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RECONSTRUCTION OF TWO APPROXIMATION PROCESSES

IN ORDER TO REPRODUCE eax AND e2ax, a > 0

BAŞAR YILMAZ, GÜMRAH UYSAL AND ALI ARAL

(Communicated by T. Burić)

Abstract. We propose two modifications for Gauss-Weierstrass operators and moment-type op-
erators which fix eax and e2ax with a > 0. First, we present moment identities for new operators.
Then, we discuss weighted approximation and prove Voronovskaya-type theorems for them in
exponentially weighted spaces. Using modulus of continuity in exponentially weighted spaces,
we obtain some global smoothness preservation properties. We give a comparison result for
Gauss-Weierstrass operators. Finally, we provide some graphical illustrations that show that
modified operators perform better than classical ones.

1. Introduction

After Weierstrass’s famous theorem on approximation, Bohman-Korovkin theo-
rem brought a new vision to the scientific community who wants to specialize in the
field of positive linear operators. For years, many theorems have been proved by using
Bohman-Korovkin theorem and its various generalizations, and the related information
can be found in monograph of Altomare and Campiti [5].

Another theorem which has importance in terms of theoretical diversity is a theo-
rem so-called Voronovskaya-type theorem. It should be noted that after Voronovskaya
[27] expressed asymptotic form of approximation for Bernstein polynomials, this type
of theorems generated a special interest among approximation theory researchers. Later
on quantitative versions of this theorem, Voronovskaya-type theorems in terms of ap-
propriate modulus of continuity, were also proved in various papers. For further reading
about Voronovskaya-type approximation and its applications, we refer the interested
reader to [3, 12, 13, 14, 16, 17] and the references therein.

Some positive linear operators are known by the names of those who constructed
them, such as Gauss-Weierstrass integral operators, and they are accepted as great in-
ventions on behalf of scientific progress. Letting R = (−∞,∞) and N = {1, 2, . . .}
throughout this manuscript, Gauss-Weierstrass operators are expressed in classical sense
as follows:

Wn ( f ;x) =
√

n√
π

∞∫
−∞

f (x+ t)e−nt2dt, x ∈ R, n ∈ N. (1.1)
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For further information,we refer the reader to the monograph by Butzer and Nessel
[15].

In recent years, the most popular topic among others in this field can be seen as
reconstructing the operators in order to preserve some functions, such as polynomial
functions and exponential functions. Very recently, operators of type (1.1) have cre-
ated interest among researchers working on the preservation of functions. For further
reading regarding this topic, we refer the reader to [1, 2, 4, 9, 21] and the references
therein.

In the current manuscript, inspiring by the work of Aral [8], in order to fix the
functions eax and e2ax with a > 0, we will introduce the specific modifications for
Gauss-Weierstrass operators (1.1) and moment-type operators:

Tn ( f ;x) =
∞∫
−∞

f (x+ t)nκ[0, 1
n ](t)dt, x ∈ R, n ∈ N, (1.2)

where κ[.,.](.) denotes the characteristic function of the set
[
0, 1

n

]
. The operators of

type (1.2) and similar versions were considered in [22] and [26, 28], respectively. For
further information about some moment-type operators, we refer the reader to [10, 11].
The kernels of these operators are of type approximate identity as are Gauss-Weierstrass
kernels (see, e.g., [15]).

This manuscript contributes to theory of exponential approximation, and in this
study, our main motivation is introducing two new modifications to the theory, as well
as to observe what will happen, even with limited examples, by putting an operator
sequence which is relatively easy to compute next to the Gauss-Weierstrass operators.
The proposed modifications for the operators defined in (1.1) and (1.2) are respectively
given as follows:

W
◦
n ( f ;x) =

√
n√
π

∞∫
−∞

e
−a
(

β ◦
n (x)+t

)
eax f

(
β

◦
n (x)+ t

)
e−nt2dt, x ∈ R, n ∈ N (1.3)

and

T
◦
n ( f ;x) =

∞∫
−∞

e
−a
(

λ ◦
n (x)+t

)
eax f

(
λ

◦
n (x)+ t

)
nκ[0, 1

n ](t)dt, x ∈ R, n ∈ N, (1.4)

where β ◦
n (x) = x− a

4n , λ ◦
n (x) = x−a−1 ln

(
n(e

a
n −1)
a

)
and a > 0. Here, W

◦
n →Wn and

T
◦
n → Tn as a → 0+. In this work, as in [9], expa(t) and loga (.) stand for eat with

t ∈ R and logarithmic function with base ea with a > 0, respectively.
We obtain weighted convergence of the operators defined in (1.3) and (1.4) in poly-

nomial weighted space. Then, we prove quantitative and Voronovskaya-type theorems
for them in exponentially weighted space. Using a modulus of continuity defined for
exponentially weighted space, we present some global smoothness preservation prop-
erties of these operators. We give a comparison result for Gauss-Weierstrass operators.
Finally, we provide some graphical illustrations.
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2. Auxiliary results

Now, we give some lemmas related to moment identities of integral operators de-
fined in (1.3) and (1.4) which will be used in the sequel.

