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Abstract. In this paper, we implement the improvement of numerical radius inequalities that
were produced by Alomari MW. [Refinements of some numerical radius inequalities for Hilbert
space operators. Linear and Multilinear Algebra. 2019 Jun 4:1-6] and devise a new upper bound
for 2 x 2 operator matrices on complex Hilbert space with many examples which show that
our bound is sharper than the existing bounds proved by Bani-Domi W, Kittaneh F. [Norm and
numerical radius inequalities for Hilbert space operators. Linear and Multilinear Algebra. 2020
Jul 28:1-2], Al-Dolat M, Jaradat I, Al-Husban B. A novel numerical radius upper bounds for 2 x
2 operator matrices. Linear and Multilinear Algebra. 2020 Apr 23:1-2], Shebrawi K. [Numerical
radius inequalities for certain 2 x 2 operator matrices II. Linear Algebra and its Applications.
2017 Jun 15; 523:1-2] and Hirzallah O, Kittaneh F, Shebrawi K. [Numerical radius inequalities
for 2 x 2 operator matrices. Studia Mathematica. 2012; 210:99-115].

1. Introduction

Let (H,(.,.)) be a complex Hilbert space and let B(H) be the Banach algebra of
all bounded linear operators from H to H with identity /. For T € B(H), let

w(T) = sup |(Tx,x)|,
[Ix||=1
r(T)=sup{|A|: A € o(T)},
IT|| = sup (Tx,Tx)?,

[Ix||=1

denote the numerical radius, the spectral radius and the usual operator norm respec-
tively.

It is known that the numerical radius and the usual operator norm are equivalent
norms on B(H) such that

1
ST < w(T) <17l (11)
forall T € B(H).
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In [2], Kittaneh provided a refinement to the upper bound of the inequality (1.1)
by showing that

(Tl +1172172), (1.2)

N =

1
w(T) < S 1T+ 1T <

forall T € B(H).
Another improvement for the inequality (1.1) was given by the same author as
follows:

1 1
1T T+TT <wA(T) < ST T+ 1T, (1.3)

forevery T € B(H).

Precisely, the Numerical radius is not submultiplicative that is w(AB) < w(A)w(B)
for all A,B € B(H) is not true in general, so many authors are interested to estimate
lower and upper bounds for w(AB) where A,B € B(H). For example it is known that

w(AB) < 4w(A)w(B);

and if A, B commute, then

also, if A, B are normal, then
w(AB) < w(A)w(B).

Recently, in [3] the author gave a new upper bound for the numerical radius of product
of operators, he proved that for A,B € B(H) such that |A|B = B*|A| and for nonnegative
continuous functions f and g on [0,c0) satisfying f(¢)g(¢t) =1, (r > 0),

1
w(AB) < < r(B) || £2(|A]) + &> (|A*)) ||, (1.4)

where |A| = (A*A)% denotes the absolute value of A.
Also, he proved if p > 1,00 > 8 > 1, with é—k% =1 and Bp > 2, then
W (4a8) < ()| e + e | (15

and if |A?|B? = (B?)*|A?|, then

1
2r(as) < 5 (1B ()

IR+ )

). (1.6)

On the other hand, many authors are interested to estimate the numerical radius
for the operator of matrices. In 2020, Al-Dolat, Jaradat and Al-Husban in [16] showed
thatif A,B,C,D € B(H), then

o([20]) =5 (#2000 yrwa@) +IBIE + =P IR,
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forall 7 € [0,1].
In 2020, Bani-Domi and Kittaneh proved in [15] if A,B,C,D € B(H), then

(83]) <o 2([22)

