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(Communicated by L. Liu)

Abstract. Let N > 1 be a real number and ε > 0 be given. In this paper, we will prove that,
for a measurable subset S of [0,N] with positive density ε , there must be patterns of the form
(x,x+ t,x+ γ(t)) such that

x,x+ t,x+ γ(t) ∈ S,

where γ is convex and has some curvature constraints, t > δ (ε ,γ)γ−1(N) and δ (ε ,γ) is a
positive constant depending only on ε and γ , γ−1 is the inverse function of γ . Our result
extends Bourgain’s result [2] to the general curve γ . We use Bourgain’s energy pigeonholing
argument and Li’s σ -uniformity argument.

1. Introduction

A classicial question in pure mathematics is to ask what conditions need to be im-
posed on a subset of the integers to guarantee that it contains an arithmetic progression.
In 1953, Roth’s remarkable article [34] on the existence of triples in arithmetic progres-
sion in subsets of integers with positive upper density tells us that if a subset of integers
is large enough, then there probably exists certain additive structure in it. Furthermore,
it implies that the following original version of Roth’s theorem: Let S ⊂ Z be a subset
of the positive integers of positive upper density, that is

limsupN→∞
#{S∩ (−N,N)}

2N
> 0.

Then, the set S must contain non-trivial arithmetic progression of length 3, i.e., existing
patterns of the form (x,x+ t,x+2t) such taht

x, x+ t, x+2t ∈ S,

where x ∈ Z and t > 0. Here, Roth used exponential sums and the Hardy-Littlewood
circle methods from Fourier analysis. His idea is to assume for contradiction that one
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had a set of integers of positive density which contained no arithmetic progressions of
length three, and then to use Fourier analysis to construct a new set of integers with
even higher density which still contains no such progressions. Eventually one would be
forced to construct a set of density over 1, which yields a contradiction.

REMARK 1.1. If we replace the length 3 in Roth’s theorem by a positive integer
k with k � 3, we then obtain Szemerédi’s theorem. It was proved by Szemerédi [37].
Indeed, Szemerédi [36] first considered the case k = 4 and extended to the general
case [37]. The theorem implies Van der Waerden’s theorem and also gives an answer
to the long-standing conjecture of Erdős and Turán [14]. From [34], we knew that
Roth’s proof based on the methods of Fourier analysis, but Szemerédi [36, 37] used
a method from combinatorial mathematics. Furthermore, the theorem can also been
proved by the techniques from ergodic theory (see, Furstenberg [17], Furstenberg and
Katznelson [18]) and additive number theory (see, Gowers [19, 20]). On the other hand,
Szemerédi’s theorem has been extended to the polynomial Szemerédi’s theorem [1]
and multidimensional Szemerédi’s theorem [18, Theorem B]. Later, the theorem was
generalized to the version of Szemerédi’s theorem relative to the primes [21, 22] and
polynomial Szemerédi’s theorem for the primes [39], multidimensional Szemerédi’s
theorem for the primes [38] and the references contained therein.

The study on Roth’s theorem inspired the emergence of new mathematical ideas
and methods. Bourgain [3] give a new proof of Roth’s theorem. Later, by the spirit
of [3], Bourgain [2] studied the nonlinear version of Roth’s theorem in R , which was
closely related to the bilinear Hilbert transform along the curve t2 . Bourgain’s result
can be stated as follows.

THEOREM 1.2. ([2, Theorem 1]) For any given ε > 0 , let S be a measurable
subset of [0,N] with |S| > εN . Then we can find patterns of the form (x,x+ t,x+ t2) ,
such that

x, x+ t, x+ t2 ∈ S,

where t > δ (ε)N
1
2 and δ (ε) is a positive constant depending only on ε .

Theorem 1.2 is also suitable for td with d ∈ N and d > 2. Recently, Durcik, Guo
and Roos [13] extend this result to the curve (t,P(t))t∈R , where P(t) is a monic
polynomial of degree d > 1 without constant term. As Bourgain [2], the paper [13]
is also closely related to the bilinear Hilbert transform along the monic polynomial
(t,P(t))t∈R . There also are other versions of Roth’s theorem; see, for example, Roth’s
theorem on Rd [11], polynomial Roth’s theorem on sets of fractional dimensions [16],
nonlinear Roth’s theorem in finite fields [4], polynomial Roth’s theorem in finite fields
[12] and the references contained therein.

In this paper, we further extend Theorem 1.2 to a wider class of curves. We now
state our main theorem.
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THEOREM 1.3. Let γ(t)∈C3((0,∞)) with γ(0)= γ ′(0)= limt→0+
γ ′
γ ′′ (t) = 0 , and

convex on (0,∞) , satisfying

C0 �
( γ ′

γ ′′
)′

(t) � C1, (1.1)

where t ∈ (0,∞) and C1 > C0 > 0 are constants. Moreover, let N > 1 be real number,
ε > 0 be given and S be a measurable subset of [0,N] with |S| > εN . Then we can
find patterns of the form (x,x+ t,x+ γ(t)) , such that

x,x+ t,x+ γ(t)∈ S,

where t > δ (ε,γ)γ−1(N) , δ (ε,γ) is a positive constant depending only on ε and γ ,
γ−1 is the inverse function of γ .

REMARK 1.4. It is easy to check that γ(t) := td with d ∈N and d � 2 satisfies the
conditions of Theorem 1.3. Obviously, Theorem 1.3 covers Bourgain’s Theorem 1.2.
The following cases are some other curves which satisfy the conditions of Theorem 1.3:

(i) for any t ∈ [0,∞) , γ1(t) := tα , α ∈ (1,∞) ;

(ii) for any t ∈ [0,∞) , γ2(t) := tα log(1+ t) , α ∈ (1,∞) ;

(iii) for any t ∈ [0,∞) , γ3(t) :=
∫ t
0 τα log(1+ τ)dτ , α ∈ (0,∞) ;

(iv) for any t ∈ [0,∞) , γ4(t) :=
∫ t
0 τα arctanτ dτ , α ∈ (0,∞) ;

(v) for any t ∈ [0,∞) and K ∈ N , γ5(t) := ∑K
i=1 tαi under αi ∈ (1,∞) for all i =

1,2, · · · ,K .

One of the motivations of our study on Theorem 1.3 arises from the Lp(R)×
Lq(R)→ Lr(R) boundedness of the bilinear Hilbert transform Hγ( f ,g) along the curve
γ defined as

Hγ ( f ,g)(x) := p.v.
∫ ∞

−∞
f (x− t) f (x− γ(t))

dt
t

,

where p,q,r satisfy 1
p + 1

q = 1
r , p > 1, q > 1. Here and hereafter, p.v.

∫ ∞
−∞ denotes

the principal-value integral. This originated from Calderón [5] in order to study the
Cauchy transform along Lipschitz curves. If γ(t) := −t , the operator is the standard
bilinear Hilbert transform. Lacey and Thiele [26, 27] obtained the Lp(R)×Lq(R) →
Lr(R) boundedness with r > 2

3 . If γ(t) := td or γ(t) := P(t) , a polynomial of degree
d without linear term and constant term, d ∈ N and d > 1, for the boundedness of
Hγ( f ,g) , we refer the reader to Li [29] and Li and Xiao [30]. For more general curve
γ , Lie [31] introduced a class N FC of curves and obtained the L2(R)× L2(R) →
L1(R) boundedness of Hγ( f ,g) for γ ∈ N FC . Later, it was extended to the Lp(R)×
Lq(R)→ Lr(R) boundedness with r � 1 in Lie [32]. More recently, Guo and Xiao [23]
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obtained the L2(R)×L2(R) → L1(R) boundedness of Hγ( f ,g) , where γ ∈ F(−1,1) ,
the definition of the class F(−1,1) of curves can be found in p. 970 in [23].

As what we have stated before, we know that the proofs of the Bourgain’s The-
orem 1.2 and the polynomial Roth’s theorem [13] are closely related to the bounded-
ness of Hγ( f ,g) along the homogeneous curve γ(t) := t2 and the monic polynomial
γ(t) := P(t) , respectively. Based on the development of the Lp(R)×Lq(R) → Lr(R)
boundedness of Hγ ( f ,g) , whose boundedness has been obtained for more general
curves, it is natural to consider the general nonlinear version of Roth’s Theorem, i.e.
Theorem 1.3. Our conditions are easier to check than N FC in Lie [31, 32] and
F(−1,1) in Guo and Xiao [23].

Another motivation of our study is offered by the Hilbert transform Hγ f along the
curve γ defined as

Hγ f (x1,x2) := p.v.
∫ ∞

−∞
f (x1 − t,x2− γ(t))

dt
t

,

which was initiated by Fabes and Rivière [15] and Jones [25] in order to understand
the behavior of the constant coefficient parabolic differential operators. Later, Hγ f was
extended to cover more general classes of curves; see, for example, [6, 7, 8, 10, 33].
Hγ( f ,g) is closely associated to Hγ f , since they have the same multiplier. Indeed, we
can rewrite Hγ( f ,g)(x) and Hγ f (x1,x2) as

∫ ∞

−∞

∫ ∞

−∞
f̂ (ξ )ĝ(η)

(
p.v.

∫ ∞

−∞
e−iξ t−iηγ(t) dt

t

)
eixξ eixη dξ dη ,

and ∫ ∞

−∞

∫ ∞

−∞
f̂ (ξ ,η)

(
p.v.

∫ ∞

−∞
e−iξ t−iηγ(t) dt

t

)
eix1ξ eix2η dξ dη .

Therefore, we may find many similarities between Hγ ( f ,g) and Hγ f .
The last but not least, our motivation for generalizing of nonlinear version of

Roth’s theorem comes from itself. Theorem 1.3 is a natural generalization, and it is
also the inevitable development of this theorem. Compared with the usual linear set-
ting, i.e. γ(t) := 2t , and Bourgain’s Theorem 1.2, i.e. γ(t) := td with d ∈N and d � 2,
our result leads to different phenomena.