LEMMA 1. Let ei = ti, i = 0, 1, 2 be test functions on R . For each n ∈ N and
x ∈ R , the following identities hold there:

W
◦
n (e0;x) = ψ11 (n)

W
◦
n (e1;x) = ψ11 (n)x+ φ11 (n)

W
◦
n (e2;x) = ψ11 (n)x2 + φ12 (n)x+ φ13 (n)

and

W
◦
n (expa;x) = eax

W
◦
n (exp2a;x) = e2ax

W
◦
n (exp3a;x) = ψ11 (n)e3ax

W
◦
n (exp4a;x) = ψ12 (n)e4ax.

Here, ψ11 (n)= e
a2
2n , ψ12 (n)= e

3a2
2n , φ11 (n)=− 3a

4ne
a2
2n , φ12 (n)=− 3a

2ne
a2
2n and φ13 (n)=(

8n+9a2

16n2

)
e

a2
2n . Note that lim

n→∞
ψ1i (n)= 1 and lim

n→∞
φ1 j (n)= 0, where i = 1, 2 and j = 1,

2, 3.

LEMMA 2. Let ei = ti, i = 0, 1, 2 be test functions on R . For each n ∈ N and
x ∈ R , the following identities hold there:

T
◦
n (e0;x) = ψ21 (n)

T
◦
n (e1;x) = ψ22 (n)x+ φ21 (n)

T
◦
n (e2;x) = ψ22 (n)x2 + φ22 (n)x+ φ23 (n)

and

T
◦
n (expa;x) = eax

T
◦
n (exp2a;x) = e2ax

T
◦
n (exp3a;x) = ψ23 (n)e3ax

T
◦
n (exp4a;x) = ψ24 (n)e4ax.

Here, ψ21 (n)= 2n2

a2

(−1+ cosh
(

a
n

))
, ψ22 (n)= n2(1−e

−a
n )(−1+e

a
n )

a2 , ψ23 (n)= a
2n coth( a

2n ) ,

ψ24 (n) = a2(−1+e
3a
n )

3n2(−1+e
a
n )3

and

φ21 (n) =

(
−1+ e

a
n

)
n2
(
1− e

−a
n − a

ne
−a
n +

(
−1+ e

−a
n

)
ln
(

n
a

(
−1+ e

a
n

)))
a3
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φ22 (n) =
2
(
−1+ e

a
n

)
n2
(
1− e

−a
n − a

n e
−a
n + ln

(
n
a

(
−1+ e

a
n

))(
−1+ e

−a
n

))
a3

and

φ23 (n) =

(
−1+ e

a
n

)
n2
(
2− e

−a
n

(
2+2 a

n + a2

n2

)
+2ln

(
n
a

(
−1+ e

a
n

))(
−1+ e

−a
n

))
a4

+

(
−1+e

a
n

)
n2 ln

(
n
a

(
−1+e

a
n

))(
2a
n e

−a
n + ln

(
n
a

(
−1+e

a
n

))
−e

−a
n ln

(
n
a

(
−1+e

a
n

)))
a4 .

Note that lim
n→∞

ψ2i (n) = 1 and lim
n→∞

φ2 j (n) = 0, where i = 1, 2, 3, 4 and j = 1, 2, 3.

3. Weighted approximation

First, we give definions of some weighted spaces defined in [20]. Using the weight
function ρ which is expressed as ρ (x) = 1+ϕ2(x) with lim

x→±∞
ρ(x) = ∞, where ϕ is a

strictly increasing and continuous function on R, Gadžiev [20] introduced the weighted
spaces Bρ(R), Cρ(R) and C0

ρ (R) as follows:

Bρ (R) :=
{

f : | f (x)| � Mf ρ(x), x ∈ R
}

,

where Mf is a constant which only depends on the function f , and

Cρ (R) :=
{

f : f ∈ Bρ (R) , f is continuous on R
}

C0
ρ (R) :=

{
f : f ∈Cρ (R) , lim

x→±∞

f (x)
ρ (x)

= Kf exists finitely

}
,

where Kf is a constant which only depends on the function f . Here, the space Bρ(R)
is equipped with the norm defined by

‖ f‖ρ = sup
−∞<x<∞

| f (x)|
ρ(x)

.

Here, the spaces Cρ (R) and C0
ρ (R) are associated with the same norm. The

general version of the following theorems was proved as Theorem 2 in [20]. Similar re-
sult was proved in [1] for Szász-Mirakyan-type operators preserving some exponential
functions.