0 BD 1
+W<[CA 0 })—Fimax{/hu},

where A = [||A]>+ |B*|?|| and p = ||[D* +|C**||.
Let a,b > 0. Then we have
e The Power-Mean inequality:

a®p' % < aa+ (1 - a)b < (awa? + (1 — @)b?)7, (1.7)

forall ¢ €[0,1] and p > 1.
o Kittaneh and Manasrah [1] gave a refinement for (1.7) as follows:

ab'% < oa+ (1 - o) —ro(va—Vb)’, (18)

forall o € [0,1] where rp = min{o, 1 — oc}.
e The authors in [4] presented a generalization for (1.8) as follows:

(@b < (aa+ (1 — a)b)k — rk(a? —b?)?, (1.9)

forall k € N and o € [0,1] where ry = min{c,1 — a}.
e Recently, Choi [5] improved the Power-Mean inequality as follows:

p\* :
(@*b' =) < (aa+ (1 —a)b)* — (2r0)* ((“; ) — (abﬁ) : (1.10)
forall k € N and o € [0,1] where ry = min{c,1 — at}.
e The Power-Young inequality:
1/p
a B po B
ab<“—+b—<<“—+b—> , (L11)
o P o P

for all o, B > 1 with gﬂ%: land p>1.

In this paper, we present some generalizations and refinements for the numeri-
cal radius inequalities. Further, new upper bounds for the numerical radius of 2 x 2
operator matrices are given.

2. The main results

The aim of this section is to establish a generalizations and refinements for the
numerical radius inequalities. To do this, we need the following sequence of lemmas.
The first lemma is a result of the spectral Theorem together with Jensen’s inequality
(see[7]).
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LEMMA 2.1. Let T € B(H) be a positive operator and let x € H be any vector.
Then

a. (Tx,x)* < ||x||>~2(T*x,x) for s > 1;
b. (TSx,x) < ||x|[>2(Tx,x)* for 0 < s < 1.

The second lemma give an upper bound for the spectral radius which was obtained
by Kittaneh [6].

LEMMA 2.2. Let A,B € B(H). Then

1 5 )
r(AB) < 7 (IAB|+ ||BAJ| + \/(HABH —[|BA|)” +4min{[|A]|||[BAB]|, ||B|||ABA|}).-

In particular,

r(A) < = (|IA]]+]14%]2).

N —

The next lemma is a consequence of the spectral Theorem [7].

LEMMA 2.3. Let A,B € B(H) such that |A|B = B*|A|. If f,g are nonnegative
continuous functions on [0,0) satisfying f(t)g(t) =t, where t > 0, then

[{ABx,y)| < r(B) £ (|AD[l g (1A D ¥l

for every vectors x,y € H.

Our first main result is the following improvement of (1.4).

THEOREM 2.4. Let A;,B; € B(H) (i=1,2,...,n) such that |A;|B; = Bf|A;| and
let f and g be nonnegative continuous functions on [0,) such that f(t)g(t) =t for
all t € [0,0). Then for every k€ N and p,q > k,

k/q

3 (k) + 27k 47)

i=1
- inf 9(x) 2.1

n nP—kla
P B A P(B.
: (2&8’) S 2 (12?5 (B’)>‘

i=1

1<i<n i=1

where o) = % max 2(8) ) £ (P74 1™ = @0 g ) )
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Proof. Let x € H be any unit vector. Then

‘<iA,-B,-x,x>
t=ln )
< (21 | (AiBix, x) |>

n
<Pt Z | (AiBix,x) |P
i—1

p

(by convexity of ¢”)
<nP7UY (r(Ba) (Al g (17 Dl
(by Lemma 2.3)

(2 0ae (2 105.0)")

() (rta; '>x”‘>1/2)k

(by Lemma 2.1)

[(<<f2p/k<|Ai>x7x>‘f+<gzp/k<|A;‘>x7x>‘f>> v

N
S
i
N C—\
8 nB
iE B
"v "v
= o
~— S~—
N—— ~—
M= T

I
—_

-

Il
-

<Pt (max rp(B,-))

1<i<n

2

_ % <<f217/k(|Ai|)x7x>k/2 B <g2p/k(|A;k|)x,x>k/2> 2]

