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Abstract. In this paper, we consider a laminated Timoshenko beam system with frictional damp-
ing and an internal distributed delay feedback on the effective rotational angle. Under appropriate
assumptions on the weight of the delay term and wave speeds of the first two equations of the
system, we prove that the dissipation through the frictional damping is enough to stabilize the
system exponentially.

1. Introduction

In this paper, we consider the following laminated beam system with a frictional
damping and an internal distributed delay feedback acting on the effective rotational
angle: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρwtt +G(ψ −wx)x = 0,

Iρ(3stt −ψtt)−D(3sxx−ψxx)−G(ψ −wx)

+ μ1(3st −ψt)+
∫ τ2

τ1

μ2(r)(3st −ψt)(x, t − r)dr = 0,

3Iρstt −3Dsxx +3G(ψ −wx)+4γs = 0,

(1)

where (x,r) ∈ (0,1)× (τ1,τ2) and t � 0. Here w = w(x,t) is the transverse displace-
ment, ψ = ψ(x, t) is the rotation angle, s = s(x,t) is proportional to the amount of
slip along the interface and, 3s−ψ denotes the effective rotation angle. The positive
parameters ρ , Iρ ,G,D and γ are the density, mass moment of inertia, shear stiffness,
flexural rigidity and adhesive stiffness respectively. The positive constant μ1 is the
frictional damping coefficient and, μ2 : [τ1,τ2]→R is a bounded function, with τ1 and
τ2 being positive real numbers satisfying 0 � τ1 < τ2 . System (1) is subject to the
following boundary and initial conditions:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w(0, t) = sx(0,t) = ψx(0,t) = 0, t � 0,

wx(1,t) = s(1,t) = ψ(1,t) = 0, t � 0,

w(x,0) = w0, wt(x,0) = w1, ψ(x,0) = ψ0, x ∈ (0,1),
ψt(x,0) = ψ1, s(x,0) = s0, st(x,0) = s1, x ∈ (0,1),
(3st −ψt)(x,−t) = f0(x,t), x ∈ (0,1), t ∈ (0,τ2).

(2)
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The initial data (w0,w1,ψ0,ψ1,s0, s1 , f0 ) belongs to a suitable functional space.
Introduced by Hansen et al. [18], the laminated beam model describes a vibrating

structure of two-layered beams of the same thickness, stuck together by an adhesive
layer of negligible mass and thickness, causing a small amount of slip while they are
continuously in contact with each other. Such structures are of substantial importance
in engineering applications, for instance in Glued-laminated timber (GLT) beam, PVB-
laminated glass components, among others. The laminated beam model consists of
three coupled hyperbolic equations and, without any interfering forces, the model takes
the following form:⎧⎪⎨

⎪⎩
ρwtt +G(ψ −wx)x = 0,

Iρ(3stt −ψtt)−D(3sxx −ψxx)−G(ψ −wx) = 0,

3Iρstt −3Dsxx +3G(ψ −wx)+4γs+4β st = 0.

(3)

The subscripted t and x denote differentiation with respect to time and to the longitudi-
nal spatial variable respectively. The first two equations are derived on the assumption
of Timoshenko beam theory, coupled with the third equation of (3) describes the dy-
namics of slip. Moreover, if s is identically zero, the standard Timoshenko model is
restored. In the presence of structural damping (β �= 0), the adhesion at the interface
produces a restorative comparable force to counteract the interfacial slip. Otherwise,
the third equation of (3) describes the dynamics of slip of the coupled laminated beams
without structural damping.

Time delay effects are inevitable in most physical problems, and they may occur
in form of lags between the input and processing the output, or lags in attaining or
restoring the desired system stability after perturbations due to internal or external fac-
tors, among others. Thus, in recent times, control PDEs with time delay effects have
attracted attention of researchers. Even though the voluntary inclusion of time delay
can stabilize a control system, see [1, 34], in most cases, time delay is diagnosed as
a source of instability or deterioration in system performance. In modeling systems
where propagation and transport of material and/or information is assumed to reach
from one unit to another without being affected by the past history of the received in-
formation, discrete delay representation may be sufficient. However, this is not always
the case. For example, if Laminated beam structures are subjected to external factors
such as radiation, heat, moisture, etc, there is a possibility of gradual degeneration over
time. It may be in form of adhesive softening, wear and tear on the individual beams,
among others. If this translates into time lags in equilibrium restoration of the struc-
ture, then time delay which incorporates memory is a more appropriate and realistic
representation. In this work, we assume that such delay significantly acts through the
effective rotation angle 3s−ψ , implying that the system (1) can be considered as a
problem with a memory acting only on the time interval (t − τ2,t − τ1) , and indeed
with change of variable, we note that,∫ τ2

τ1

μ2(r)(3st −ψt)(x,t− r)dr =
∫ t−τ1

t−τ2

μ2(t− r)(3st −ψt)(x,r)dr.

