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A GENERAL NONLINEAR VERSION OF

ROTH’S THEOREM ON THE REAL LINE

XIANG LI, DUNYAN YAN, HAIXIA YU AND XINGSONG ZHANG ∗

Abstract. Let N > 1 be a real number and ε > 0 be given. In this paper, we will prove that,
for a measurable subset S of [0,N] with positive density ε , there must be patterns of the form
(x,x+ t,x+ γ(t)) such that

x,x+ t,x+ γ(t) ∈ S,

where γ is convex and has some curvature constraints, t > δ (ε ,γ)γ−1(N) and δ (ε ,γ) is a
positive constant depending only on ε and γ , γ−1 is the inverse function of γ . Our result
extends Bourgain’s result [2] to the general curve γ . We use Bourgain’s energy pigeonholing
argument and Li’s σ -uniformity argument.
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[5] A.-P. CALDERÓN, Cauchy integrals on Lipschitz curves and ralated operators, Proc. Nat. Acad. Sci.
U.S.A. 74 (1977), no. 4, 1324–1327.

[6] A. CARBERY, M. CHRIST, J. VANCE, S. WAINGER AND D. WATSON, Operators associated to flat
plane curves: Lp estimates via dilation methods, Duke Math. J. 59 (1989), no. 3, 675–700.

[7] A. CARBERY, J. VANCE, S. WAINGER AND D. WATSON, The Hilbert transform and maximal func-
tion along flat curves, dilations, and differential equations, Amer. J. Math. 116 (1994), no. 5, 1203–
1239.

[8] H. CARLSSON, M. CHRIST, A. CORDOBA, J. DUOANDIKOETXEA, J. L. RUBIO DE FRANCIA, J.
VANCE, S. WAINGER AND D. WEINBERG, Lp estimates for maximal functions and Hilbert trans-
forms along flat convex curves in R

2 , Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 263–267.
[9] M. CHRIST, X. LI, T. TAO AND C. THIELE, On multilinear oscillatory integrals, nonsingular and

singular, Duke Math. J. 130 (2005), no. 2, 321–351.
[10] M. CHRIST, A. NAGEL, E. M. STEIN AND S. WAINGER, Singular and maximal Radon transforms:

analysis and geometry, Ann. of Math. (2) 150 (1999), no. 2, 489–577.
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[20] W. T. GOWERS, A new proof of Szemerédi theorem for arithmetic progressions of length four, Geom.

Funct. Anal. 8 (1998), no. 3, 529–551.
[21] B. GREEN, On arithmetic structures in dense sets of integers, Duke Math. J. 114 (2002), no. 2, 215–

238.
[22] B. GREEN AND T. TAO, The primes contain arbitrarily long arithmetic progressions, Ann. of Math.

(2) 167 (2008), no. 2, 481–547.
[23] J. GUO AND L. XIAO, Bilinear Hilbert transforms associated with plane curves, J. Geom. Anal. 26

(2016), no. 2, 967–995.
[24] L. HÖRMANDER, Oscillatory integrals and multipliers on FLp , Ark. Mat. 11 (1973), 1–11.
[25] B. F. JONES, A class of singular integrals, Amer. J. Math. 86 (1964), 441–462.
[26] M. T. LACEY AND C. THIELE, Lp estimates on the bilinear Hilbert transform for 2 < p < ∞ , Ann.

of Math. (2) 146 (1997), no. 3, 693–724.
[27] M. T. LACEY AND C. THIELE, On Calderón’s conjecture, Ann. of Math. (2) 149 (1999), no. 2,

475–496.
[28] J. LI AND H. YU, Lp boundedness of Hilbert transforms associated with variable plane curves,

arXiv: 1806.08589, 2018.
[29] X. LI, Bilinear Hilbert transforms along curves I: The monomial case, Anal. PDE 6 (2013), no. 1,

197–220.
[30] X. LI AND L. XIAO, Uniform estimates for bilinear Hilbert transforms and bilinear maximal functions

associated to polynomials, Amer. J. Math. 138 (2016), no. 4, 907–962.
[31] V. LIE, On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves, Amer.

J. Math. 137 (2015), no. 2, 313–363.
[32] V. LIE, On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves. The

Banach triangle case (Lr , 1 � r < ∞ ), Rev. Mat. Iberoam. 34 (2018), no. 1, 331–353.
[33] A. NAGEL, J. VANCE, S. WAINGER AND D. WEINBERG,Hilbert transforms for convex curves, Duke

Math. J. 50 (1983), no. 3, 735–744.
[34] K. F. ROTH, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.
[35] E. M. STEIN, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,

Princeton Mathematical Series 43, Monographs in Harmonic Analysis III, Princeton University Press,
Princeton, NJ, 1993.
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