(by inequalities (1.9) and (1.7))

n ) ¥ k/q
T ))> [<<<f2w/"<|Az>x,x>+<g2M/k<|Ai |>x,x>>>

1<i<n - 2
i=1

_ % <<f2p/k(|Ai|)X,x>k/2 B <g2p/k(|A;k|)x,x>k/2> 2]

(by Lemma 2.1)

k/q
nP—k/a n
< P(B. 2pa/k(|A. 2pq/k(|p*
<57 (m <Bl>)<<g<f (1AiDx.x) + (g <|A,>x,x>>x,x>
nP=1 <
o (m )Z

—1 <<f2p/k |Ai])x x> b <82p/k(|A§‘|)x,x>k/2)2

k
(by concavity of 7).
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Thus,

wP (iAiBt) zsup{ <iAiBix,x>
i=1 i=1

nP—k/q ,
S S (;gag r (Bi)>

— inf o(x).

[Ixl[=1

p

:xEH,|x||:1}

k/q

3 (2P () + g2 (AT]))
i=1

Choosing n =1 in Theorem 2.4 then using Lemma 2.2 we obtain the following
corollary.

COROLLARY 2.5. Let A,B € B(H) such that |A|B = B*|A| and let f and g be
nonnegative continuous functions on [0,00) satisfying f(t)g(t) =t for t > 0. Then for
ke N and p,q >k,

2pq/k 2pq/k B
w8 < S [t al) + 274 it o
; 2111/2 2pq/k 2pa/k(| % B
< g UBIIH BP0 + g (an) | = inf 000,

p

where ¢(x) = r’ <<f2p/’<(|A|)x x>k/2 (g 2p/k(|A*))x x>k/2>

The next result follows from Corollary 2.5 by setting p =g =k =1 and f(r) =%,
g(t) =t1"% for e € [0,1].

COROLLARY 2.6. Let A,B € B(H) such that |A|B = B*|A|. Then for o € [0,1],

— inf ¢(x)

w(aB) < "2 ape a0 |

— inf §(x),

1
< GBI+ [lape+asPO= — int

1/2\ 2
where ¢(x) = (T <<A|2°‘x x>1/2 - <\A*\2(1’°‘)x,x> ) .
The next result is a simple form follows from Corollary 2.6 by letting o« = 1/2.
COROLLARY 2.7. Let A,B € B(H) such that |A|B = B*|A|. Then

wiaB) < a1+ a7 - int o)

< Z(IBII+1IB2) [[A] + A% - nf, ¢(x),

4;|~

where ¢(x) =

D (e — a2
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The next lemma is a result of Shebrawi [8] that will be used in the proof of Corol-
lary 2.9.

LEMMA 2.8. Let A,B € B(H) andlet t € [0,1]. Then
14+ B|| < max([|A[],[|B]) + (H\A\ (B ||+ [llAT BT ) -

Using Corollary 2.7, Lemma 2.8 with 7 = 1 and the fact || |A|'/?|B|'/2|| < [|AB*||"/?
we obtain the following corollary.

COROLLARY 2.9. Let A,B € B(H) such that |A|B = B*|A|. Then

l 2111/2 21172\ _
waB) < 3 (1811187172 (Jlall + 14%)12) = inf ()

2
where ¢(x) = "2 ((Ax,x)' 2 = (Ja*x0)'2)

The following theorem gives a generalization for (1.5) which can be stated as
follows.

THEOREM 2.10. Let A;,B; € B(H) (i=1,2,...,n) such that |Aj|B; = B}|A;| and
let f, g be nonnegative continuous functions on [0, ) satisfying f(t)g(t) =t, (t >0).