THEOREM 1. Let ρ (x) = 1+ x2, x ∈ R. For the operators W
◦
n defined in (1.3),

we have
lim
n→∞

∥∥∥W ◦
n f − f

∥∥∥
ρ

= 0

for every function f ∈C0
ρ (R) .
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Proof. The hypotheses of Theorem 2 in [20] will be used in order to prove the the-
orem. Clearly, W

◦
n is a positive linear operator acting from Cρ (R) to Bρ(R). There-

fore, it is sufficient to show that the following conditions hold:

lim
n→∞

∥∥∥W ◦
n ϕv −ϕv

∥∥∥
ρ

= 0, v = 0, 1, 2,

where ϕ (x) = x since ρ (x) = 1+ x2 = 1+ ϕ2 (x) according to hypothesis.
Let v = 0. By Lemma 1, we can write

∥∥∥W ◦
n (e0;x)−1

∥∥∥
ρ

= sup
−∞<x<∞

∣∣W ◦
n (e0;x)−1

∣∣
1+ x2

= sup
−∞<x<∞

|ψ11 (n)−1|
1+ x2

� |ψ11 (n)−1| .

Since a2

2n > 0 for all n and lim
n→∞

ψ11 (n) = 1, the result follows.

Let v = 1. Again using Lemma 1, we obtain

∥∥∥W ◦
n (e1;x)− x

∥∥∥
ρ

= sup
−∞<x<∞

∣∣W ◦
n (e1;x)− x

∣∣
1+ x2

� sup
−∞<x<∞

|x|
1+ x2 |ψ11 (n)−1|+ sup

−∞<x<∞

|φ11(n)|
1+ x2

� sup
−∞<x<∞

|x|
1+ x2 |ψ11 (n)−1|+ |φ11(n)| .

Since |x|
1+x2 < 1 for all x ∈ R, we have∥∥∥W ◦

n (e1;x)− x
∥∥∥

ρ
� |ψ11 (n)−1|+ |φ11(n)| .

lim
n→∞

ψ11 (n) = 1 and lim
n→∞

φ11 (n) = 0, the result follows.

Lastly, let v = 2. Using similar considerations, we get

∥∥∥W ◦
n (e2;x)− x2

∥∥∥
ρ

= sup
−∞<x<∞

∣∣W ◦
n (e2;x)− x2

∣∣
1+ x2

� sup
−∞<x<∞

x2

1+ x2 |ψ11 (n)−1|

+ sup
−∞<x<∞

|x|
1+ x2 |φ12(n)|+ sup

−∞<x<∞

|φ13(n)|
1+ x2 .

Since x2

1+x2 < 1 for all x ∈ R, we are able to write∥∥∥W ◦
n (e2;x)− x2

∥∥∥
ρ

� |ψ11 (n)−1|+ |φ12(n)|+ |φ13(n)| .
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Keeping in mind that lim
n→∞

ψ11 (n) = 1, lim
n→∞

φ12 (n) = 0 and lim
n→∞

φ13 (n) = 0, the result

follows. Thus the proof is completed. �
Using similar arguments and Lemma 2, one may prove the following result.

THEOREM 2. Let ρ (x) = 1 + x2, x ∈ R. For the operators T
◦
n defined in (1.4),

we have
lim
n→∞

∥∥∥T ◦
n f − f

∥∥∥
ρ

= 0

for every function f ∈C0
ρ (R) .

4. Quantitative estimates

In this section, we give analogous results which were given in [8].
Let ρ1(x) = ea|x| and Cρ1 (R) denote the space of all continuous functions f for

which ‖ f‖ρ1
= sup

−∞<x<∞

| f (x)|
ρ1(x)

� B f , where B f is a positive constant depending on only

f (cf. [20]). In order to measure rate of convergence in exponentially weighted space
and to obtain an appropriate estimate, following [23, 25], we use weighted modulus of
continuity defined as

∼
ω ( f ;δ ) = sup

|h|�δ

[
sup

−∞<x<∞

| f (x+h)− f (x)|
ea|x|

]
, (4.1)

where δ > 0 and a > 0. For a number ζ > 0, this weighted modulus of continuity has
the following properties (see [18]; see also [25]):

∼
ω ( f ;ζδ ) � (1+ ζ )eaζδ ∼

ω ( f ;δ ) and lim
δ→0+

∼
ω ( f ;δ ) = 0.