The exponential behavior of (1) with μ2 = 0 (absence of delay) was studied by
Apalara et al. [7]. The authors established uniform stability due to frictional damping
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acting on the effective rotation angle without any other kind of internal or boundary
controls. Similar result was reached with only structural damping, see [8]. Aside from
this work, system (3) has been greatly investigated by mathematicians and considerable
stability results have been established by employing different damping mechanisms to
the system. We cite some of the most related results.

Regarding stabilization through boundary feedback controls, we mention the work
of Wang et al. [36]. The authors considered (3) with cantilever boundary conditions⎧⎪⎨

⎪⎩
w(0,t) = ψ(0,t) = s(0,t) = 0,

sx(1,t) = 0, ψ(1,t)−wx(1,t) = k1wt(1,t),
(3sx −ψx)(1,t) = −k2(3st −ψt)(1,t),

and asserted that the system decays only polynomially in case of k1 = k2 = 0, otherwise

exponential stability is possible if r1 =
√

ρ
G �=

√
Iρ
D = r2, ki �= ri(i = 1,2). Later, Cao

et al. [9] gave a simpler test method of verifying the exponential stability of the closed
loop system by designing a control law to compel laminated beams back to their equi-
librium position. In the same line, Tatar [35] and Mustafa [26] improved the result in
[36] by establishing the exponential stability under better assumptions on the system’s
parameters ρ ,G, Iρ , and D . In [2], authors proved that, if boundary feedback controls
are coupled with structural damping, then exponential decay requires no further dissi-
pation or restrictions on parameters, otherwise the assumption of equal wave speeds is
necessary.

Apart from boundary control stabilization, researchers have considered other damp-
ing mechanisms in order to achieve the desired decay results. For instance, using in-
ternal linear frictional damping terms, Raposo [32] established exponential stability re-
sults, and the case of non-linear frictional damping was later investigated in [13, 8]. For
interesting results regarding dissipation through thermal effects, see [3, 14, 6, 20, 21],
and [25, 10, 22, 23, 15, 24] for viscoelastic damping mechanisms. In addition to ma-
terial dissipation, authors exploited structural and/or frictional damping with some re-
strictions of parameters to reach the desired stability results.

Concerning distributed delay effect on stability, Nicaise et al. [30] investigated a
wave equation with frictional damping and an internal distributed delay

utt −Δu+ μ0ut +
∫ τ2

τ1

a(x)μ(s)ut(t− s)ds = 0 in Ω× (0,∞)

with initial, mixed Dirichlet-Neumann boundary conditions and a is a function belong-
ing to an appropriate space. Assuming,

μ0 > ‖a‖∞

∫ τ2

τ1

μ(s)ds,

the authors established exponential stability of the solution. Similarly, Apalara [4] stud-
ied a Timoshenko system with linear frictional damping and a distributed delay acting
on the displacement equation. He established a well-posedness and an exponential
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decay result of the system under suitable assumptions. For further results pertaining
distributed delay, the reader is referred to [5, 16, 17, 27, 28].

With regard to laminated beam system with delay, we proceed by mentioning the
work of Feng [12], in which he considered a laminated beam with three internal con-
stant delays⎧⎪⎨

⎪⎩
ρwtt +G(ψ −wx)x +a1wt(x,t − τ) = 0,

Iρ(3stt −ψtt)−D(3sxx−ψxx)−G(ψ −wx)+a2(3st −ψt)(x,t − τ) = 0,

3Iρstt −3Dsxx +3G(ψ −wx)+a3st(x,t− τ) = 0,

together with three boundary feedback controls and, established the well-posedness as
well as exponential decay result of the solution with some conditions the parameters.
Seghour et al. [33] on the other hand, investigated a thermoelastic laminated beam
with neutral delay in dynamics of slip equation. In addition to the dissipation through
thermal effect, the authors introduced a linear frictional damping in the transverse dis-
placement and established exponential stability in case of ρ = GIρ and, polynomial
decay otherwise. In a similar development, Choucha et al. [11], considered a thermoe-
lastic laminated Timoshenko beam with distributed delay term in the third equation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρwtt +G(ψ −wx)x + δθx = 0,

Iρ(3s−ψ)tt − (3s−ψ)xx −G(ψ −wx) = 0,

Iρstt −Dsxx +G(ψ −wx)+ 4
3 γs+ 4

3 β st + 4
3

∫ τ2

τ1

|μ2(σ)|st(x,t−σ)dσ = 0,

ρ3θt +qx + δwtx = 0,

τqt + αq+ θx = 0,

(4)

with mixed Neumann-Dirichlet boundary conditions. Using structural and thermoelas-
tic damping coupled by setting

