
Q
| f (t, x)|p|∇ f (t, x)|qd x. (2.2)

Using Hölder inequality and noting f (0, x) = 0, we obtain

| f (t, x)| =
∣∣∣∣
∫ t

0

∂
∂ s

f (s, x)ds

∣∣∣∣
�

∫ t

0

∣∣∣∣ ∂
∂ s

f (s, x)
∣∣∣∣ds

�
∫ t

0
|∇ f (s, x)|ds

�
(∫ t

0
ds

) 1
r
(∫ t

0
|∇ f (s, x)|p+qds

) 1
p+q

,

where 1
r + 1

p+q = 1. This gives

| f (t, x)|p+q

t p+q−1 �
∫ t

0
|∇ f (s, x)|p+qds.

Substituting it into (2.2) yields

F ′(t) � pq
(p+q)tq

∫
Q
| f (t, x)|p+qd x +

qt p

p+q

∫
Q
|∇ f (t, x)|p+qd x

−
∫

Q
| f (t, x)|p|∇ f (t, x)|qd x

� 1
(p+q)tq

[
pq

∫
Q
| f (t, x)|p+qd x +qt p+q

∫
Q
|∇ f (t, x)|p+qd x

−(p+q)tq
∫

Q
| f (t, x)|p|∇ f (t, x)|qd x

]

� 1
(p+q)tq

[
p

∫
Q
| f (t, x)|p+qd x +qt p+q

∫
Q
|∇ f (t, x)|p+qd x

−(p+q)tq
∫

Q
| f (t, x)|p|∇ f (t, x)|qd x

]

=
1

(p+q)tq

∫
Q

[
p| f (t, x)|p+q +qt p+q|∇ f (t, x)|p+q

− (p+q)tq| f (t, x)|p|∇ f (t, x)|q
]
dx. (2.3)
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Write

A = | f (t, x)|p+q, B = (t|∇ f (t, x)|)p+q, α =
p

p+q
, β =

q
p+q

.

Then by using Young inequality we derive

AαBβ � (Aα)
1
α

1
α

+
(Bβ )

1
β

1
β

= αA+ βB,

which implies

tq| f (t, x)|p|∇ f (t, x)|q � p
p+q

| f (t, x)|p+q +
q

p+q
t p+q|∇ f (t, x)|p+q.

Therefore, it follows from (2.3) that F ′(t) � 0. Thus we have∫
Q
| f |p|∇ f |qdx � q

p+q
(b1−a1)p

∫
Q
|∇ f |p+qdx. (2.4)

By similar arguments as above, we can deduce (2.4) for any 2 � k � n :∫
Q
| f |p|∇ f |qdx � q

p+q
(bk −ak)p

∫
Q
|∇ f |p+qdx.

This ends the proof. �
Let fi (i = 1, · · · ,m) be the functions as in Theorem 2.1. Then using the elemen-

tary inequality, we have ∫
Q

m

∏
i=1

| fi|pi |∇ fi|qidx

=
∫

Q

⎡
⎣{

m

∏
i=1

| fi|pi |∇ fi|qi

} 1
m
⎤
⎦

m

dx

�
∫

Q

[
1
m

m

∑
i=1

| fi|pi |∇ fi|qi

]m

dx

�
(

1
m

)m ∫
Q

mm−1

[
m

∑
i=1

| fi|mpi |∇ fi|mqi

]
dx

� 1
m

m

∑
i=1

Mi

∫
Q
|∇ fi|m(pi+qi)dx.

Therefore, we obtain the following.

THEOREM 2.3. Let Q = {(x1, · · · ,xn) ∈ R
n|ak � xk � bk,1 � k � n} . Suppose

fi (i = 1, · · · ,m) are the absolutely continuous functions on Q and satisfies fi|xk=ak =
0,∀i,k . Then for any pi � 0,qi � 1 ,∫

Q

m

∏
i=1

| fi|pi |∇ fi|qidx � 1
m

m

∑
i=1

Mi

∫
Q
|∇ fi|m(pi+qi)dx,
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where Mi = qi
pi+qi

min{(bk − ak)mpi ,1 � k � n} , ∇ fi is the gradient of fi , and dx =
dx1 · · ·dxn .

3. Multidimensional Opial type inequality in Minkowski spaces

In this section, we will further extend the multidimensional Opial type inequalities
into Minkowski spaces, which are more general than Euclidean spaces.

In what follows, we demonstrate the so called Minkowski spaces. For more details,
we refer to [1]. Recall that in Euclidean space (Rn,‖ · ‖) , the norm of a vector y =
(y1, · · · ,yn) is defined as

‖y‖ :=

√
n

∑
i=1

(yi)2.