THEOREM 3. For f ∈Cρ1 (R) , there holds∥∥∥W ◦
n f − f

∥∥∥
ρ1

� ∼
ω
(

f ;
1√
n

)
e

a2
2n

(
1√
π

+
(5a+4

√
n)

2
√

n
e

a2
n

)
+‖ f‖ρ1

∣∣∣∣e a2
2n −1

∣∣∣∣ .
Proof. Since ∥∥∥W ◦

n f
∥∥∥

ρ1
� B f e

a2
2n

(
1+2e

a2
n

)

for any function f ∈Cρ1 (R) , W
◦
n is the sequence of positive linear operators acting on

Cρ1 (R) (see [19]). In view of Lemma 1, we have∣∣∣W ◦
n ( f ;x)− f (x)

∣∣∣
�

∣∣∣∣∣∣
√

n√
π

∞∫
−∞

e
−a
(

β ◦
n (x)+t

)
eax f

(
β

◦
n (x)+ t

)
e−nt2dt− f (x)

√
n√
π

∞∫
−∞

e
−a
(

β ◦
n (x)+t

)
eaxe−nt2dt

∣∣∣∣∣∣
+ | f (x)|

∣∣∣W ◦
n (e0;x)−1

∣∣∣
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=

∣∣∣∣∣∣
√

n√
π

∞∫
−∞

[
f
(

β
◦
n (x)+ t

)
− f (x)

]
e−a(− a

4n+t)e−nt2dt

∣∣∣∣∣∣+ | f (x)|
∣∣∣W ◦

n (e0;x)−1
∣∣∣ .

Since ∣∣∣ f (β
◦
n (x)+ t

)
− f (x)

∣∣∣ =
∣∣∣ f (x− a

4n
+ t
)
− f (x)

∣∣∣
� ea|x| ∼ω

(
f ;
∣∣∣t− a

4n

∣∣∣) ,

we have∣∣∣W ◦
n ( f ;x)− f (x)

∣∣∣
�

√
n√
π

ea|x|e
a2
4n

∞∫
−∞

∼
ω
(

f ;
∣∣∣t− a

4n

∣∣∣)ea|t|e−nt2dt + | f (x)|
∣∣∣W ◦

n (e0;x)−1
∣∣∣

�
√

n√
π

ea|x| ∼ω ( f ;δ )e
a2
4n

∞∫
−∞

(
1+

∣∣t− a
4n

∣∣
δ

)
ea|t|ea|t− a

4n |e−nt2dt + | f (x)|
∣∣∣W ◦

n (e0;x)−1
∣∣∣

�
√

n√
π

ea|x| ∼ω ( f ;δ )e
a2
2n

∞∫
−∞

(
1+

a
4δn

+
|t|
δ

)
e2a|t|e−nt2dt + | f (x)|

∣∣∣W ◦
n (e0;x)−1

∣∣∣ .
After straightforward evaluations, we have∣∣∣W ◦

n ( f ;x)− f (x)
∣∣∣

� ea|x| ∼ω ( f ;δ )e
a2
2n

⎛
⎜⎝ 1

δ
√

n
√

π
+
(

5a
4δn

+1

)⎛⎜⎝e
a2
n + e

a2
n

2√
π

a√
n∫

0

e−t2dt

⎞
⎟⎠
⎞
⎟⎠

+ | f (x)|
∣∣∣W ◦

n (e0;x)−1
∣∣∣

� ea|x| ∼ω ( f ;δ )e
a2
2n

(
1

δ
√

n
√

π
+
(

5a
4δn

+1

)
2e

a2
n

)
+ | f (x)|

∣∣∣∣e a2
2n −1

∣∣∣∣ .
Considering δ := 1√

n , we obtain the desired conclusion, that is,

∥∥∥W ◦
n f − f

∥∥∥
ρ1

� ∼
ω
(

f ;
1√
n

)
e

a2
2n

(
1√
π

+
(5a+4

√
n)

2
√

n
e

a2
n

)
+‖ f‖ρ1

∣∣∣∣e a2
2n −1

∣∣∣∣ . �

By Theorem 3 and properties of weighted modulus of continuity defined in (4.1),
we have the following deduction.

COROLLARY 1. Let f ∈Cρ1 (R) . Then

lim
n→∞

∥∥∥W ◦
n f − f

∥∥∥
ρ1

= 0.
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THEOREM 4. For f ∈Cρ1 (R) , there holds

∥∥∥T ◦
n f − f

∥∥∥
ρ1

� ∼
ω

(
f ;
(
−1+ e

a
n

)2
n
(
a+2n ln

(n(e
a
n −1)
a

)))

×

⎛
⎜⎝
(
−1+ e

a
n

)2
n2

a2 +
1

2a3

⎞
⎟⎠+‖ f‖ρ1

∣∣∣∣2n2

a2

(
−1+ cosh

(a
n

))
−1

∣∣∣∣ .