χ = τδ 2D− (Dρ −GIρ)
(

τρ3D
Iρ

−1

)
,

the authors established exponential and polynomial decay results for χ = 0 and χ �= 0
respectively, provided β >

∫ τ2
τ1

|μ2(σ)|dσ .
For results regarding asymptotic behavior of laminated beam system subject to

constant delay, with dissipation through frictional and structure damping, see [24].
From the above work, it is evident that for Timoshenko laminated beam with delay

so far, authors have exploited boundary controls or material dissipation, coupled with
either structural or frictional damping in addition to restrictions on delay weight and
system parameters, to achieve the desired stability results. Taking into account all this
in addition to results in [7], we find it wanting to investigate system (3) with distributed
delay term and a single friction damping as the only source of dissipation. Precisely,
we consider (1)–(2) and establish an exponential decay result under equal propagation
wave speed provided that

μ1 >

∫ τ2

τ1

|μ2(r)|dr. (5)
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The rest of the article is organized as follows. In section 2, we present some
preliminaries which include a necessary transformation and state the well-posedness
result without proof. In Section 3, we state and prove some technical lemmas. Section
4 focuses on the statement and proof of our main result.

2. Preliminaries

We proceed as in [29] by introducing the following new variable

z(x,σ ,r, t) = (3st −ψt)(x,t −σr) in (0,1) × (0,1) × (τ1,τ2) × (0,∞). (6)

It simply follows that z satisfies

rzt(x,σ ,r, t)+ zσ (x,σ ,r,t) = 0 in (0,1) × (0,1) × (τ1,τ2) × (0,∞). (7)

Consequently, the system (1)–(2) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρwtt +G(ψ −wx)x = 0 in (0,1)× (0,∞),

Iρ(3stt −ψtt)−D(3sxx −ψxx)−G(ψ −wx)

+ μ1(3st −ψt)+
∫ τ2

τ1

μ2(r)z(x,1,r,t)dr = 0 in (0,1)× (0,∞),

3Iρstt −3Dsxx +3G(ψ −wx)+4γs = 0 in (0,1)× (0,∞),

rzt (x,σ ,r, t)+ zσ (x,σ ,r,t) = 0 in (0,1)× (0,1)× (τ1,τ2)× (0,∞),

(8)

with the following boundary and initial conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(x,0,r,t) = (3st −ψt)(x,t) in (0,1)× (τ1,τ2)× [0,∞),

w(0) = w0, s(0) = s0, ψ(0) = ψ0 in (0,1),

wt(0) = w1, st(0) = s1, ψt(0) = ψ1 in (0,1),

w(0, t) = sx(0,t) = ψx(0,t) = 0 in [0,∞),

wx(1,t) = s(1,t) = ψ(1,t) = 0 in [0,∞),

z(x,σ ,r,0) = f0(x,σr) in (0,1)× (0,1)× (0,τ2).

(9)

Henceforth, we consider (8)–(9) instead of (1)–(2) and z(σ) to mean z(x,σ ,r, t).
We define the energy functional of the solution of problem (8)–(9) as follows

E(t) =
1
2

∫ 1

0

[
ρw2

t + Iρ(3st −ψt)2 +D(3sx−ψx)2 +3Iρs2
t +3Ds2

x +4γs2
]
dx

+
1
2

∫ 1

0

[
G(ψ −wx)

2 +
∫ 1

0

∫ τ2

τ1

r|μ2(r)|z2(σ)drdσ
]
dx.

(10)

Concerning the existence, uniqueness, and smoothness of solution of problem (8)–(9),
we introduce the vector function Φ = (w,u,ξ ,v,s,y,z)T ; u = wt , ξ = 3s−ψ , v = ξt ,
and y = st , and thereby transform system (8)–(9) to{

d
dt Φ(t) = A Φ(t), t > 0,

Φ(0) = Φ0 = (w0,w1,3s0 −ψ0,3s1−ψ1,s0,s1, f0)T ,
(11)
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where the operator A is defined by

A Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

− 1
ρ

(
G(3s− ξ −wx)x

)
v

1
Iρ

(
Dξxx +G(3s− ξ −wx)− μ1v−

∫ τ2
τ1

μ2(r)z(1)dr

)
y

1
Iρ

(
Dsxx −G(3s− ξ −wx)− 4γ

3
s

)

−1
r
zσ (σ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We now consider the following spaces