The rest of this paper is organized as follows. In Section 2, we first obtain some
properties for γ and collect a lemma from [2]. Furthermore, we reduce our Theorem 1.3
to the key Lemma 2.5, this can be realized by Proposition 2.4. Section 3 is devoted to
proof of Lemma 2.5. We first split our operator as the sum of A1( f ,g) and A2( f ,g) by
the critical points of the phase function. The former part A1( f ,g) far from the critical
points, whose estimate can be obtained by Van der Corput’s lemma. The second part
A2( f ,g) closes to the critical points, which is the most difficult part. In order to obtain
its estimate, we used the TT ∗ argument, Hörmander’s theorem [24, Theorem 1.1], the
stationary phase method and σ -uniformity argument [29, Theorem 7.1].

Throughout this paper, we use C to denote a positive constant that is independent
of the main parameters involved but whose value may vary from line to line. Moreover,
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we use C(ε,γ, . . .) or δ (ε,γ, . . .) to denote a positive constant depending on the indi-
cated parameters ε,γ, . . . . The positive constants with subscripts, such as C1 and C2 ,
are the same in different occurrences. For two real functions f and g , we use f � g or
g � f to denote f � Cg and, if f � g � f , we write f ≈ g . We use S (R) to denote
Schwartz class on R . R means the set of real numbers, C means the set of complex
numbers, Z means the set of integers, Z− := Z \N with N := {0,1,2, · · ·} . For any
A ∈ R , 	A
 is the unique integer such that 0 � A−	A
< 1, and �A� is the unique in-
teger such that 0 � �A�−A < 1. For any set E , we use 1E to denote its characteristic
function, #E denotes the cardinality of it. f̂ denotes the Fourier transform of f , f̌ is
the inverse Fourier transform of f .

2. Preliminaries

2.1. Curve γ

We start by introducing some simple properties of curve γ which we need in the
course of proof. We conclude these properties as the following lemma

LEMMA 2.1. Let γ as defined in Theorem1.2, then for any t ∈ (0,∞) we have

(i) there exist positive constants C2 and C3 , such that C2 � tγ ′′
γ ′ (t) � C3 ;

(ii) there exist positive constants C4 and C5 , such that C4 � tγ ′(t)
γ(t) � C5

(iii) there exist positive constants C7 > C6 > 1 , such that C6 � γ ′(2t)
γ ′(t) � C7 ;

(iv) there exist the same constants C6 and C7 as above, such that 2C6 � γ(2t)
γ(t) � 2C7 ;

(v) there exist positive constants C8 and C9 , such that −C8
t2

� ( γ ′′
γ ′ )

′(t) � −C9
t2

.

Proof. For (i), we denote

F(t) = C′
1t −

γ ′

γ ′′
(t).

After deriving the variable t , we have F ′(t) = C′
1 − ( γ ′

γ ′′ )
′(t) , if we set C′

1 � C1 , then

F ′(t) � 0 for any t ∈ (0,∞) . Since F(0) = − γ ′
γ ′′ (0) = 0, we obtain that F(t) � 0 for

any t ∈ (0,∞) , which means

tγ ′′(t)
γ ′(t)

� 1
C1

.

Then we denote

G(t) =
γ ′

γ ′′
(t)−C′

0t,
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if we set C′
0 � C0 , in the same way, we get

tγ ′′(t)
γ ′(t)

� 1
C0

.

For (ii), Since γ ′ is increasing on (0,∞) and γ(0) = γ ′(0) = 0, by the mean value
theorem again, for any t ∈ (0,∞) , there exists τ2 ∈ (0,t) such that

tγ ′(t)
γ(t)

=
tγ ′(t)−0γ ′(0)

γ(t)− γ(0)
=

γ ′(τ2)+ τ2γ ′′(τ2)
γ ′(τ2)

.

Thus, by (i), we can see that

1+
1
C1

� tγ ′(t)
γ(t)

� 1+
1
C0

. (2.1)

For (iii), we denote

τ(t) = lnγ ′(t).

Then we can obtain that
τ(2t)− τ(t) = τ ′(θ t) · t,

where θ ∈ (1,2) and τ ′(t) = γ ′′
γ ′ (t) , combining with (i) we have

e
1

2C1 � γ ′(2t)
γ ′(t)

� e
1

C0 .

For (iv), repeating the process in (ii), we know for any t ∈ (0,∞) , there exists
τ1 ∈ (0, t) such that

γ(2t)
γ(t)

=
γ(2t)− γ(0)
γ(t)− γ(0)

=
2γ ′(2τ1)

γ ′(τ1)
.

This, combined with (iii), we have

2e
1

2C1 � γ(2t)
γ(t)

� 2e
1

C0 . (2.2)

For (v), (1.1) implies

C0 � (γ ′′)2 − γ ′γ ′′′

(γ ′′)2 (t) � C1,

from (i) we can replace γ ′′ in the denominator by γ ′ , then we have

− 1
C0

1
t2

�
(γ ′′

γ ′
)′

(t) � − 1
C1

1
t2

. �
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2.2. Reduction of Theorem 1.3 to Lemma 2.5

In this Section, we will reduce the proof of Theorem 1.3 to the key Lemma 2.5.
We first collect the following Lemma 2.2 from [2].

LEMMA 2.2. ([2, Lemma 6]) For a nonnegative function f supported on [0,1]
and t1, t2 > 0 , we have

∫ 1

0
f (x)(Pt1 ∗ f )(x)(Pt2 ∗ f )(x)dx � C̃

(∫ 1

0
f (x)dx

)3

,

for some positive constant C̃ depending only on P, where {Pt}t>0 is the standard
Possion semi-group and Pt(·) := 1

t P( ·t ) .

It is easy to see that Theorem 1.3 is a consequence of the following Proposition
2.3.

PROPOSITION 2.3. Let N > 1 be a real number, ε > 0 be given, and γ satisfy all
of conditions in Theorem 1.3. Suppose that f is a function on R with 0 � f � 1 and∫ N
0 f (x)dx � εN . Then

∫ N

0

∫ γ−1(N)

0
f (x) f (x+ t) f (x+ γ(t))dt dx > δ (ε,γ)Nγ−1(N), (2.3)

where δ (ε,γ) is a positive constant depending only on ε and γ .

By changing of variable x → Nx , t → γ−1(N)t and letting φ(x) := f (Nx) , (2.3)
is equivalent to

∫ 1

0

∫ 1

0
φ(x)φ

(
x+

γ−1(N)t
N

)
φ
(

x+
γ(γ−1(N)t)

N

)
dt dx > δ (ε,γ). (2.4)

Therefore, it suffices to prove the following Proposition 2.4.

PROPOSITION 2.4. Let N > 1 be a real number, ε > 0 be given and γ satisfy all
of conditions in Theorem 1.3. Suppose that f be a function supported on [0,1] with
0 � f � 1 and

∫ 1
0 f (x)dx � ε . Then there exists a positive constant δ (ε,γ) depending

only on ε and γ such that

∫ 1

0

∫ 1

0
f (x) f

(
x+

γ−1(N)t
N

)
f

(
x+

γ(γ−1(N)t)
N

)
dt dx > δ (ε,γ). (2.5)

To prove Proposition 2.4, we use the forthcoming Lemma 2.5, which will be
proved in Section 3. Let τ be an nonnegative smooth bump function supported on
{t ∈ R : 1

2 � t � 2} with τ̂(0) = 1. We denote τt(·) := 1
t τ( ·t ) for t > 0.
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LEMMA 2.5. Let N > 1 be a real number, l ∈ N , γ satisfies all of conditions
in Theorem 1.3 and f be the same as in Proposition 2.4. Then there exists a positive
constant β such that, for all g ∈ S (R) with supp ĝ ⊂ [2m,2m+1] and m � 0 , the
following inequality∥∥∥∥∫

R

f

(
x+

γ−1(N)t
N

)
g

(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt

∥∥∥∥
L1([0,1])

� C(2C7)l2−βm‖ f‖L2(R) ‖g‖L2(R) (2.6)

holds for some positive constant C depending only on γ .

Proof of Proposition 2.4. Let

I :=
∫ 1

0

∫ 1

0
f (x) f

(
x+

γ−1(N)t
N

)
f

(
x+

γ(γ−1(N)t)
N

)
dt dx.

For 1 � l′ � l � l′′ , it is easy to see that

2lI �
∫ 1

0

∫ 1

0
f (x) f

(
x+

γ−1(N)t
N

)
f

(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt dx

= I1 + I2 + I3, (2.7)

where

I1 :=
∫ 1

0

∫ 1

0
f (x) f

(
x+

γ−1(N)t
N

)(
P2−l′ ∗ f

)(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt dx,

I2 :=
∫ 1

0

∫ 1

0
f (x) f

(
x+

γ−1(N)t
N

)(
P2−l′′ ∗ f−P2−l′ ∗ f

)(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt dx,

I3 :=
∫ 1

0

∫ 1

0
f (x) f

(
x+

γ−1(N)t
N

)(
f −P2−l′′ ∗ f

)(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt dx.

We first estimate I3 . Let g := f −P2−l′′ ∗ f . We take inhomogeneous Littlewood-Paley
decomposition on ĝ and obtain that

ĝ(ξ ) = ∑
k∈N

(ĝχk)(ξ )+ ∑
k∈Z−

(ĝχk)(ξ ),

where χk(ξ ) := 1{ξ∈R: 2k�ξ<2k+1}(ξ ) . Letting ĝk := ĝχk , from the definition of Pois-

son kernel, we have1

ĝk(ξ ) =
(
f −P2−l′′ ∗ f

)̂
(ξ )χk(ξ ) = f̂ (ξ )

(
1− e−2π2−l′′|ξ |

)
χk(ξ ). (2.8)

1Here and hereafter, we also denote ( f )̂(·) means the Fourier transform of f .



ROTH’S THEOREM ON THE REAL LINE 1127

Furthermore, as 0 � f � 1 and f is supported on [0,1] , by the triangle inequality, we
have that

|I3| �
∥∥∥∥∥∑

k∈Z

∫ 1

0
f

(
x+

γ−1(N)t
N

)
gk

(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt

∥∥∥∥∥
L1([0,1])

� I31 + I32 + I33,

where

I31 :=

∥∥∥∥∥
∫ 1

0
f

(
x+

γ−1(N)t
N

)(
∑

k∈Z−
gk

)(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt

∥∥∥∥∥
L1([0,1])

;

I32 := ∑
0�k�l′′−1

∥∥∥∥∫ 1

0
f

(
x+

γ−1(N)t
N

)
gk

(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt

∥∥∥∥
L1([0,1])

;

I33 := ∑
k�l′′

∥∥∥∥∫ 1

0
f

(
x+

γ−1(N)t
N

)
gk

(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt

∥∥∥∥
L1([0,1])

.