Proof. It is easy to see that T
◦
n is the sequence of positive linear operators acting

on Cρ1 (R) . Let αa (n) := a−1 ln
(

n(e
a
n −1)
a

)
> 0 by the fact that e

a
n > 1 + a

n for any

fixed n ∈ N and a > 0. In view of Lemma 2, we have∣∣∣T ◦
n ( f ;x)− f (x)

∣∣∣
�

∣∣∣∣∣∣
∞∫
−∞

e
−a
(

λ
◦
n (x)+t

)
eax f

(
λ

◦
n (x)+ t

)
nκ[0, 1

n ](t)dt− f (x)
∞∫
−∞

e
−a
(

λ
◦
n (x)+t

)
eaxnκ[0, 1

n ](t)dt

∣∣∣∣∣∣
+ | f (x)|

∣∣∣T ◦
n (e0;x)−1

∣∣∣
�

∣∣∣∣∣∣∣
1
n∫
0

e−a(−αa(n)+t)
[
f
(

λ
◦
n (x)+ t

)
− f (x)

]
ndt

∣∣∣∣∣∣∣+ | f (x)|
∣∣∣T ◦

n (e0;x)−1
∣∣∣ .

Since ∣∣∣ f (λ
◦
n (x)+ t

)
− f (x)

∣∣∣� ea|x| ∼ω ( f ; |t−αa (n)|) ,
we have ∣∣∣T ◦

n ( f ;x)− f (x)
∣∣∣

� nea|x|eaαa(n)

1
n∫
0

∼
ω ( f ; |t−αa (n)|)e−atdt + | f (x)|

∣∣∣T ◦
n (e0;x)−1

∣∣∣

� n3ea|x|
(

(e
a
n −1)
a

)2
∼
ω ( f ;δ )

1
n∫
0

⎛
⎜⎝1+

ln
(

n(e
a
n −1)
a

)
aδ

+
t
δ

⎞
⎟⎠e−ateatdt

+ | f (x)|
∣∣∣T ◦

n (e0;x)−1
∣∣∣

= ea|x| ∼ω ( f ;δ )

⎛
⎜⎝
(
−1+ e

a
n

)2
n2

a2 +

(
−1+ e

a
n

)2
n
(
a+2n ln

(
n(e

a
n −1)
a

))
2a3δ

⎞
⎟⎠

+ | f (x)|
∣∣∣∣2n2

a2

(
−1+ cosh

(a
n

))
−1

∣∣∣∣ .
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Considering δ :=
(
−1+ e

a
n

)2
n(a+2n ln( n(e

a
n −1)
a )) with

lim
n→∞

(
−1+ e

a
n

)2
n(a+2n ln(

n(e
a
n −1)
a

)) = 0

and

lim
n→∞

(
−1+ e

a
n

)2
n2

a2 = 1

we get the result, that is,

∥∥∥T ◦
n f − f

∥∥∥
ρ1

� ∼
ω

(
f ;
(
−1+ e

a
n

)2
n(a+2n ln(

n(e
a
n −1)
a

))

)⎛⎜⎝
(
−1+ e

a
n

)2
n2

a2 +
1

2a3

⎞
⎟⎠

+‖ f‖ρ1

∣∣∣∣2n2

a2

(
−1+ cosh

(a
n

))
−1

∣∣∣∣ . �

By Theorem 4 and properties of weighted modulus of continuity defined in (4.1),
we have the following deduction.

COROLLARY 2. Let f ∈Cρ1 (R) . Then

lim
n→∞

∥∥∥T ◦
n f − f

∥∥∥
ρ1

= 0.

5. Voronovskaya-type asymptotic relations

In this section, as in [8] and [9], using exponential moments instead of polynomial
moments, we will prove Voronovskaya-type theorems for the operators (W ◦

n )n∈N
and

(T ◦
n )n∈N

.

THEOREM 5. Let f ∈ Cρ1(R) . If f ′′ exists finitely at a point x ∈ R, then there
holds

lim
n→∞

n [W ◦
n ( f ;x)− f (x)] =

a2

2
f (x)− 3a

4
f ′ (x)+

1
4

f ′′ (x) . (5.1)

Proof. We use local Taylor formula as follows:

f (β
◦
n (x)+ t)

= ( f ◦ loga)(e
a(β

◦
n (x)+t))

= ( f ◦ loga)(e
ax)+ ( f ◦ loga)

′
(eax)

(
ea(β ◦

n (x)+t) − eax
)

+
1
2

( f ◦ loga)
′′
(eax)

(
ea(β ◦

n (x)+t) − eax
)2

+ rx(u)
(
ea(β ◦

n (x)+t) − eax
)2

,
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where rx, rx(u) := rx(u(t)) with u(t)= t− a
4n , is a function in Cρ1(R) with lim

u→0
rx(u)=

0. Implementing the operators to the formula, we have

W ◦
n ( f ;x)− f (x)

= f (x)(W ◦
n (e0;x)−1)

+
√

n√
π

∞∫
−∞

e
−a
(

β ◦
n (x)+t

)
eax
[
( f ◦ loga)

′
(eax)

(
ea(β

◦
n (x)+t) − eax

)]
e−nt2dt

+
√

n

2
√

π

∞∫
−∞

e
−a
(

β ◦
n (x)+t

)
eax
[
( f ◦ loga)

′′
(eax)

(
ea(β

◦
n (x)+t) − eax

)2
]
e−nt2dt

+
√

n√
π

∞∫
−∞

e
−a
(

β ◦
n (x)+t

)
eax
[
rx(u)

(
ea(β ◦

n (x)+t) − eax
)2
]
e−nt2dt.