H1
a = {ϕ : ϕ ∈ H1(0,1) : ϕ(0) = 0}, H1

b = {ϕ : ϕ ∈ H1(0,1) : ϕ(1) = 0}.
Let

H :=H1
a (0,1)×L2(0,1)×H1

b (0,1)×L2(0,1)×H1
b (0,1)×L2(0,1)

×L2 ((0,1)× (0,1)× (τ1,τ2))

be the Hilbert space equipped with the following inner product

(Φ,Φ̃)H =ρ
∫ 1

0
uũdx+G

∫ 1

0
(3s− ξ −wx)

(
3s̃− ξ̃ − w̃x

)
dx+ Iρ

∫ 1

0
vṽdx

+3Iρ

∫ 1

0
yỹdx+D

∫ 1

0
ξxξ̃xdx+4γ

∫ 1

0
ss̃dx+3D

∫ 1

0
sxs̃xdx

+
∫ 1

0

∫ 1

0

∫ τ2

τ1

r|μ2(r)|z(σ)z̃(σ)drdσdx.

(12)

The domain of A is given by

D(A ) =

⎧⎪⎨
⎪⎩

Φ ∈ H | w ∈ H2(0,1)∩H1
a (0,1), ξ ,s ∈ H2(0,1)∩H1

b (0,1),

u ∈ H1
a (0,1), v,y ∈ H1

b (0,1), z,zσ ∈ L2 ((0,1)× (0,1)× (τ1,τ2)) ,

wx(1) = ξx(0) = sx(0) = 0

⎫⎪⎬
⎪⎭ .

Note that D(A ) is independent of time t > 0. Furthermore, it is obvious that D(A ) is
dense in H . We have the following well-posedness result.

THEOREM 1. Assume (5) holds, then for any Φ0 ∈ H , there exits a unique weak
solution Φ ∈C(R+,H ) of problem (11). Moreover, if Φ0 ∈ D(A ) , then Φ ∈C(R+,
D(A ))∩C1(R+,H ).

REMARK 1. The proof of Theorem 1 can be established using the standard semi-
group method as in [3, 4].
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3. Technical lemmas

In this section, we state and prove some technical lemmas necessary in the proof
of our stability result.

LEMMA 1. If (w,ψ ,s,z) is a solution of (8)–(9), then the energy functional (10)
satisfies

d
dt

E(t) � −m0

∫ 1

0
(3st −ψt)

2dx ∀t � 0, (13)

for some positive constant m0.

Proof. By multiplying the first three equations in (8) by wt ,(3st −ψt) and st re-
spectively, then integrate by parts over (0,1) using the boundary conditions (9), we
deduce that

1
2

d
dt

∫ 1

0

[
ρw2

t + Iρ(3st −ψt)
2 +D(3sx −ψx)

2 +3Iρs2
t +3Ds2

x +4γs2 +G(ψ −wx)
2
]
dx

= −μ1

∫ 1

0
(3st −ψt)2dx−

∫ 1

0

∫ τ2

τ1

μ2(r)(3st −ψt)z(1)drdx.

(14)

Next, multiplying the last equation in (8) by |μ2(r)|z , integrating the product over
(0,1)× (0,1)× (τ1,τ2), and using the fact that z(x,0,r,t) = (3st −ψt)(x,t) , we obtain

1
2

d
dt

∫ 1

0

∫ 1

0

∫ τ2

τ1

r|μ2(r)|z2(σ)drdσdx =− 1
2

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx

+
1
2

∫ 1

0

∫ τ2

τ1

|μ2(r)|(3st −ψt)
2drdx.

(15)

Combining (14) with (15) and using (10) leads to

d
dt

E(t) = −
(

μ1 − 1
2

∫ τ2

τ1

|μ2(r)|dr

)∫ 1

0
(3st −ψt)

2dx

− 1
2

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx−
∫ 1

0

∫ τ2

τ1

μ2(r)(3st −ψt)z(1)drdx.

(16)

By using Young’s inequality, we easily observe that last the term in (16) satisfies

−
∫ 1

0

∫ τ2

τ1

μ2(r)(3st −ψt)z(1)drdx � 1
2

∫ τ2

τ1

|μ2(r)|dr
∫ 1

0
(3st −ψt)2dx

+
1
2

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx.

(17)

We complete the proof of (13) by substituting (17) in (16), and using (5). �
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LEMMA 2. If (w,ψ ,s,z) is a solution of (8)–(9), then the functional F1 , defined
by

F1(t) := −ρ
∫ 1

0
wwtdx

satisfies, for any ε1 > 0, the estimate

d
dt

F1(t) �−ρ
∫ 1

0
w2

t dx+
G
2

∫ 1

0
(3sx −ψx)2dx+ ε1

∫ 1

0
s2
xdx

+
(

3G
2

+
9G2

4ε1

)∫ 1

0
(ψ −wx)2dx.