For I33 , by Lemma 2.5 and the fact that ‖gk‖L2(R) � ‖ f‖L2(R) , we have

I33 � (2C7)l ∑
k�l′′

2−β k‖ f‖L2(R)‖gk‖L2(R) (2.9)

� (2C7)l ∑
k�l′′

2−β k‖ f‖2
L2(R)

� 2(log2 2C7)l−β l′′‖ f‖2
L2(R).

For I32 , by Lemma 2.5, it can be bounded by

(2C7)l ∑
0�k�l′′−1

2−β k‖ f‖L2(R)‖gk‖L2(R).

Using Plancherel’s theorem and (2.8), we have that

‖gk‖L2(R) = ‖ĝk‖L2(R) =
∥∥∥ f̂ (·)

(
1− e−2π2−l′′|·|

)
χk(·)

∥∥∥
L2(R)

� 2−l′′+k
∥∥ f̂ χk

∥∥
L2(R) � 2−l′′+k‖ f‖L2(R).

We may assume that 0 < β < 1. Hence

I32 � (2C7)l ∑
0�k�l′′−1

2−β k2−l′′+k‖ f‖2
L2(R) (2.10)

� (2C7)l2−l′′+(1−β )l′′‖ f‖2
L2(R)

� 2(log2 2C7)l−β l′′‖ f‖2
L2(R).
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For I31 , applying Hölder’s inequality and Plancherel’s theorem, we have

I31 � ‖ f‖L2(R)

∥∥∥∥∥ ∑
k∈Z−

gk

∥∥∥∥∥
L2(R)

= ‖ f‖L2(R)

∥∥∥ f̂ (·)
(
1− e−2π2−l′′|·|

)
1{ξ∈R: 0<ξ<1}(·)

∥∥∥
L2(R)

(2.11)

� 2−l′′‖ f‖2
L2(R)

� 2(log2 2C7)l−β l′′‖ f‖2
L2(R).

The last inequality follows from the fact that 1 � l � l′′ and 0 < β < 1.
Combining (2.9), (2.10) with (2.11), for any ε > 0, yields that

|I3| � 2(log2 2C7)l−β l′′‖ f‖2
L2(R) � 2−100C̃ε3 (2.12)

holds if we take l′′ large enough with respect to l , where C̃ can be found in Lemma
2.2.

We then estimate I2 . By Cauchy-Schwarz inequality, it follows that

|I2| �
∫ 1

0

∥∥∥∥ f (x) f

(
x+

γ−1(N)t
N

)∥∥∥∥
L2(Rx)

(2.13)

×
∥∥∥∥(P2−l′′ ∗ f −P2−l′ ∗ f

)(
x+

γ(γ−1(N)t)
N

)∥∥∥∥
L2(Rx)

τ2−l (t)dt

�
∥∥P2−l′′ ∗ f −P2−l′ ∗ f

∥∥
L2(R) .

For I1 , we construct a new term Ĩ1 . Our aim is to replace the estimate of I1 by Ĩ1 .
Let

Ĩ1 :=
∫ 1

0

∫ 1

0
f (x) f

(
x+

γ−1(N)t
N

)(
P2−l′ ∗ f

)
(x)τ2−l (t)dt dx.

We claim that there is only a tiny difference between Ĩ1 and I1 . The difference between
Ĩ1 and I1 can be written as∫ 1

0

∫ 1

0
f (x) f

(
x+

γ−1(N)t
N

)
[(

P2−l′ ∗ f
)
(x)− (P2−l′ ∗ f

)(
x+

γ(γ−1(N)t)
N

)]
τ2−l (t)dt dx.

By the mean value theorem, it implies that∣∣∣∣(P2−l′ ∗ f
)
(x)− (P2−l′ ∗ f

)(
x+

γ(γ−1(N)t)
N

)∣∣∣∣� 2l′ ∥∥(P′)2−l′ ∗ f
∥∥

L∞(R)
γ(γ−1(N)t)

N

� 2l′ γ(γ−1(N)21−l)
N

.
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The last inequality follows from Young’s inequality and the monotonicity of γ on
(0,∞) . For fixed N > 1, from (iv) in Lemma 2.1, it implies that γ(γ−1(N)21−l) � N

2l−1 .
Thus for any ε > 0, we can choose l large enough with respect to l′ such that

2l′ γ(γ−1(N)21−l)
N

� 2l′−l � 2−100C̃ε3.

This easily leads to

|Ĩ1− I1| � 2−100C̃ε3. (2.14)

We now turn to the estimate of Ĩ1 . Let τ̃(·) := τ(−·) , then Ĩ1 can be written as

Ĩ1 = −
∫ 1

0
f (x)
(
P2−l′ ∗ f

)
(x)
(

τ̃ γ−1(N)
2l N

∗ f

)
(x)dx = Ĩ11 + Ĩ12,

where

Ĩ11 := −
∫ 1

0
f (x)
(
P2−l′ ∗ f

)
(x)

[(
τ̃ γ−1(N)

2l N

∗ f

)
(x)−

(
Pγ−1(N)

2l′N
∗ f

)
(x)

]
dx;

Ĩ12 := −
∫ 1

0
f (x)
(
P2−l′ ∗ f

)
(x)
(

Pγ−1(N)
2lN

∗ f

)
(x)dx.

It follows from Lemma 2.2 that

|Ĩ12| � C̃ε3. (2.15)

For Ĩ11 , by Hölder’s inequality, it can be bounded by∥∥∥∥∥τ̃ γ−1(N)
2l N

∗ f −Pγ−1(N)

2l′N
∗ f

∥∥∥∥∥
L2(R)

.

Furthermore, by the triangle inequality and Young’s convolution inequality, we have
that ∥∥∥∥∥τ̃ γ−1(N)

2lN

∗ f −Pγ−1(N)

2l′N
∗ f

∥∥∥∥∥
L2(R)

� Ia + Ib + Ic,

where

Ia :=

∥∥∥∥∥τ̃ γ−1(N)
2lN

∗Pγ−1(N)

2l′′N
∗ f − τ̃ γ−1(N)

2l N

∗Pγ−1(N)

2l′N
∗ f

∥∥∥∥∥
L2(R)

;

Ib :=

∥∥∥∥∥τ̃ γ−1(N)
2lN

− τ̃ γ−1(N)
2lN

∗Pγ−1(N)

2l′′N

∥∥∥∥∥
L1(R)

;
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Ic :=

∥∥∥∥∥Pγ−1(N)

2l′N
− τ̃ γ−1(N)

2l N

∗Pγ−1(N)

2l′N

∥∥∥∥∥
L1(R)

.

We apply Young’s convolution inequality again for Ia to obtain that

Ia �
∥∥∥∥∥Pγ−1(N)

2l′′N
∗ f −Pγ−1(N)

2l′N
∗ f

∥∥∥∥∥
L2(R)

.

By rescaling in Ib and Ic , we get

Ib =
∥∥τ̃2−l − τ̃2−l ∗P2−l′′

∥∥
L1(R)

and

Ic =
∥∥P2−l′ − τ̃2−l ∗P2−l′

∥∥
L1(R) .

By the mean value theorem, if l′′ is chosen large enough with respect to l , and l large
large enough with respect to l′ , then Ib and Ic are bounded from above by 2−100C̃ε3 .
Therefore,

|Ĩ11| �
∥∥∥∥∥Pγ−1(N)

2l′′N
∗ f −Pγ−1(N)

2l′N
∗ f

∥∥∥∥∥
L2(R)

+2−99C̃ε3. (2.16)

Putting these estimates |I3| , |I2| , |Ĩ1 − I1| , |Ĩ12| and |Ĩ11| from (2.12), (2.13),
(2.14), (2.15) and (2.16) together, and noticing Ĩ1 = Ĩ11 + Ĩ12 , from (2.7), we obtain

C̃ε3 � 2l I +
∥∥P2−l′′ ∗ f −P2−l′ ∗ f

∥∥
L2(R) +

∥∥∥∥∥Pγ−1(N)

2l′′N
∗ f −Pγ−1(N)

2l′N
∗ f

∥∥∥∥∥
L2(R)

+2−90C̃ε3.

Therefore, by the pigeonhole argument, we see that either

I > 2−l−10C̃ε3

or

∥∥P2−l′′ ∗ f −P2−l′ ∗ f
∥∥

L2(R) +

∥∥∥∥∥Pγ−1(N)

2l′′N
∗ f −Pγ−1(N)

2l′N
∗ f

∥∥∥∥∥
L2(R)

> 2−10C̃ε3.

Starting with l0 = 1, the previous considerations enable us to construct a sequence
l0 < l1 < · · · < lk < · · · satisfying lk+1 �C(ε,γ)lk from some positive constant C(ε,γ)
depending only on ε and γ such that for each k either

I > 2−lk+1−10C̃ε3, (2.17)
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or

∥∥P2−lk ∗ f −P2−lk+1 ∗ f
∥∥

L2(R) +

∥∥∥∥∥Pγ−1(N)

2lk N

∗ f −Pγ−1(N)

2lk+1N

∗ f

∥∥∥∥∥
L2(R)

> 2−10C̃ε3. (2.18)

Notice that, for any positive constant K , we have the following estimate:

K

∑
k=0

⎛⎝∥∥P2−lk ∗ f−P2−lk+1 ∗ f
∥∥2

L2(R) +

∥∥∥∥∥Pγ−1(N)

2lk N

∗ f−Pγ−1(N)

2lk+1N

∗ f

∥∥∥∥∥
2

L2(R)

⎞⎠� C̃‖ f‖2
L2(R) � c0,

(2.19)

where c0 is a positive constant independent of K and f . Taking K large enough

to satisfy K (2−10C̃ε3)2
2 > c0 , if (2.18) holds for all k satisfying 0 < k � K , then the

sum in (2.19) leads to K (2−10C̃ε3)2
2 � c0 , which yields a contradiction. Thus, there

exists k satisfying 0 < k � K such that (2.17) established. Note that the sequence
1 = l0 < l1 < · · · < lk < · · · satisfying lk+1 � C(ε,γ)lk , then lk+1 in (2.17) can be

bounded from above by C(ε,γ)K , where K satisfies K (2−10C̃ε3)2
2 > c0 . Therefore, we

obtain a uniform lower estimate on I by letting

δ (ε,γ) := 2−C(ε,γ)K0−10C̃ε3,

with K0 := 4c0

(2−10C̃ε3)2
. �

3. Proof of the key Lemma 2.5

We first denote the bilinear operator A( f ,g) as

A( f ,g)(x) :=
∫

R

f

(
x+

γ−1(N)t
N

)
g

(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt.