In view of ( f ◦ loga)
′
(eax)= a−1e−ax f ′ (x) and ( f ◦ loga)

′′
(eax)= e−2ax(a−2 f ′′ (x)

−a−1 f ′ (x)) , there holds

W ◦
n ( f ;x)− f (x)

= f (x)(W ◦
n (e0;x)−1)

+
√

n√
π

∞∫
−∞

e
−a
(

β ◦
n (x)+t

)
eax
[
a−1e−ax f ′ (x)

(
ea(β

◦
n (x)+t) − eax

)]
e−nt2dt

+
√

n

2
√

π

∞∫
−∞

e
−a
(

β ◦
n (x)+t

)
eax
[
e−2axa−2 f ′′ (x)

(
ea(β

◦
n (x)+t) − eax

)2
]
e−nt2dt

−
√

n

2
√

π

∞∫
−∞

e
−a
(

β ◦
n (x)+t

)
eax
[
e−2axa−1 f ′ (x)

(
ea(β ◦

n (x)+t) − eax
)2
]
e−nt2dt

+
√

n√
π

∞∫
−∞

e
−a
(

β
◦
n (x)+t

)
eax
[
rx(u)

(
ea(β ◦

n (x)+t) − eax
)2
]
e−nt2dt

:= γ11 (n)+ γ12 (n)+ γ13 (n)+ γ14 (n)+ γ15 (n) .

Let us consider γ11 (n) . Multiplying both sides by n and passing to the limit as n
tends to ∞, we have

lim
n→∞

nγ11 (n) = lim
n→∞

n [ f (x)W ◦
n (e0;x)−1)]

= lim
n→∞

n f (x)
[
e

a2
2n −1

]

=
a2

2
f (x) .
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If we continue with γ12 (n) , we get

lim
n→∞

nγ12 (n) = lim
n→∞

na−1e−ax f ′ (x) [W ◦
n (expa;x)− eaxW ◦

n (e0;x)]

= lim
n→∞

na−1e−ax f ′ (x)
[
eax − eaxe

a2
2n

]

= lim
n→∞

na−1e−ax f ′ (x)eax
[
1− e

a2
2n

]

= −a
2

f ′ (x) .

Further for γ13 (n) , we get

γ13 (n) =
e−2axa−2 f ′′ (x)

2

[
W ◦

n (exp2a;x)−2eaxW ◦
n (expa;x)+ e2axW ◦

n (e0;x)
]

=
e−2axa−2 f ′′ (x)

2

[
e2ax−2eaxeax + e2axe

a2
2n

]
.

Therefore, we obtain

lim
n→∞

nγ13 (n) =
1
4

f ′′ (x) .

Similarly, for γ14 (n) , we get

lim
n→∞

nγ14 (n) = −a
4

f ′ (x) .

In order to complete the proof, it is sufficient to show that

lim
n→∞

nγ15 (n) = 0.

Using Cauchy-Schwarz inequality, we see that

|nγ15 (n)|� (W ◦
n (r2

x (u);x)
)1/2

(
n2

√
n√
π

∞∫
−∞

e
−a
(

β
◦
n (x)+t

)
eax
(
ea(β ◦

n (x)+t) − eax
)4

e−nt2dt

)1/2

.

Observe that

n2
√

n√
π

∞∫
−∞

e
−a
(

β
◦
n (x)+t

)
eax
(
ea(β ◦

n (x)+t) − eax
)4

e−nt2dt

= n2(W
◦
n (exp4a;x)−4eaxW

◦
n (exp3a;x)+6e2axW

◦
n (exp2a;x))

+n2(−4e3axW
◦
n (expa;x)+ e4axW

◦
n (e0;x))

= n2(e
3a2
2n e4ax−4eaxe

a2
2n e3ax +6e2axe2ax)

+n2(−4e3axeax + e4axe
a2
2n ).
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Further evaluations give that the right hand side of last equality tends to 3
4 (a4)(e4ax)

as n tends to ∞ . We infer from Theorem 3 that lim
n→∞

W ◦
n (r2

x (u);x) = r2
x (0) = 0. Hence

lim
n→∞

nγ15 (n) = 0.

This completes the proof. �

THEOREM 6. Let f ∈ Cρ1(R). If f ′′ exists finitely at a point x ∈ R, then there
holds

lim
n→∞

n2 [(T ◦
n ( f ;x)− f (x)] =

a2

12
f (x)− a

8
f ′ (x)+

1
24

f ′′ (x) .