(18)

Proof. Differentiating F1 and using the first equation in (8), we get

d
dt

F1(t) = −ρ
∫ 1

0
w2

t dx+G
∫ 1

0
(ψ −wx)

2dx+G
∫ 1

0
(3s−ψ)(ψ −wx)dx

−3G
∫ 1

0
(ψ −wx)sdx.

(19)

It follows from Young’s and Poincaré’s inequalities that

G
∫ 1

0
(3s−ψ)(ψ −wx)dx � G

2

∫ 1

0
(3s−ψ)2dx+

G
2

∫ 1

0
(ψ −wx)2dx

� G
2

∫ 1

0
(3sx −ψx)

2dx+
G
2

∫ 1

0
(ψ −wx)

2dx

(20)

and for any ε1 > 0,

−3G
∫ 1

0
(ψ −wx)sdx � ε1

∫ 1

0
s2dx+

9G2

4ε1

∫ 1

0
(ψ −wx)

2dx

� ε1

∫ 1

0
s2
xdx+

9G2

4ε1

∫ 1

0
(ψ −wx)

2dx.

(21)

Consequently, from (19), (20) and (21), we obtain (18). �

LEMMA 3. If (w,ψ ,s,z) is a solution of (8)–(9), then the functional F2 , defined
by

F2(t) := Iρ

∫ 1

0
(3st −ψt)(3s−ψ)dx+

μ1

2

∫ 1

0
(3s−ψ)2dx−ρ

∫ 1

0
wt

∫ x

0
(3s−ψ)(y)dydx

satisfies, for any ε2 > 0, the estimate

d
dt

F2(t) �− 3D
4

∫ 1

0
(3sx −ψx)

2dx+ ε2

∫ 1

0
w2

t dx+
μ1

D

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx

+
(

Iρ +
ρ2

4ε2

)∫ 1

0
(3st −ψt)

2dx.

(22)
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Proof. We differentiate F2 , use the second equation in (8), and integrate by parts
the terms involving (ψ −wx)x and (3sxx −ψxx) to obtain

d
dt

F2(t) =−D
∫ 1

0
(3sx −ψx)2dx−ρ

∫ 1

0
wt

∫ x

0
(3st −ψt)(y)dydx

+ Iρ

∫ 1

0
(3st −ψt)

2dx−
∫ 1

0
(3s−ψ)

∫ τ2

τ1

μ2(r)z(1)drdx.
(23)

Exploiting Young’s, Poincaré’s, Cauchy-Schwarz inequalities and using (5), we end up
with

−
∫ 1

0
(3s−ψ)

∫ τ2

τ1

μ2(r)z(1)drdx � 1
D

∫ 1

0

(∫ τ2

τ1

μ2(r)z(1)dr

)2

dx+
D
4

∫ 1

0
(3s−ψ)2dx

� 1
D

∫ τ2

τ1

|μ2(r)|dr
∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx

+
D
4

∫ 1

0
(3sx −ψx)2dx

� μ1

D

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx+
D
4

∫ 1

0
(3sx −ψx)

2dx

(24)

and for any ε2 > 0,

−ρ
∫ 1

0
wt

∫ x

0
(3st −ψt)(y)dydx � ε2

∫ 1

0
w2

t dx+
ρ2

4ε2

∫ 1

0

(∫ x

0
(3st −ψt)(y)dy

)2

dx

� ε2

∫ 1

0
w2

t dx+
ρ2

4ε2

∫ 1

0
(3st −ψt)2dx.

(25)

Finally, substituting (24) and (25) into (23) completes the proof. �

LEMMA 4. If (w,ψ ,s,z) is a solution of (8)–(9), then functional F3 , defined by

F3(t) := 3Iρ

∫ 1

0
st sdx+3ρ

∫ 1

0
wt

∫ x

0
s(y)dydx

satisfies, for any ε3 > 0, the estimate

d
dt

F3(t) � −3D
∫ 1

0
s2
xdx−4γ

∫ 1

0
s2dx+ ε3

∫ 1

0
w2

t dx+
(

3Iρ +
9ρ2

4ε3

)∫ 1

0
s2
t dx. (26)

Proof. Direct computations yield

d
dt

F3(t) = −3D
∫ 1

0
s2
xdx−4γ

∫ 1

0
s2dx+3Iρ

∫ 1

0
s2
t dx+3ρ

∫ 1

0
wt

∫ x

0
st(y)dydx. (27)
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Using Young’s, Cauchy-Schawarz and Poincaré’s, we obtain

3ρ
∫ 1

0
wt

∫ x

0
st (y)dydx � ε3

∫ 1

0
w2

t dx+
9ρ2

4ε3

∫ 1

0

(∫ x

0
st(y)dy

)2

dx

� ε3

∫ 1

0
w2

t dx+
9ρ2

4ε3

∫ 1

0
s2
t dx

(28)

for any ε3 > 0. The combination of (26) and (27) gives (28). �

The assumption of equal wave speeds GIρ = ρD plays a paramount role in the
next two lemmas.