In this Section, we want to obtain that there exists a positive constant β such that

‖A( f ,g)‖L1([0,1]) � (2C7)l2−βm‖ f‖L2(R)‖g‖L2(R). (3.1)

Since the support of ĝ is on a given dyadic interval, we may also take a dyadic
decomposition on the frequency support of f . Therefore, we define the frequency
projection operator Pk as

P̂k f (ξ ) := f̂ (ξ )χk(ξ ),

where χk(ξ ) := 1{ξ∈R: 2k�|ξ |<2k+1}(ξ ) and k ∈ Z . Thus, A( f ,g)(x) can be written as

∑
k∈Z

∫
R

(Pk f )
(

x+
γ−1(N)t

N

)
g

(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt.
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Furthermore, by the Fourier inversion formula, the expression above can be written as

∑
k∈Z

∫∫
R2

P̂k f (ξ )ĝ(η)eiξxeiηxml(ξ ,η)dξ dη ,

where

ml(ξ ,η) :=
∫

R

ei2−l γ−1(N)
N tξ ei γ(γ−1(N)2−l t)

N η τ(t)dt.

Since the support of τ is [ 1
2 ,2] and the support of ĝ is [2m,2m+1] with m � 0,

the support of P̂k f varies with k , we can take |ξ | ≈ 2k , η ≈ 2m and t ≈ 1. This,
combining with (iv) in Lemma 2.1, we may further expect that the main contribution to
A( f ,g) comes from such k ’s which satisfy

2−l γ−1(N)
N

2k =
γ(γ−1(N)2−l)

N
2m,

which implies that

k = m+M0

with

M0 := log2

(
γ(γ−1(N)2−l)

γ−1(N)2−l

)
. (3.2)

Here we will always regard M0 as an integer, if not so, we can take M′
0 := 	M0
 to

replace M0 by M′
0 . Then, we can rewrite A( f ,g) as the following form.

A( f ,g)(x) = ∑
k∈Z

∫
R

(Pk+m+M0 f )
(

x+
γ−1(N)t

N

)
g

(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt

= ∑
k∈Z

∫∫
R2

(Pk+m+M0 f )̂(ξ )ĝ(η)eiξxeiηxml(ξ ,η)dξ dη .

According to the stationary phase method, we can divide A( f ,g) into the follow-
ing two parts by the range of |k| . Write

A( f ,g)(x) = A1( f ,g)(x)+A2( f ,g)(x),

where

A1( f ,g)(x) := ∑
k∈Z, |k|�D

∫∫
R2

(Pk+m+M0 f )̂(ξ )ĝ(η)eiξxeiηxml(ξ ,η)dξ dη ,

and

A2( f ,g)(x) := ∑
k∈Z, |k|<D

∫∫
R2

(Pk+m+M0 f )̂(ξ )ĝ(η)eiξxeiηxml(ξ ,η)dξ dη ,

where D is a large enough positive constant depending on curve γ such that |2k−1|� 1
holds for all k ∈ Z and |k| � D .
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Next we will analyze A1( f ,g) and A2( f ,g) , respectively. We now define the phase
function in ml as φ(t) and obtain its derivative φ ′(t) and second derivative φ ′′(t) as
follows:

φ(t) := 2−l γ−1(N)
N

tξ +
γ(γ−1(N)2−lt)

N
η ;

φ ′(t) = 2−l γ−1(N)
N

ξ + γ−1(N)2−l γ ′(γ−1(N)2−lt)
N

η ;

φ ′′(t) =
(

γ−1(N)2−l
)2 γ ′′(γ−1(N)2−lt)

N
η .

For A1( f ,g) , we use duality to analyze its L1(R)-norm. Taking h ∈ L∞([0,1]) ,
we consider the following expression

∑
k∈Z, |k|�D

∫ 1

0

∫
R

(Pk+m+M0 f )
(

x+
γ−1(N)t

N

)
g

(
x+

γ(γ−1(N)t)
N

)
h(x)τ2−l (t)dt dx.

By Fourier inversion formula, the above expression can be rewritten as

∑
k∈Z, |k|�D

∫∫
R2

f̂ (ξ )ĝ(η)χk+m+M0(ξ )ĥ(−ξ −η)ml(ξ ,η)dξ dη . (3.3)

We now analyze 2−l γ−1(N)
N ξ and γ−1(N)2−l γ ′(γ−1(N)2−l t)

N η in φ ′ , respectively. Indeed,
for the former part, noticing |ξ | ≈ 2k+m+M0 and the definition of M0 in (3.2), we have∣∣∣∣2−l γ−1(N)

N
ξ
∣∣∣∣≈ 2−l γ−1(N)

N
2k+m+M0 ≈ 2k+m γ(γ−1(N)2−l)

N
. (3.4)

For the second part, noticing η ≈ 2m and t ≈ 1, from (ii) and (iv) in Lemma 2.1, we
have that∣∣∣∣γ−1(N)2−l γ ′(γ−1(N)2−lt)

N
η
∣∣∣∣≈ γ−1(N)2−l γ(γ−1(N)2−lt)

Nγ−1(N)2−lt
2m ≈ 2m γ(γ−1(N)2−l)

N
.

(3.5)

Furthermore, from (iv) in Lemma 2.1, it is easy to see that

(2C7)−l � γ(γ−1(N)2−l)
N

� 2−l. (3.6)

Therefore, we have

|φ ′(t)| � 2m γ(γ−1(N)2−l)
N

|2k −1|.

Note that |2k − 1| � 1 holds for all k ∈ Z and |k| � D . This, combining with (3.6),
leads to

|φ ′(t)| � 2m(2C7)−l. (3.7)
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On the other hand, from convexity of γ , we have that γ ′′(t) > 0 holds for all t ∈
(0,∞) , which further implies that φ ′′(t) > 0 holds for all t ∈ (0,∞) . Therefore, φ ′ is
monotonic. By Van der Corput’s lemma, for example, (see [35], p. 332, Proposition 2),
we have that

|ml(ξ ,η)| � (2C7)l2−m.

Applying Cauchy-Schwarz inequality to (3.3) and Plancherel’s theorem, we can control
(3.3) by

(2C7)l2−m

(∫∫
R2

|ĝ(η)|2 ∑
k∈Z, |k|�D

| f̂ (ξ )χk+m+M0(ξ )|2 dξ dη

) 1
2

×
(∫∫

R2
|ĥ(−ξ −η)|2χm(η)dξ dη

) 1
2

�(2C7)l2−
m
2 ‖ f‖L2(R)‖g‖L2(R)‖h‖L∞(R).

Letting h(x) := 1([0,1])(x) , we have

‖A1( f ,g)‖L1([0,1]) � (2C7)l2−
1
2 m‖ f‖L2(R)‖g‖L2(R) (3.8)

with β := 1
2 as desired.

For A2( f ,g) , where |k| is small. Without loss of generality, we may take k = 0
for the purpose of simplifying notation and write

A2( f ,g)(x) =
∫∫

R2
(Pm+M0 f )̂(ξ )ĝ(η)eiξxeiηxml(ξ ,η)dξ dη

with abuse of notations. Therefore, in the rest part of the section, our aim is to prove
the following inequality:∥∥∥∥∫

R

f

(
x+

γ−1(N)t
N

)
g

(
x+

γ(γ−1(N)t)
N

)
τ2−l (t)dt

∥∥∥∥
L1([0,1])

� (2C7)l2−βm‖ f‖L2(R)‖g‖L2(R),

where β is a positive constant, supp f̂ ⊂ {ξ ∈ R : 2m+M0 � |ξ | � 2m+M0+1]
}

and
supp ĝ ⊂ [2m,2m+1] .

For the convenience of computation, we will change variables several times. Chang-
ing variables x → 2−M0−mx , then the inequality above is changed into the following
form:∥∥∥∥∫

R

f

(
2−M0−mx+

γ−1(N)t
N

)
g

(
2−M0−mx+

γ(γ−1(N)t)
N

)
τ2−l (t)dt

∥∥∥∥
L1([0,2M0+m])

(3.9)

� (2C7)l2M0+m2−βm‖ f‖L2(R)‖g‖L2(R).
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Let
f (2−M0−mx) → f (x) and g(2−mx) → g(x).

Then (3.9) becomes∥∥∥∥∫
R

f (x+ λ t)g(2−M0x+ λQ(t))τ(t)dt

∥∥∥∥
L1([0,2M0+m])

� (2C7)l2
M0
2 2−βm‖ f‖L2(R)‖g‖L2(R),

(3.10)

where

λ := 2M0+m−l γ−1(N)
N

and Q(t) := 2−M0
γ(γ−1(N)2−lt)

γ−1(N)2−l (3.11)

and

supp f̂ ⊂ [−2,−1]∪ [1,2] and supp ĝ ⊂ [1,2].

Therefore, it suffices to obtain (3.10). This, combining with (3.8), further implies
Lemma 2.5. Indeed, the properties of λ and Q will pay a significant role in prov-
ing (3.10). Now we conclude their properties as the following Lemma 3.1.

LEMMA 3.1. If λ and Q are defined as in (3.11), then we have

(2C7)−l2m � λ � 2−l2m and ‖Q‖C2([ 1
2 ,2]) ≈ 1.

Proof of Lemma 3.1. From the definition of M0 in (3.2), we have

λ = 2m γ(γ−1(N)2−l)
γ−1(N)2−l 2−l γ−1(N)

N
= 2m γ(γ−1(N)2−l)

N
.