Thus, by computing the Hessian of ‖y‖2 , the metric on Euclidean space is given by

g :=
n

∑
i=1

δi jdxidx j,

where δii = 1 for 1 � i � n and δi j = 0 if i �= j .
Now we equip with a norm F(y) on R

n such that the metric is

g :=
n

∑
i=1

gi j(y)dxidx j, gi j :=
1
2

∂ 2(F2)
∂yi∂y j .

Here the functions gi j(y) are smooth in R
n \0, and gi j(cy) = gi j(y) for any c > 0. We

also require the matrix (gi j) is positive definite. Then (Rn,F) is called a Minkowski
space. Obviously, a Euclidean space is a special Minkowski space.

In a Minkowski space, the gradient operator is a nonlinear operator which is de-
fined by the Legendre transformation. It is more complicated than that in the Euclidean
situation. For simplicity, we only consider it in a Randers-Minkowski space (Rn,F)
with F = α + β , where α is a Euclidean metric and β is a 1-form:

α(y) =

√
n

∑
i, j=1

ai jyiy j, β (y) =
n

∑
i=1

biy
i.

For a smooth function f (x) , define

|d f | :=
√

n

∑
i, j=1

ai j ∂ f
∂xi

∂ f
∂x j , 〈β ,d f 〉 :=

n

∑
i, j=1

ai jbi
∂ f
∂x j , ‖β‖ :=

√
n

∑
i, j=1

ai jbib j,

where (ai j) = (ai j)−1 . Then the gradient of f is given by (see [6])

∇ f =

√
(1−‖β‖2)|d f |2 + 〈β ,d f 〉2−〈β ,d f 〉

(1−‖β‖2)2

×
{

(1−‖β‖2)ai j ∂ f
∂x j + 〈β ,d f 〉ai jb j√

(1−‖β‖2)|d f |2 + 〈β ,d f 〉2 −ai jb j

}
∂

∂xi .
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One can find that if f is a smooth function, then the gradient ∇ f is smooth in {x ∈
R

n|d f (x) �= 0} and only continuous at x where d f (x) = 0. We remark that this property
is true in any Minkowski space. In general, ∇ f can be written as

∇ f (x) =
{

gi j(∇ f ) ∂ f
∂x j

∂
∂xi , d f (x) �= 0;

0, d f (x) = 0,

but is not necessarily written explicitly, where (gi j) = (gi j)−1 .
In a minkowski space (Rn,F) , the distance from the point x to point y is F(y−x) .

But in general, F(y− x) �= F(x− y) unless F is reversible. Notice that ∇ f points into
the direction in which f increases the most. That is to say,

F(∇ f (x0)) = lim sup
x→x0

f (x)− f (x0)
F(x− x0)

. (3.1)

Now we choose a basis {e1, · · · ,en} in Minkowski space R
n such that F(ei) = 1 for

1 � i � n . Here we cannot define the angle between ei and e j by the Minkowski
metric. We call {e1, · · · ,en} an adapted frame field. In a Minkowski space with an
adapted frame field, coordinate component xi is the distance function from origin along
the direction ei . Note that ei = ∂

∂xi . Then formula (3.1) means that∣∣∣∣ ∂ f
∂xi

∣∣∣∣ � F(∇ f ),∀i.

With this inequality in hand, we can derive Opial’s type inequality by following the
discussions above step by step. Namely, we can establish Opial type inequality in the
Minkowski case as follows.

THEOREM 3.1. Let (Rn,F) be a Minkowski space with an adapted frame field,
and Q = {(x1, · · · ,xn) ∈ R

n|ak � xk � bk,1 � k � n} . Suppose f is an absolutely
continuous function on Q and satisfies f |xk=ak = 0,∀k . Then for any p � 0,q � 1 ,∫

Q
| f |pF(∇ f )qdx � M

∫
Q

F(∇ f )p+qdx,

where M = q
p+q min{(bk − ak)p,1 � k � n} , ∇ f is the Minkowski gradient of f , and

dx = dx1 · · ·dxn .

THEOREM 3.2. Let (Rn,F) be a Minkowski space with an adapted frame field,
and Q = {(x1, · · · ,xn) ∈ R

n|ak � xk � bk,1 � k � n} . Suppose fi (i = 1, · · · ,m) are
the absolutely continuous functions on Q and satisfies fi|xk=ak = 0,∀i,k . Then for any
pi � 0,qi � 1 , ∫

Q

m

∏
i=1

| fi|pi |∇ fi|qidx � 1
m

m

∑
i=1

Mi

∫
Q
|∇ fi|m(pi+qi)dx,

where Mi = qi
pi+qi

min{(bk − ak)mpi ,1 � k � n} , ∇ fi is the Minkowski gradient of fi ,
and dx = dx1 · · ·dxn .
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