LEMMA 5. If (w,ψ ,s,z) is a solution of (8)–(9), then the functional F4 , defined
by

F4(t) :=
∫ 1

0
(3st −ψt)(wx −3s)dx+

∫ 1

0
(3sx −ψx)wtdx− μ1

2Iρ

∫ 1

0
(3s−ψ)2dx

satisfies, for any ε4 > 0, the estimate

d
dt

F4(t) �− G
2Iρ

∫ 1

0
(ψ −wx)2dx+

(
2D
Iρ

+
3G
2Iρ

)∫ 1

0
(3sx −ψx)2dx

+ ε4

∫ 1

0
s2
t dx+

(
3μ1

2GIρ
+

μ1

4DIρ

)∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx

+
(

3μ2
1

2GIρ
+

9
4ε4

)∫ 1

0
(3st −ψt)

2dx.

(29)

Proof. By differentiating F4 , and using the first two equations (8), the boundary
conditions (9) and the fact that wx = −(ψ −wx)− (3s−ψ)+3s , we arrive at

d
dt

F4(t) =− G
Iρ

∫ 1

0
(ψ −wx)2dx+

D
Iρ

∫ 1

0
(3sx −ψx)2dx−3

∫ 1

0
(3st −ψt)stdx

− G
Iρ

∫ 1

0
(ψ −wx)(3s−ψ)dx+

1
Iρ

∫ 1

0
(ψ −wx)

∫ τ2

τ1

μ2(r)z(1)drdx

+
μ1

Iρ

∫ 1

0
(3st −ψt)(ψ −wx)dx+

1
Iρ

∫ 1

0
(3s−ψ)

∫ τ2

τ1

μ2(r)z(1)drdx.

(30)

Exploiting Young’s, Cauchy-Schawarz and Poincaré’s inequalities and using (5), we
have

−G
Iρ

∫ 1

0
(ψ −wx)(3s−ψ)dx � G

6Iρ

∫ 1

0
(ψ −wx)

2dx+
3G
2Iρ

∫ 1

0
(3s−ψ)2dx

� G
6Iρ

∫ 1

0
(ψ −wx)

2dx+
3G
2Iρ

∫ 1

0
(3sx −ψx)

2dx,
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1
Iρ

∫ 1

0
(ψ −wx)

∫ τ2

τ1

μ2(r)z(1)drdx

� G
6Iρ

∫ 1

0
(ψ −wx)2dx+

3
2GIρ

∫ 1

0

(∫ τ2

τ1

μ2(r)z(1)dr

)2

dx

� G
6Iρ

∫ 1

0
(ψ −wx)2dx+

3μ1

2GIρ

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx,

μ1

Iρ

∫ 1

0
(3st −ψt)(ψ −wx)dx

� G
6Iρ

∫ 1

0
(ψ −wx)

2dx+
3μ2

1

2GIρ

∫ 1

0
(3st −ψt)

2dx,

1
Iρ

∫ 1

0
(3s−ψ)

∫ τ2

τ1

μ2(r)z(1)drdx

� D
Iρ

∫ 1

0
(3s−ψ)2dx+

1
4DIρ

∫ 1

0

(∫ τ2

τ1

μ2(r)z(1)dr

)2

dx

� D
Iρ

∫ 1

0
(3sx −ψx)

2dx+
μ1

4DIρ

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx,

and for any ε4 > 0,

3
∫ 1

0
(3st −ψt)stdx � 9

4ε4

∫ 1

0
(3st −ψt)2dx+ ε4

∫ 1

0
s2
t dx.

By substituting the above four estimates in (30), estimate (29) is established. �

LEMMA 6. If (w,ψ ,s,z) is a solution of (8)–(9), then the functional F5 , defined
by

F5(t) := −
∫ 1

0
(ψ −wx)stdx+

∫ 1

0
wtsxdx

satisfies, for any ε5 > 0, the estimate

d
dt

F5(t) �−2
∫ 1

0
s2
t dx+ ε5

∫ 1

0
s2
xdx+

(
G
Iρ

+
4γ2

9I2
ρ ε5

)∫ 1

0
(ψ −wx)

2dx

+
1
4

∫ 1

0
(3st −ψt)2dx.