This, combining with (3.6), implies the first estimate about λ .
For ‖Q‖C2([ 1

2 ,2]) , we need to estimate Q , Q′ and Q′′ , respectively, where

Q′(t) = 2−M0γ ′(γ−1(N)2−lt)

and

Q′′(t) = 2−M0γ−1(N)2−lγ ′′(γ−1(N)2−lt).

For Q , applying (iv) in Lemma 2.1 and the definition of M0 in (3.2) again, we
have

Q(t) ≈ Q(1) =
γ−1(N)2−l

γ(γ−1(N)2−l)
γ(γ−1(N)2−l)

γ−1(N)2−l = 1. (3.12)

For Q′ , from Theorem (iii) in Lemma 2.1 and γ ′ is increasing and γ ′ � 0 on
(0,∞) , which implies

1 � γ ′(2t)
γ ′(t)

� C7
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for all t ∈ (0,∞) . This, combined with (3.2) and (ii) in Lemma 2.1, we have

Q′(t) ≈ Q′(1) =
γ−1(N)2−lγ ′(γ−1(N)2−l)

γ(γ−1(N)2−l)
≈ 1. (3.13)

For Q′′ , by (i) in Lemma 2.1, we have

Q′′(t) ≈ 2−M0γ−1(N)2−l γ ′(γ−1(N)2−lt)
γ−1(N)2−lt

for all t ∈ [ 1
2 ,2] . Noticing t ≈ 1 and (3.13), we obtain

Q′′(t) ≈ Q′(t) ≈ 1. (3.14)

From (3.12), (3.13) and (3.14), we have

‖Q‖C2([ 1
2 ,2]) ≈ 1

which is our desired result. This completes the proof of Lemma 3.1. �

We now turn to (3.10). By using dual function h ∈ L∞([0,2m+M0 ]) again, it is
enough to verify the following inequality:∣∣∣∣∫∫

R2
f (x+ λ t)g(2−M0x+ λQ(t))h(x)τ(t)dt dx

∣∣∣∣ (3.15)

�(2C7)l2
M0
2 2−βm‖ f‖L2(R)‖g‖L2(R)‖h‖L∞(R).

As h is supported on [0,2m+M0 ] , by Hölder’s inequality, it is easy to see that

‖h‖L2(R) � 2
m+M0

2 ‖h‖L∞(R).

Therefore, it suffices to prove the following new inequality:∣∣∣∣∫∫
R2

f (x+ λ t)g(2−M0x+ λQ(t))h(x)τ(t)dt dx

∣∣∣∣
� (2C7)l2−

m
2 2−βm‖ f‖L2(R)‖g‖L2(R)‖h‖L2(R). (3.16)

By applying Fourier inversion formula to f and g , the left hand side of (3.16) can
be written as∣∣∣∣∫∫

R2
f̂ (ξ )ĝ(η)ĥ(−ξ −2−M0η)

(∫
R

eiλ (tξ+Q(t)η)τ(t)dt

)
dξ dη

∣∣∣∣ .
We denote the phase function of the integral in t by

Φξ ,η (t) := tξ + ηQ(t). (3.17)

Here, we want to obtain (3.16) by using the stationary phase method, which forces us
to analyze the critical points of phase function. If Φξ ,η has no critical points, then
we can use usual skills such as integration by parts and Cauchy-Schwarz inequality
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to obtain the desired bound. Otherwise, we consider the case that Φξ ,η have critical
points. Since for fixed ξ and η ,

Φ′
ξ ,η(t) = ξ + ηQ′(t).

From the monotonically increasing property of γ ′ , we have Φ′
ξ ,η is monotonically

increasing, so there are only one critical point in internal [ 1
2 ,2] . Therefore, in the

remainder part of this section, we will always assume the following equation

Φ′
ξ ,η (t) = 0

has a unique solution

tc := tc(ξ ,η) ∈
[1
2
,2
]
.

Then we can denote the corresponding dual phase function as

Ψ(ξ ,η) := Φξ ,η (tc) = tcξ + ηQ(tc).

We now consider the following two cases:{
Case1 : |M0| � (1−κ)m;

Case2 : |M0| > (1−κ)m,

respectively. Here κ is small, positive universal constant that is to be determined later.

3.1. Case 1: |M0| � (1−κ)m

We follow the approach of [29] and use TT ∗ method to obtain (3.16) under this
Case 1. By Proposition 3 in chapter VIII in [35], we have∫

R

eiλ Φξ ,η(t)τ(t)dt = λ− 1
2 eiλ Ψ(ξ ,η)a(ξ ,η)+Rξ ,η(λ ), (3.18)

where a(ξ ,η) is a smooth compactly supported function and the remainder term Rξ ,η
satisfies

|Rξ ,η(λ )| � λ−1.

Furthermore, noticing that |a| = |Q′′(tc)|− 1
2 |τ(tc)| , by Lemma 3.1, we know that |a| �

1. From Lemma 3.1, we have λ−1 � (2C7)l2−m , which further implies∣∣∣∣∫∫
R2

f̂ (ξ )ĝ(η)ĥ(−ξ −2−M0η)Rξ ,η (λ )dξ dη
∣∣∣∣

� (2C7)l2−m‖ f‖L2(R)‖g‖L2(R)‖h‖L2(R). (3.19)
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This is the desired estimate in (3.16) for the remainder term Rξ ,η . Therefore, our main
task is to prove that∣∣∣∣∫∫

R2
f̂ (ξ )ĝ(η)eiλ Ψ(ξ ,η)a(ξ ,η)ĥ(−ξ −2−M0η)dξ dη

∣∣∣∣
� (2C7)

l
2 2−βm‖ f‖L2(R)‖g‖L2(R)‖h‖L2(R). (3.20)

By changing variable ξ → ξ − 2−M0η and applying Cauchy-Schwarz inequality
to separate the function h , our main task is to vertify the following expression∥∥∥∥∫

R

f̂ (ξ −2−M0η)ĝ(η)a(ξ −2−M0η ,η)eiλ Ψ(ξ−2−M0η,η) dη
∥∥∥∥

L2(Rξ )

� (2C7)
l
2 2−βm‖ f‖L2(R)‖g‖L2(R). (3.21)

Expanding the square of the L2(R)-norm on the left side gives∫
R

(∫
R

f̂ (ξ −2−M0η)ĝ(η)a(ξ −2−M0η ,η)eiλ Ψ(ξ−2−M0η,η) dη
)

×
(∫

R

f̂ (ξ −2−M0η ′)ĝ(η ′)a(ξ −2−M0η ′,η ′)e−iλ Ψ(ξ−2−M0η ′,η ′) dη ′
)

dξ .

By changing variables

η ′ → η −α and ξ −2−M0η → ξ , (3.22)

we transform the square of left hand of (3.21) into∫∫∫
R3

Fα(ξ )Gα(η)ϒα (ξ ,η)eiλ Ξα (ξ ,η) dη dξ dα,

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fα(ξ ) := f̂ (ξ ) f̂ (ξ +2−M0α);
Gα(η) := ĝ(η)ĝ(η −α);
ϒα (ξ ,η) := a(ξ ,η)a(ξ +2−M0α,η −α);
Ξα(ξ ,η) := Ψ(ξ ,η)−Ψ(ξ +2−M0α,η −α).

(3.23)

We split the integration into two parts by considering the value of |α| . Take α0 > 0
be a constant as the threshold of the range of α and its value will be determined later.

If |α| � α0 . Note that |a| � 1, which implies that |ϒα | � 1. Furthermore, By
Hölder’s inequality and Plancherel’s theorem, we can then write

‖Fα‖L1(R) � ‖ f‖2
L2(R) and ‖Gα‖L1(R) � ‖g‖2

L2(R),
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which, together with |ϒα | � 1, show that∣∣∣∣∫|α |�α0

∫∫
R2

Fα(ξ )Gα(η)ϒα (ξ ,η)eiλ Ξα (ξ ,η) dη dξ dα
∣∣∣∣� α0‖ f‖2

L2(R)‖g‖2
L2(R).

(3.24)

If |α| � α0 , the oscillation of the phase function Ξα can cause cancellation. We
want to obtain our estimates by Hörmander’s theorem on the oscillatory integrals with
non-degenerate phase [24]. Therefore, we need to obtain the following Lemma 3.2, let
us postpone the proof of Lemma 3.2 for the moment. Indeed, by (3.27) in Lemma 3.2
below and Hörmander’s theorem [24, Theorem 1.1], we conclude that∣∣∣∣∫|α |�α0

∫∫
R2

Fα(ξ )Gα(η)ϒα (ξ ,η)eiλ Ξα (ξ ,η) dη dξ dα
∣∣∣∣ (3.25)

�(λ α0)−1/2
∫
|α |�α0

‖Fα‖L2(R)‖Gα‖L2(R) dα

�(2C7)
l
2 2−

m
2 (α0)−1/2

∫
|α |�α0

‖Fα‖L2(R)‖Gα‖L2(R) dα,

where the last inequality follows from Lemma 3.1. Note that(∫
|α |�α0

‖Fα‖2
L2(R) dα

) 1
2

=
(∫

|α |�α0

∫
R

∣∣∣ f̂ (ξ ) f̂ (ξ +2−M0α)
∣∣∣2 dξ dα

) 1
2

� 2
M0
2 ‖ f‖2

L2(R),

and(∫
|α |�α0

‖Gα‖2
L2(R) dα

) 1
2

=
(∫

|α |�α0

∫
R

∣∣∣ĝ(η)ĝ(η −α)
∣∣∣2 dη dα

) 1
2

� ‖g‖2
L2(R).

Continuing the calculation in (3.25), by Cauchy-Schwarz inequality, we obtain∣∣∣∣∫|α |�α0

∫∫
R2

Fα(ξ )Gα(η)ϒα (ξ ,η)eiλ Ξα (ξ ,η) dη dξ dα
∣∣∣∣

� (2C7)
l
2 2

M0
2 −m

2 (α0)−1/2‖ f‖2
L2(R)‖g‖2

L2(R). (3.26)

Thus, if |M0| � (1− κ)m for some fixed small absolute constant κ > 0, then
by letting α0 := (2C7)l2−

κ
4 m , and noticing (3.24) and (3.26), we see that our desired

estimate (3.20) holds with β := κ
8 .