Proof. We use local Taylor formula as follows:

f (λ
◦
n (x)+ t) = ( f ◦ loga)(e

a(λ
◦
n (x)+t))

= ( f ◦ loga)(e
ax)+ ( f ◦ loga)

′
(eax)

(
ea(λ ◦

n (x)+t) − eax
)

+
1
2

( f ◦ loga)
′′
(eax)

(
ea(λ ◦

n (x)+t) − eax
)2

+hx(u)
(
ea(λ

◦
n (x)+t) − eax

)
,

where hx, hx(u) := hx(u(t)) with u(t) = t−a−1 ln

(
n(e

a
n −1)
a

)
, is a function in Cρ1(R)

with lim
u→0

hx(u) = 0. Using Local Taylor formula and implementing the operators to it,

we have

T ◦
n ( f ;x)− f (x) = f (x)(T ◦

n (e0;x)−1)

+n

1
n∫
0

e
−a
(

λ ◦
n (x)+t

)
eax
[
a−1e−ax f ′ (x)

(
ea(λ ◦

n (x)+t) − eax
)]

dt

+
n
2

1
n∫
0

e
−a
(

λ
◦
n (x)+t

)
eax
[
a−2e−2ax f ′′ (x)

(
ea(λ ◦

n (x)+t) − eax
)2
]
dt

−n
2

1
n∫
0

e
−a
(

λ
◦
n (x)+t

)
eax
[
a−1e−ax f ′ (x)

(
ea(λ ◦

n (x)+t) − eax
)2
]
dt

+n

1
n∫
0

e
−a
(

λ ◦
n (x)+t

)
eax
[
hx(u)

(
ea(λ ◦

n (x)+t) − eax
)2
]
dt

:= γ21 (n)+ γ22 (n)+ γ23 (n)+ γ24 (n)+ γ25 (n) .
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Clearly,

lim
n→∞

n2γ21 (n) = lim
n→∞

n2 f (x)
[

2n2

a2

(
−1+ cosh

(a
n

))
−1

]

=
a2

12
f (x) .

For γ22 (n) , we have

γ22 (n) = a−1e−ax f ′ (x) [T ◦
n (expa;x)− eaxT ◦

n (e0;x)]

= a−1e−ax f ′ (x)
[
eax − eax 2n2

a2

(
−1+ cosh

(a
n

))]
.

Therefore, lim
n→∞

n2γ22 (n) = − a
12 f ′ (x) . Similar considerations yield: lim

n→∞
n2γ23 (n) =

1
24 f ′′ (x) and lim

n→∞
n2γ24 (n) = − a

24 f ′ (x) .

Using Cauchy-Schwarz inequality, we observe that

∣∣n2γ25 (n)
∣∣� (T ◦

n (h2
x(u);x)

)1/2

⎛
⎜⎝n4n

1
n∫
0

e
−a
(

λ ◦
n (x)+t

)
eax
(
ea(λ

◦
n (x)+t) − eax

)4
dt

⎞
⎟⎠

1/2

.

Proceeding as in the previous proof, we have

lim
n→∞

n4n

1
n∫
0

e
−a
(

λ
◦
n (x)+t

)
eax
(
ea(λ ◦

n (x)+t) − eax
)4

dt =
1
80

a4e4ax.

We infer from Theorem 4 that lim
n→∞

T ◦
n (h2

x(u);x) = h2
x(0) = 0. Hence

lim
n→∞

n2γ25 (n) = 0.

This completes the proof. �

6. Global smoothness preservation

Now, we will establish some estimates concerning global smoothness preservation
properties of (W ◦

n )n∈N
and (T ◦

n )n∈N
using modulus of continuity given in (4.1). For

some related information, we refer the reader to [6, 7].

THEOREM 7. Let f ∈Cρ1 (R) . If
∼
ω ( f ;δ ) < ∞ for δ > 0 and x ∈ R , then there

holds
∼
ω (W ◦

n ( f ; .) ;δ ) � e
a2
2n

∼
ω ( f ;δ ) .
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Proof. Under the hypotheses of the theorem, for h > 0, we have

e−a|x| (W ◦
n ( f ;x+h)−W◦

n ( f ;x))

= e−a|x|
√

n√
π

∞∫
−∞

e
−a
(

β
◦
n (x+h)+t

)
ea(x+h) f

(
β

◦
n (x+h)+ t

)
e−nt2dt

−e−a|x|
√

n√
π

∞∫
−∞

e
−a
(

β
◦
n (x)+t

)
eax f

(
β

◦
n (x)+ t

)
e−nt2dt

= e−a|x|
√

n√
π

∞∫
−∞

e−a(x+h− a
4n +t)ea(x+h) f

(
β

◦
n (x+h)+ t

)
e−nt2dt

−e−a|x|
√

n√
π

∞∫
−∞

e−a(x− a
4n +t)eax f

(
β

◦
n (x)+ t

)
e−nt2dt.