(31)

Proof. Direct computations, using (8)–(9) and the fact that wx = −(ψ −wx)−
(3s−ψ)+3s, yield

d
dt

F5(t) = −
∫ 1

0
(ψ −wx)stt dx+

∫ 1

0
wtt sxdx+

∫ 1

0
(3st −ψt)stdx−3

∫ 1

0
s2
t dx.
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In consideration of the above, the first and third equations in (8), followed by a simple
integration by parts over (0,1) the term containing sxx , we note that

d
dt

F5(t) = −3
∫ 1

0
s2
t dx+

G
Iρ

∫ 1

0
(ψ −wx)

2dx+
4γ
3Iρ

∫ 1

0
s(ψ −wx)dx

+
∫ 1

0
(3st −ψt)stdx.

(32)

Using Young’s and Poincaré’s inequalities, the last two terms on the right hand side of
(32) give ∫ 1

0
(3st −ψt)stdx � 1

4

∫ 1

0
(3st −ψt)

2dx+
∫ 1

0
s2
t dx,

and for any ε5 > 0,

4γ
3Iρ

∫ 1

0
s(ψ −wx)dx � ε5

∫ 1

0
s2dx+

4γ2

9I2
ρε5

∫ 1

0
(ψ −wx)

2dx

� ε5

∫ 1

0
s2
xdx+

4γ2

9I2
ρε5

∫ 1

0
(ψ −wx)

2dx.

Consequently, the assertion of the lemma follows by substituting the above two esti-
mates into (32). �

LEMMA 7. If (w,ψ ,s,z) is a solution of (8)–(9), then the functional F6 , defined
by

F6(t) :=
∫ 1

0

∫ 1

0

∫ τ2

τ1

re−σr|μ2(r)|z2(σ)drdσdx

satisfies, for m1 > 0, the estimate:

d
dt

F6(t) �−m1

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx+ μ1

∫ 1

0
(3st −ψt)

2dx

−m1

∫ 1

0

∫ 1

0

∫ τ2

τ1

r|μ2(r)|z2(σ)drdσdx.

(33)

Proof. We proceed by differentiating F6 , then use (8)4 and the fact that z(x,0,r,t)=
(3st −ψt)(x, t) as follows

d
dt

F6(t) =2
∫ 1

0

∫ 1

0

∫ τ2

τ1

re−σr|μ2(r)|z(σ)zt (σ)drdσdx

=−2
∫ 1

0

∫ 1

0

∫ τ2

τ1

e−σr|μ2(r)|z(σ)zσ (σ)drdσdx

=− d
dσ

∫ 1

0

∫ 1

0

∫ τ2

τ1

e−σr|μ2(r)|z2(σ)drdσdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

re−σr|μ2(r)|z2(σ)drdσdx
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=−
∫ 1

0

∫ τ2

τ1

|μ2(r)|
[
e−rz2(1)− z2(0)

]
drdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

re−σr|μ2(r)|z2(σ)drdσdx

=−
∫ 1

0

∫ τ2

τ1

e−r|μ2(r)|z2(1)drdx+
∫ 1

0

∫ τ2

τ1

|μ2(r)|(3st −ψt)2drdx

−
∫ 1

0

∫ 1

0

∫ τ2

τ1

re−σr|μ2(r)|z2(σ)drdσdx.

By the virtue of −e−r being an increasing function, we have −e−r � −e−τ2 , for all
r ∈ [τ1,τ2] . Finally, letting m1 = e−τ2 and using the fact that −e−r � −e−σr � 1 for
all σ ∈ [0,1], we end up with (33). �

4. Exponential stability

This section is dedicated to the statement and proof of our stability result. We
prove that a given Lyapunov functional is equivalent to the energy functional.

LEMMA 8. Let N,Nk,k = 1, · · · ,6, be positive constants. The functional defined
by

L (t) := NE(t)+
6

∑
k=1

NkFk(t), t > 0, (34)

satisfies the equivalence relation L ∼ E, that is

c1E(t) � L (t) � c2E(t), ∀t > 0, (35)

for some positive constants c1 and c2 .