LEMMA 3.2. For Ξα in (3.23), we have

|∂ξ ∂ηΞα(ξ ,η)| � |α|. (3.27)

Proof of Lemma 3.2. We first calculate ∂ξ ∂η Ψ . Recall that

Ψ(ξ ,η) = tcξ + ηQ(tc),
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where

Φ′
ξ ,η (tc) = ξ + ηQ′(tc) = 0,

and Q can be found in (3.11). By a simple calculation, we have

∂η Ψ(ξ ,η) = ∂η tc ·ξ +Q(tc)+ ∂ηtc ·ηQ′(tc) = Q(tc). (3.28)

Furthermore, we also have

∂ξ tc = − 1
ηQ′′(tc)

and ∂η tc = − Q′(tc)
ηQ′′(tc)

. (3.29)

Then we obtain

∂ξ ∂η Ψ(ξ ,η) = Q′(tc) ·∂ξ tc = − Q′(tc)
ηQ′′(tc)

.

Let us set H := ∂ξ ∂ηΨ , by the mean value theorem, it is easy to see that

∂ξ ∂ηΞα(ξ ,η) = H(ξ ,η)−H(ξ +2−M0α,η −α) = (�H)(ξ̃ , η̃) · (−2−M0α,α),
(3.30)

where (ξ̃ , η̃) := (ξ + θ12−M0α,η −θ2α) with θ1,θ2 ∈ (0,1) .

We now claim that

|∂ξ H(ξ ,η)| ≈ 1 and |∂ηH(ξ ,η)| ≈ 1. (3.31)

Indeed, it implies that

∂ξ H(ξ ,η) =
1

η2Q′′(tc)

(
1− Q′′′(tc)Q′(tc)

(Q′′(tc))2

)
;

∂ηH(ξ ,η) =
Q′(tc)

η2Q′′(tc)

(
1− Q′′′(tc)Q′(tc)

(Q′′(tc))2

)
+

Q′(tc)
η2Q′′(tc)

.

By the definitions of Q in (3.11) and M0 in (3.2), we have that

1
Q′′(tc)

=
γ(γ−1(N)2−l)

(γ−1(N)2−l)2γ ′′(γ−1(N)2−ltc)
;

Q′(tc)
Q′′(tc)

=
γ ′(γ−1(N)2−ltc)

γ−1(N)2−lγ ′′(γ−1(N)2−ltc)
;

1− Q′′′(tc)Q′(tc)
(Q′′(tc))2 =

(γ ′′(γ−1(N)2−ltc))2 − γ ′′′(γ−1(N)2−ltc)γ ′(γ−1(N)2−ltc)
(γ ′′(γ−1(N)2−ltc))2 .

Furthermore, from (v) in Lemma 2.1, we also have

C9

t2
� (γ ′′(t))2 − γ ′′′(t)γ ′(t)

(γ ′(t))2 � C8

t2
, t ∈ (0,∞).
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Therefore, by (i) in Lemma 2.1, we get

1− Q′′′(tc)Q′(tc)
(Q′′(tc))2 ≈ (γ ′(γ−1(N)2−ltc))2

(γ ′′(γ−1(N)2−ltc))2(γ−1(N)2−ltc)2 ≈ 1. (3.32)

From (i) (ii) (iv) in Lemma 2.1 and tc ∈ [ 1
2 ,2] , it now follows that

1
Q′′(tc)

≈ Q′(tc)
Q′′(tc)

≈ 1. (3.33)

Since we will only use Lemma 3.2 to prove (3.25), and supp ĝ ⊂ [1,2] in it, we have
η ⊂ [1,2] . This, combining with (3.32) and (3.33), leads to (3.31).

For (3.30), by (3.31), we assert that

|∂ξ ∂ηΞα(ξ ,η)| � |1−2−M0| · |α|. (3.34)

On the other hand, from (3.6) and the definition of M0 in (3.2), we have that

(C7)−l N
γ−1(N)

� 2M0 � N
γ−1(N)

, (3.35)

which further implies that we may take 2M0 large enough for any given l ∈ N , since
N

γ−1(N) = γ(γ−1(N))
γ−1(N) , and the fact that γ(t)

t is strictly increasing on (0,∞) and we always

take N large enough in Roth’s theorem. Therefore, from (3.34), we have

|∂ξ ∂ηΞα(ξ ,η)| � |α|,
as our desired result. This completes the proof of Lemma 3.2. �

3.2. Case 2: |M0| � (1−κ)m

In this Subsection, we want to obtain the desired estimate (3.15), which leads to
(3.16), under this Case 2 by using σ -uniformity argument [29, Theorem 7.1]. This, in
combination with the estimate (3.16) under the Case 1, completes the proof of Lemma
2.5.

As we known, σ -uniformity argument [29, Theorem 7.1] is a useful tool to obtain
the L2(R) boundedness for some operators, which allows us to restrict our discussion
on a subspace of L2(R) . Indeed, this argument can be traced back to Christ et al.
[9] and Gowers [20]. Here, we quoting a lemma stated in [13, Lemma 4.4] or [23,
Lemma 3.3], which is a slight variant of this σ -uniformity argument. We first state the
definition of σ -uniformity.

DEFINITION 3.3. Let σ ∈ (0,1) , I ⊂ R be a bounded interval, and U (I ) be
a nontrival subset of L2(I ) such that supu∈U (I ) ‖u‖2 < ∞ . A function f ∈ L2(I ) is
called σ -uniform in U (I ) if∣∣∣∣∫

I
f (x)u(x)dx

∣∣∣∣� σ‖ f‖L2(I )
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for all u ∈ U (I ) .

We now state the σ -uniformity argument from [29].

LEMMA 3.4. ([29, Theorem 7.1]) Let L be be a bounded sublinear functional
from L2(I ) to C , and Sσ be the set of all functions that are σ -uniform in U (I ) .
Denote

Aσ := sup

{
|L ( f )|
‖ f‖L2(I )

: f ∈ Sσ , f �= 0

}
and

K := sup
u∈U (I )

|L (u)|.

Then for all f ∈ L2(I ) , we have

|L f | � max
{
Aσ ,2σ−1K

}‖ f‖L2(I ).

In the followling, we will apply Lemma 3.4 to

L (g) :=
∫∫

R2
f (x+ λ t)g(2−M0x+ λQ(t))h(x)τ(t)dt dx, (3.36)

and σ is a constant, whose exact value will be determined later. We also denote the
interval I means either [1,2] or [−2,−1] , and define

U (I ) :=
{

η → A(ξ ,η)eiαη+iλ Ψ(ξ ,η) : α ∈ R, 2−100 � |ξ | � 2100
}

,

where A(ξ ,η) is a compactly supported smooth function that is to be determined later.
Thus, by Lemma 3.4, we can divide the analysis into the following three parts.

3.2.1. Part 1: Estimates for Aσ

We assume that ĝ|I is σ -uniform in U (I ) . From the support of h , we know

x+ λ t ∈
[
1
2

λ ,2m+M0 +2λ
]

for t ∈ [ 1
2 ,2] , then localizing in the spatial variable x , we can rewrite L (g) as

∑
ι∈N,0�ι<2m

∫∫
R2

(1Jι f )(x+ λ t)g(2−M0x+ λQ(t))(1Iι h)(x)τ(t)dt dx, (3.37)

where

Iι := 2M0 [ι, ι +1] =: [αι ,αι+1],
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and

Jι :=
[

ι2M0 +
1
2

λ ,(ι +1)2M0 +2λ
]
.

Note that x ∈ Iι implies x+ λ t ∈ Jι . Let

fι := 1Jι f and hι := 1Iι h,

by the Fourier transform, we obtain that

∑
ι∈N,0�ι<2m

∫∫∫
R3

f̂ι (ξ )eixξ ĝ(η)ei2−M0 xη
(∫

R

eiλ Φξ ,η(t)τ(t)dt

)
hι(x)dxdξ dη , (3.38)

where Φξ ,η can be found in (3.17). Due to the fact that |2−M0xη − 2−M0αι η | � 1
for all x ∈ Iι , where αι is an arbitrary point chosen from Iι , it is natural to replace
ei2−M0xη by ei2−M0αι η , we can then write

ei2−M0 (x−αι )η =
∞

∑
s=0

is

s!
(2−M0(x−αι))sηs

by the Taylor series expression. Applying this into (3.38), then we need to calculate
every term of the Taylor series expansion, separately. Similar to [12, 23, 30], we will
here only consider the term of s = 0 for simplicity of notation, because the process is
the same for all s ∈ N . Thus, we should only to bound

∑
ι∈N,0�ι<2m

∫∫
R2

ĝ(η) f̂ι (ξ )ĥι(−ξ )ei2−M0αι η
(∫

R

eiλ Φξ ,η(t)τ(t)dt

)
dξ dη .

Applying the stationary phase method again in (3.18), and noticing λ− 1
2 � (2C7)

l
2 2−

m
2

from Lemma 3.1, forces us to control the following expression

(2C7)
l
2 2−

m
2 ∑

ι∈N,0�ι<2m

∫∫
R2

ĝ(η)A(ξ ,η)ei2−M0 αι η+iλ Ψ(ξ ,η) f̂ι (ξ )ĥι(−ξ )dη dξ ,

(3.39)

where A(ξ ,η) is a compactly supported smooth function. We should to explain that
A(ξ ,η) is equal to a(ξ ,η) in (3.18) if we restrict s = 0, but for general s ∈N , A(ξ ,η)
is equal to a(ξ ,η) multiple of some other functions; see, for example, ηs . Therefore,
we replace a(ξ ,η) by A(ξ ,η) in this time, because it will not cause any problems.
On the other hand, we also have omitted the remainder term as in (3.18), which can be
treated as (3.19).