Further, the following inequality holds:

e−a|x| |W ◦
n ( f ;x+h)−W◦

n ( f ;x)|

� e−a|x|
√

n√
π

∞∫
−∞

∣∣∣ f (β
◦
n (x+h)+ t

)
− f

(
β

◦
n (x)+ t

)∣∣∣e−ate
a2
4n e−nt2dt

� ∼
ω ( f ;h)

√
n√
π

∞∫
−∞

e−ate
a2
4n e−nt2dt.

Thus, we have the result, that is,

∼
ω (W ◦

n ( f ; .) ;h) � ∼
ω ( f ;h)e

a2
2n . �

THEOREM 8. Let f ∈Cρ1 (R) . If
∼
ω ( f ;δ ) < ∞ for δ > 0 and x ∈ R , then there

holds
∼
ω (T ◦

n ( f ; .) ;δ ) � 2n2

a2

∣∣∣−1+ cosh
(a

n

)∣∣∣ ∼ω ( f ;δ ) .

7. Comparison result for Gauss-Weierstrass operators

Following [9], we prove following comparison result.

THEOREM 9. Let f ∈C2
ρ1

(R) . Suppose that there exists n0 ∈ N and a > 0 for
which there holds

f (x) � W ◦
n ( f ;x) � Wn ( f ;x)

for all n � n0 and x ∈ R. Then

0 � 3a f ′ (x)−2a2 f (x) � f ′′ (x) , x ∈ R. (7.1)
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Conversely, if inequality (7.1) holds as a strict inequality at a point x ∈ R, then there
exists n1 ∈ N for which there holds

f (x) <W ◦
n ( f ;x) < Wn ( f ;x)

for all n � n1 and x ∈ R.

Proof. Since
f (x) � W ◦

n ( f ;x) � Wn ( f ;x)

for all n � n0 and x ∈ R, using lim
n→∞

n [Wn ( f ;x)− f (x)] = f ′′(x)
4 (see [24]), we have

0 � n [W ◦
n ( f ;x)− f (x)] � n [Wn ( f ;x)− f (x)] ,

and by (5.1) as n tends to infinity there holds:

0 � f ′′ (x)
4

+
a2 f (x)

2
− 3a f ′ (x)

4
� f ′′ (x)

4
.

Thus, the result easily follows.
Conversely, if inequality (7.1) is strict at a point x ∈ R, we have

0 <
f ′′ (x)

4
+

a2 f (x)
2

− 3a f ′ (x)
4

<
f ′′ (x)

4

If we reverse the process, we obtain the required result. Thus, the proof is com-
pleted. �

8. Graphical examples

Modified Gauss-Weierstrass operators: In Figure (1-A)-Figure (2-B), dotted,
dashed and colored curves belong to Wn ( f ; .) , W ◦

n ( f ; .) and original function f , re-
spectively. We can understand from the graphs how the approximation changes depend-
ing on the choice of parameters in the related subtitles.
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Figure 1-A: f (x) = 1+e5x, a = 2, n = 5
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Figure 1-B: f (x) = 1+e5x, a = 5, n = 5
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Figure 2-A: f (x) = 1+e5x, a = 3, n = 5
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Figure 2-B: f (x) = 1+e5x, a = 3, n = 8
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Figure 3-A: f (x) = 1−x2, a = 2, n = 3
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Figure 3-B: f (x) = 1−x2, a = 3, n = 3
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Figure 4-A: f (x) = 1−x2, a = 1, n = 5
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Figure 4-B: f (x) = 1−x2, a = 1, n = 1
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Figure 5-A: f (x) = 1−e3x, a = 1, n = 1
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Figure 5-B: f (x) = 1−e3x, a = 1, n = 3
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Modified Moment-type operators: In Figure (3-A)-Figure (4-B), dotted, dashed
and colored curves belong to Tn ( f ; .) , T ◦

n ( f ; .) and original function f , respectively.
T ◦
n ( f ;x) Vs. W ◦

n ( f ;x) : In Figure (5-A)-Figure (5-B), colored (red), dashed and
colored (green) curves belong to W ◦

n ( f ; .) , T ◦
n ( f ; .) and original function f , respec-

tively.

9. Final comments

The exponential approximation is a rising trend of recent years. In this context, we
carried out this study on an operator sequence that is relatively easy to calculate with
well-known Gauss-Weierstrass operators. In order to overcome tough calculations, es-
pecially in Lemma 2, and to sketch graphs, we used CAS MATHEMATICA. Indeed,
we must state that the calculations for the modified Gauss-Weierstrass operators take
quite long time, especially for polynomial functions. On the other hand, it takes rel-
atively short time to calculate exponential functions for the same operators. It is also
effective that the kernel of the operator sequence is an exponential-type function.
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Yahşihan, 71450 Kırıkkale, Turkey
ORCID ID: 0000-0003-3937-992X

e-mail: basaryilmaz77@yahoo.com
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