Proof.

|L (t)−NE(t)| � ρN1

∫ 1

0
|wwt |dx+ IρN2

∫ 1

0
|(3st −ψt)(3s−ψ)|dx

+
μ1N2

2

∫ 1

0
(3s−ψ)2dx+ ρN2

∫ 1

0

∣∣∣∣wt

∫ x

0
(3s−ψ)(y)dy

∣∣∣∣dx

+3ρN3

∫ 1

0

∣∣∣∣wt

∫ x

0
s(y)dy

∣∣∣∣dx+3IρN3

∫ 1

0
|st s|dx

+N4

∫ 1

0
|(3st −ψt)(wx −3s)|dx+N4

∫ 1

0
|(3sx −ψx)wt |dx

+
μ1N4

2Iρ

∫ 1

0
(3s−ψ)2dx+N5

∫ 1

0
|(ψ −wx)st |dx

+N5

∫ 1

0
|wtsx|dx+N6

∫ 1

0

∫ 1

0

∫ τ2

τ1

re−σr|μ2(r)|z2(σ)drdσdx.
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It follows from Young’s, Poincaré’s, and Cauchy–Schwarz inequalities, (10), coupled
with the fact that wx =−(ψ −wx)−(3s−ψ)+3s and e−στ � 1 for all σ ∈ (0,1) , that
for some constant η > 0, we have

|L (t)−NE(t)| � η
∫ 1

0

[
w2

t +(3st −ψt)2 +(3sx−ψx)2 + s2
t + s2

x +(ψ −wx)2
]
dx

+ η
∫ 1

0

∫ 1

0

∫ τ2

τ1

r|μ2(r)|z2(σ)drdσdx,

� ηE(t).

Therefore,
(N−η)E(t) � L (t) � (N + η)E(t).

Taking N is sufficiently large, the assertion of (35) follows accordingly. �
Our exponential stability result reads as follows:

THEOREM 2. (Main) Let (w,ψ ,s,z) be a solution of (8)–(9), assume that G
ρ = D

Iρ
and (5) hold, then energy functional (10) satisfies,

E(t) � k0e
−k1t , ∀t � 0, (36)

where k0 and k1 are positive constants.

Proof. Differentiate (34), substitute the estimates (13), (18), (22), (26), (29), (31)
and (33) and choose N1 = N3 = 1, ε1 = D and ε3 = ρ

2 , we end up with,

L ′(t) �−
[
m0N− cN2

(
1+

1
ε2

)
− cN4

(
1+

1
ε4

)
− N5

4
− μ1N6

]∫ 1

0
(3st −ψt)2dx

−
[ρ
2
− ε2N2

]∫ 1

0
w2

t dx−
[
3DN2

4
− G

2
− cN4

]∫ 1

0
(3sx −ψx)2dx−4γ

∫ 1

0
s2dx

− [2D− ε5N5]
∫ 1

0
s2
xdx−

[
GN4

2Iρ
− cN5

(
1+

1
ε5

)
− c

]∫ 1

0
(ψ −wx)2dx

− [2N5− c− ε4N4]
∫ 1

0
s2
t dx− [m1N6 − cN4− cN2]

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx

−m1N6

∫ 1

0

∫ 1

0

∫ τ2

τ1

r|μ2(r)|z2(σ)drdσdx,

for some constant c > 0.

At this point, we choose N5 large enough such that

λ := 2N5− c > 0.

With N5 fixed, we choose ε5 small enough so that

2D− ε5N5 > 0.
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Next, we choose N4 large enough such that

GN4

2Iρ
− cN3

(
1+

1
ε5

)
− c > 0.

Once N4 is fixed, we proceed to choose ε4 sufficiently small and N2 large enough such
that

λ − ε4N4 > 0 and
3DN2

4
− c− cN4 > 0,

respectively. Fixing N2 permits us to choose ε2 small enough so that

ρ
2
− ε2N2 > 0.

Next, we choose N6 adequately large such that

m1N6− cN4− cN2 > 0.

Lastly, we choose N sufficiently larger so that (35) remains valid

m0N− cN2

(
1+

1
ε2

)
− cN4

(
1+

1
ε4

)
− N5

4
− μ1N6 > 0.

It then follows that for some α0 > 0,

L ′(t) �−α0

∫ 1

0

[
w2

t + s2
t +(3st −ψt)

2 +(3sx−ψx)
2 + s2

x + s2 +(ψ −wx)2
]
dx

−α0

∫ 1

0

∫ τ2

τ1

|μ2(r)|z2(1)drdx−α0

∫ 1

0

∫ 1

0

∫ τ2

τ1

r|μ2(r)|z2(σ)drdσdx.
(37)

Hence from (10), we have

L ′(t) � −α0E(t), ∀t � 0. (38)

In view of (35) and (38), we note that

L ′(t) � −k1L (t), ∀t � 0, (39)

where k1 = α0
c2

. A simple integration of (39) over (0,t) yields

L (t) � L (0)e−k1t , ∀t � 0. (40)

Lastly, the relation (36) follows by virtue of (40) and (35) with k0 = c2E(0)
c1

. �
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