By using the definition of σ -uniformity, which with respect to g , we have∣∣∣∣∫
R

ĝ(η)A(ξ ,η)ei2−M0 αι η+iλ Ψ(ξ ,η) dη
∣∣∣∣� σ‖g‖L2(R).
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Furthermore, by Hölder’s inequality and Plancherel’s theorem, we can bound (3.39) by

(2C7)
l
2 2−

m
2 σ ∑

ι∈N,0�ι<2m

‖ fι‖L2(R)‖hι‖L2(R)‖g‖L2(R). (3.40)

By Cauchy-Schwarz inequality, we further bound (3.40) by

(2C7)
l
2 2−

m
2 σ‖g‖L2(R)

(
∑

ι∈N,0�ι<2m

‖ fι‖2
L2(R)

) 1
2
(

∑
ι∈N,0�ι<2m

‖hι‖2
L2(R)

) 1
2

. (3.41)

We now want to bound (∑ι∈N,0�ι<2m ‖ fι‖2
L2(R))

1
2 by the spacial localization of fι on

the interval Jι . We can write(
∑

ι∈N,0�ι<2m

‖ fι‖2
L2(R)

) 1
2

=

[∫
R

(
∑

ι∈N,0�ι<2m

1Jι (x)

)
| f (x)|2 dx

] 1
2

(3.42)

�
(
max{1,2−M0λ}) 1

2 ‖ f‖L2(R),

where the number max{1,2−M0λ} comes from the extent of the overlap property of
Jι ’s. Indeed, let Ω := 3

2
λ

2M0
, then |Jι | = (1+ Ω)2M0 for all ι ∈ N and 0 � ι < 2m .

Furthermore,

� When Ω < 1, the step length 2M0 makes that Jι ’s overlap at most twice, which
implies that ∑ι∈N,0�ι<2m 1Jι � 1;

� When Ω � 1, the step length 2M0 makes that Jι ’s overlap at most 1+Ω times,
which implies that ∑ι∈N,0�ι<2m 1Jι � 1+ Ω � Ω � 2−M0λ .

Thus, (3.42), combined with the following trivial estimate(
∑

ι∈N,0�ι<2m

‖hι‖2
L2(R)

) 1
2 � ‖h‖L2(R),

implies that (3.41) can be dominated by

(2C7)
l
2 2−

m
2
(
max{1,2−M0λ}) 1

2 σ‖ f‖L2(R)‖g‖L2(R)‖h‖L2(R) (3.43)

�(2C7)
l
2 2

M0
2
(
max{1,2−M0λ}) 1

2 σ‖ f‖L2(R)‖g‖L2(R)‖h‖L∞(R),

where the last estimate from the fact that

‖h‖
L2(R)

� 2
m+M0

2 ‖h‖
L∞(R)

since h ∈ L∞([0,2m+M0 ]) .

Here, we need to a further estimate to the bound (2C7)
l
2 2

M0
2 (max{1,2−M0λ}) 1

2 σ
in (3.43) under the condition that |M0| � (1−κ)m , where κ is a fixed small positive
constant. Therefore,
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• When 2−M0λ � 1, it is easy to see that (2C7)
l
2 2

M0
2 (max{1,2−M0λ}) 1

2 σ �
(2C7)

l
2 2

M0
2 σ � (2C7)

l
2 2

M0
2 2

κm
2 σ ;

• When 2−M0λ � 1, by Lemma 3.1, we have (2C7)
l
2 2

M0
2 (max{1,2−M0λ}) 1

2 σ �
(2C7)

l
2 λ

1
2 σ � (C7)

l
2 2

m
2 σ . We write m as the sum of (1− κ)m and κm , by

|M0| � (1− κ)m , it implies (C7)
l
2 2

m
2 σ can be bounded by (C7)

l
2 2

|M0|
2 2

κm
2 σ .

Furthermore, by (3.35), we may assume that 2M0 � 1 if N large enough for

given l ∈ N . Therefore, (2C7)
l
2 2

M0
2 (max{1,2−M0λ}) 1

2 σ � (C7)
l
2 2

M0
2 2

κm
2 σ .

Putting all of things together, we further bound (3.43) by

(2C7)
l
2 2

M0
2 2

κm
2 σ‖ f‖L2(R)‖g‖L2(R)‖h‖L∞(R).

Therefore, we obtain

Aσ � (2C7)
l
2 2

M0
2 2

κm
2 σ‖ f‖L2(R)‖h‖L∞(R). (3.44)

This finishes the estimate for Aσ for ĝ|I is σ -uniform in U (I ) .

3.2.2. Part 2: Estimates for K

We now consider the case in which ĝ|I ∈ U (I ) . By changing variable

x → 2M0+mx−λ t,

we rewrite L (g) in (3.36) as

2M0+m
∫∫

R2
f (2M0+mx)g(2mx−2−M0λ t + λQ(t))h(2M0+mx−λ t)τ(t)dt dx.

Using Hölder’s inequality, it further bound by ‖ f‖L2(R)‖T (g,h)‖L2(R) , where

T (g,h)(x) := 2
M0+m

2

∫
R

g(2mx−2−M0λ t + λQ(t))h(2M0+mx−λ t)τ(t)dt.

Similar to the previous discussion, by the Fourier inversion transform for g , we rewrite
T (g,h)(x) as

2
M0+m

2

∫∫
R2

ĝ(η)eiηλ (2mλ−1x−2−M0 t+Q(t))h(2M0+mx−λ t)τ(t)dη dt. (3.45)

Using our assumption that ĝ|I ∈U (I ) , and substituting ĝ(η) by A(ξ ,η)eiαη+iλ Ψ(ξ ,η) ,
α ∈ R is arbitrary and ξ is a parameter, we obtain that

2
M0+m

2

∫∫
R2

A(ξ ,η)eiλ (ηzξ ,t+Ψ(ξ ,η))h(2M0+mx−2M0α −λ t)τ(t)dη dt,

where

zx,t := 2mλ−1x−2−M0t +Q(t). (3.46)
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Here, we have used x → x−2−mα , which would not to change ‖T (g,h)‖L2(R) .

We will apply the stationary phase method again, and here the phase function is

Φ̃x,t,ξ (η) := ηzx,t + Ψ(ξ ,η). (3.47)

As in the previous discussion, it is safe to assume that the equation

∂ηΦ̃x,t,ξ (η) = 0

has a unique solution ηc := ηc(x,t,ξ ) ∈ I , where

∂η Φ̃x,t,ξ (η) = zx,t + ∂ηΨ(ξ ,η). (3.48)

Otherwise, our estimate will be trivial by Van der Corput’s lemma as (3.19).

Recall that ∂η Ψ(ξ ,η) = Q(tc(ξ ,η)) , see (3.28). Let us set

Tc := tc(ξ ,ηc(x,t,ξ ))

and

Ψ̃ξ (x,t) := Φ̃x,t,ξ (ηc) = ηczx,t + Ψ(ξ ,ηc),

which, together with the facts that

Ψ(ξ ,ηc) = Tcξ + ηcQ(Tc) and zx,t +Q(Tc) = 0,

show that

Ψ̃ξ (x,t) = Tcξ = Q−1(−zx,t )ξ , (3.49)

where Q−1 is the inverse function of Q .

By (3.48), (3.28), (3.29) and (3.33), respectively, then the following identity is
valid. ∣∣∣∂ 2

ηΦ̃x,t,ξ (η)
∣∣∣= ∣∣∂ 2

η Ψ(ξ ,η)
∣∣= ∣∣Q′(tc)∂η tc

∣∣= ∣∣∣∣(Q′(tc))2

ηQ′′(tc)

∣∣∣∣≈ 1. (3.50)

Thus, by stationary phase method, we see that

T (g,h)(x) =λ− 1
2 2

m+M0
2

∫
R

ãξ (x,t)eiλ Ψ̃ξ (x,t)h(2M0+mx−2M0α −λ t)τ(t)dt

+2
m+M0

2

∫
R

Rξ ,x,t(λ )h(2M0+mx−2M0α −λ t)τ(t)dt,

where ãξ (x, t) is a smooth compactly supported function and the remainder term Rξ ,x,t(λ )
can be bounded by λ−1 . Furthermore, by (3.50), we also have

|ãξ | � 1. (3.51)

As above, we may ignore the remainder term Rξ ,x,t(λ ) . Therefore, with abuse of nota-
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tions, by Lemma 3.1, it suffices to consider the major term

T (g,h)(x) := (2C7)
1
2 2

M0
2

∫
R

ãξ (x,t)eiλ Ψ̃ξ (x,t)h(2M0+mx−2M0α −λ t)τ(t)dt. (3.52)

Expanding the square of the L2(R)-norm of T (g,h) and changing variables gives

(2C7)l2M0

∫∫∫
R3

eiλ(Ψ̃ξ (x,t)−Ψ̃ξ (x,t+s))ãξ (x,t)ãξ (x,t + s) (3.53)

× h(2M0+mx−2M0α −λ t)h(2M0+mx−2M0α −λ (t + s))τ(t)τ(t + s)dt dxds.

Let ⎧⎪⎪⎪⎨⎪⎪⎪⎩
χξ (x,t) := ãξ (x,t)ãξ (x,t + s);

H(x) := h(2M0+mx−2M0α)h(2M0+mx−2M0α −λ s);

Θ(t) := τ(t)τ(t + s).

(3.54)

Then (3.53) equals

(2C7)l2M0

∫∫∫
R3

eiλ(Ψ̃ξ (x,t)−Ψ̃ξ (x,t+s))χξ (x,t)H(x−2−m−M0λ t)Θ(t)dt dxds. (3.55)

Furthermore, by changing variable

x → x+2−m−M0λ t,

(3.55) becomes

(2C7)l2M0

∫∫
R2

(∫
R

eiλ(Ψ̃ξ (x+2−m−M0λ t,t)−Ψ̃ξ (x+2−m−M0λ t,t+s)) (3.56)

× χξ (x+2−m−M0λ t,t)Θ(t)dt

)
H(x)dxds.

We now further analyse the phase function

Px,s(t) := Ψ̃ξ (x+2−m−M0λ t,t)− Ψ̃ξ (x+2−m−M0λ t,t + s).

Indeed, from (3.46) and (3.49), the expression above is equal to[
Q−1 (−2mλ−1x−Q(t)

)−Q−1(−2mλ−1x+2−M0s−Q(t + s)
)]

ξ . (3.57)

Let

ϑ(x,t) := Q−1 (−2mλ−1x−Q(t)
)
. (3.58)

We can rewrite the phase function as

Px,s(t) = ϑ(x,t)−ϑ(x−2−m−M0λ s,t + s). (3.59)

Now, we turn to (3.56), i.e., ‖T (g,h)‖2
L2(R) . We first establish a trivial estimate for the
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oscillatory integral about t . It implies from the definition of Θ(t) that t ∈ [ 1
2 ,2] and

t + s ∈ [ 1
2 ,2] , which further implies |s| � 4. So (3.51) leads to∣∣∣∣∫

R

eiλ(Ψ̃ξ (x+2−m−M0λ t,t)−Ψ̃ξ (x+2−m−M0 λ t,t+s))χξ (x+2−m−M0λ t,t)Θ(t)dt

∣∣∣∣� 1. (3.60)

We now consider the following two cases:{
|x| < 21−l−M0 ;

|x| � 21−l−M0 ,

respectively. For the former case, i.e., |x| < 21−l−M0 , it is easy to see that

‖T (g,h)‖2
L2(R) � (C7)l‖h‖2

L∞(R). (3.61)

For the second case, i.e., |x| � 21−l−M0 , we need to use the following Lemma 3.5
and Lemma 3.6. By Lemma 3.5, similarly to the Corollary in p. 334 in Stein’s book
[35], we have∣∣∣∣∫

R

eiλ(Ψ̃ξ (x+2−m−M0λ t,t)−Ψ̃ξ (x+2−m−M0λ t,t+s))χξ (x+2−m−M0λ t,t)Θ(t)dt

∣∣∣∣
� 1

λ2l|x||s| +
(C7)l

λ2l|x||s|2 . (3.62)

This, in combination with (3.60), shows that∣∣∣∣∫
R

eiλ(Ψ̃ξ (x+2−m−M0λ t,t)−Ψ̃ξ (x+2−m−M0λ t,t+s))χξ (x+2−m−M0λ t,t)Θ(t)dt

∣∣∣∣
�
(

1
λ2l|x||s|

) 1
4

+
(

(C7)l

λ2l|x||s|2
) 1

4

. (3.63)

On the other hand, from the definition of χξ , it implies that

|x+2−m−M0λ t| � 1.

By Lemma 3.1 and (3.35), it implies that

|2−m−M0λ t| � (2−1C7)l γ−1(N)
N

� 1,

provided that we take N large enough for given l ∈ N . Then, we obtain |x| � 1.
Therefore, in this case, (3.56) is dominated by

(2C7)l2M0‖h‖2
L∞(R)

∫
|x|�1

∫
|s|�4

(
1

λ2l|x||s|
) 1

4

+
(

(C7)l

λ2l|x||s|2
) 1

4

dxds

� λ− 1
4 (2C7)

5
4 l2M0‖h‖2

L∞(R). (3.64)
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Putting these two cases together, by Lemma 3.1,

‖T (g,h)‖2
L2(R) � (2C7)

3
2 l2−

m
4 2M0‖h‖2

L∞(R). (3.65)

Here, by (3.35), we have assumed that 2M0 � 1.
Furthermore, we obtain that

|L (g)| � (2C7)
3
4 l2−

m
8 2

M0
2 ‖ f‖L2(R)‖h‖L∞(R), (3.66)

for ĝ|I ∈ U (I ) . Therefore, we obtain

K � (2C7)
3
4 l2−

m
8 2

M0
2 ‖ f‖L2(R)‖h‖L∞(R). (3.67)

This finishes the estimate for K for ĝ|I ∈ U (I ) .

LEMMA 3.5. [28, Lemma 2.1] Suppose φ is real-valued and smooth in (a,b) ,
and that both

|φ ′(x)| � σ1 and |φ ′′(x)| � σ2

for any x ∈ (a,b) . Then we have∣∣∣∣∫ b

a
eiφ(t) dt

∣∣∣∣� 2
σ1

+(b−a)
σ2

σ2
1

.

LEMMA 3.6. For Px,s in (3.59), if |x| � 21−l−M0 , then we have

|∂tPx,s(t)| � 2l|x||s| and |∂ 2
t Px,s(t)| � (2C7)l |x|.

Proof of Lemma 3.6. By a simple calculation to (3.58), we obtain

∂tϑ(x, t) = −(Q−1)′
(−λ−1α −2mλ−1x−Q(t)

)
Q′(t) = − Q′(t)

Q′(ϑ(x, t))
. (3.68)

Here, we used the fact that (Q−1)′(t)Q′(Q−1(t)) = 1 since Q(Q−1(t)) = t . Further-
more, we also have

∂ 2
t ϑ(x,t) = − Q′(t)2

Q′(ϑ(x,t))

(
Q′′(t)
Q′(t)2 +

Q′′(ϑ(x,t))
Q′(ϑ(x,t))2

)
. (3.69)

From previous argument, we have t ∈ [ 1
2 ,2] . On the other hand, we also have that

ϑ(x,t) ≈ Tc , which further implies that we may think ϑ(x,t) ∈ [ 1
2 ,2] . Indeed, from

(3.46) and (3.58), which implies

Q(ϑ(x,t)) = −zx,t −2−M0t.

This, combined with that facts that

Q(Tc) = −zx,t
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and (iv) in Lemma 2.1, from the definition of Q , it suffices to show

|− zx,t −2−M0t| ≈ |− zx,t |.
� Estimates of |− zx,t −2−M0t| � |− zx,t | . From the definition of Q , we have

|zx,t | ≈ 2−M0
γ(γ−1(N)2−l)

γ−1(N)2−l .

This, combined with (3.6) and (3.35), leads to

(C7)−l � |zx,t | � (C7)l .

Furthermore, from (3.35), if N large enough for given l ∈ N , we have

|2−M0 t| � γ−1(N)
N

(C7)l � (C7)−l � |zx,t |,

which further implies that |− zx,t −2−M0t| � |− zx,t | .
� Estimates of | − zx,t − 2−M0t| � | − zx,t | . It is enough to show that there exists

υ ∈ (0,1) such that

υ |− zx,t | � |2−M0t|,
which equals to

υ
γ(γ−1(N)2−l)

γ−1(N)2−l � 1,

the later can be obtained if N large enough for given l ∈ N .

We extend γ to an odd function defined on R , from t ∈ [ 1
2 ,2] and ϑ(x,t) ∈ [ 1

2 ,2] ,
by Lemma 3.1 and (3.58), we have

|∂ 2
t ϑ(x,t)| ≈

∣∣∣∣ Q′′(t)
Q′(t)2 −

Q′′(Q−1(Q(t)+2mλ−1x))
Q′(Q−1(Q(t)+2mλ−1x))2

∣∣∣∣ . (3.70)

By the mean value theorem∣∣∣∣ Q′′(t)
Q′(t)2 −

Q′′(Q−1(Q(t)+2mλ−1x))
Q′(Q−1(Q(t)+2mλ−1x))2

∣∣∣∣
=

∣∣∣∣∣
(

Q′′(Q−1(·))
Q′(Q−1(·))2

)′
(Q(t)+ θ̃2mλ−1x)

∣∣∣∣∣ |2mλ−1x|,

where θ̃ ∈ (0,1) . Furthermore,(
Q′′(Q−1(·))
Q′(Q−1(·))2

)′
(t)

=
1

Q′(Q−1(t))2

(
Q′′′(Q−1(t))Q′(Q−1(t))−Q′′(Q−1(t))2

Q′(Q−1(t))2 − Q′′(Q−1(t))2

Q′(Q−1(t))2

)
,
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Noticing that |Q−1(Q(t)+ θ̃2mλ−1x)| ∈ [ 1
2 ,2] , from the definition of Q , by (i) (v) in

Lemma 2.1 and Lemma 3.1, we have∣∣∣∣∣
(

Q′′(Q−1(·))
Q′(Q−1(·))2

)′
(Q(t)+ θ̃2mλ−1x)

∣∣∣∣∣≈ 1.

Therefore, we obtain

|∂ 2
t ϑ(x,t)| ≈ 2mλ−1|x|. (3.71)

Simple calculation also leads to

∂x∂tϑ(x,t) = −2mλ−1 Q′′(ϑ(x,t))
Q′(ϑ(x,t))3 Q′(t).

Furthermore, from t ∈ [ 1
2 ,2] and ϑ(x,t) ∈ [ 1

2 ,2] , by Lemma 3.1

|∂x∂tϑ(x,t)| ≈ 2mλ−1. (3.72)

Using the mean value theorem again, then we have

∂tPx,s(t) =∂t(ϑ(x, t)−ϑ(x−2−m−M0λ s,t)+ ϑ(x+2−m−M0λ s,t)

−ϑ(x−2−m−M0λ s,t + s))

=∂t∂xϑ(x− θ̃12
−m−M0λ s,t)2−m−M0λ s− ∂ 2

t ϑ(x−2−m−M0λ s, t + θ̃2s))s,

where θ̃1, θ̃2 ∈ (0,1) . From (3.71) and (3.72), which further implies that

|∂tPx,s(t)| � 2mλ−1|x||s|−2−M0 |s| � 2l|x||s| (3.73)

as desired. Here, we have used Lemma 3.1 and the condition that |x| � 21−l−M0 .
From Lemma 3.1 and (3.71), which trivially leads to

|∂tPx,s(t)| � (2C7)l|x|. (3.74)

This completes the proof of Lemma 3.6. �

3.2.3. Part 3: Completes the estimate (3.15)

Combining estimates (3.44) and (3.67), we obtain from Lemma 3.4 that

|L (g)| � (2C7)l2
M0
2 max{σ2

κm
2 ,σ−12−

m
8 }‖ f‖L2(R)‖g‖L2(R)‖h‖L∞(R). (3.75)

Choosing κ small enough, and letting σ := 2−κm , we can bound this by

(2C7)l2
M0
2 − κ

2 m‖ f‖L2(R)‖g‖L2(R)‖h‖L∞(R).

This completes the proof of (3.15) with β := κ
2 .

Acknowledgements. X. Li and H. Yu thank Prof. Junfeng Li for the many helpful



1152 X. LI, D. YAN, H. YU AND X. ZHANG

discussions.

RE F ER EN C ES

[1] V. BERGELSON AND A. LEIBMAN, Polynomial extensions of van der Waerden’s and Szemerédi’s
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[14] P. ERDŐS AND P. TURAŃ, On Some Sequences of Integers, J. London Math. Soc. 11 (1936), no. 4,

261–264.
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