Then for o > B > 1 with é—i—%:l, s>1 andp}max{l,%},
1 1
1 *
o (B <o ()| 8 (man « i)

nP=1/s 11 2
s el . 1P
< fmax{ 4 | (s il 152007

., 1/s
<2 (mea +ai)

1/s

n

Proof. Let x € H be any unit vector. Then, we have
n
ZAiBix,x
i=1
l/s
< -1 Pin. ( ps/2 p&/2)
<t 80 3 (20 Dw)™ 2087 D)

n ) ] 1/s
<ot (e 280 )3 (0D 5 (07 D)™

(by inequality 1.11)

p
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<o ()3 (G i« (i)

1<isn

(by Lemma 2.1)

- (1‘2?31 rp(Bf))ig < (éf’”m(A,-l) T %gpfﬁ(Aﬂ)) x,x>l/s
<o) < (z /" + %g”“‘ﬁmw) >/

(by concavity of 1'/%).

Now, the first bound of Theorem 2.10 is obtained by taking the supremum over all
unit vectors x € H. We obtain the second bound by applying Lemma 2.2 on the first
inequality. [J

As a direct consequence of Theorem 2.10 we get the following result which can
be considered as a generalization for the first bound of the inequality (1.2)
COROLLARY 2.11. Let A € B(H). Then forall p,s > 1,

ps *|ps 1/s

Setting p = s =1 in Corollary 2.11 we get the first bound in the inequality (1.2).
On the other hand the next result is obtained by letting n = 1 in Theorem 2.10.

COROLLARY 2.12. Let A,B € B(H) such that |A|B = B*|A|. If f,g are nonneg-
ative continuous functions on [0,0) satisfying f(t)g(t) =t (t > 0). Then

w(8) < ) [ A+ P a))|

where o > B > 1 with L +I3_1S l and p > max{Lﬁ}

A general refinement for the second bound of (1.3) will be given in the following
theorem.

THEOREM 2.13. Let A;,B; € B(H) (i=1,2,...,n) such that |A;|B; = B}|A;| and
let f, g be nonnegative continuous functions on [0, ) satisfying f(t)g(t) =t, (t =0).
Then for a € [0,1], =1, k€N and p >k,

wp<ZAB> <n” 1<max (B )_i(”afzm/ak JAI) + (1 — )¢/ 1= @¥(|az))

-1 1<i<n

k
q
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where
¢ (x) = (2min{ct, 1 — o} )k

<<f217/ak(|A |)+§2p/1 o) (|A*)x’x>k

= (P (270 ) ).

Proof. Let x € H be a unit vector. Then, we have

‘<iA,-B,-x,x>
i=1

<! (max rp(B,-))

1<i<n

p

(PUADx ) (A7 )

-

Il
-

M=

<Pt (max rp(B,-))

1<i<n

—

(by Lemma 2.1)

- 12
<<f2p/06k(|Ai)x,x> < 2p/(1—a) (|A D, x>1a)k]

(by Lemma 2.1)

(o 27/ aex) "+ (1 - (270447 e.x)')
Jak(|4; J(1=0k(| 4% ‘
<f2” ‘(i + g2/ '<<|A,-|>x,x>

-

Il
—_

<! (max rp(B,-))
1<i<n

-

Il
-

<Pt (max rp(B,-))
1<i<n

— (2min{o, 1 —a})*

2

/

= ({7 A xx)
<nP! (gﬁg{n rp(Bi))

— (2min{o, 1 —a})*

S

1/2
gzl’/(l—o‘)kqu’f|)x,x>)k/2>} (by (1.10) and (1.7))
[((arres(ai + (1 - g4 ) o)™

k
<fzp/a'<<|Ai|> + g2/ (Az) >
2 b

Ip=

i

K2\ 11/2
- <<f2p/°‘k(|Ai\)x7x> < 2p/(1=ak(| A% |)x, x>) )} (by Lemma 2.1).
The desired bound is obtained By taking the supremum over all unit vectors x€e H. [

Choosing o = %, n=p=q=k=1, B=1 and f(t) = g(t) =1'/? in Theorem
2.13 we get the following corollary.

_ 1/2
po/k . p(1—a)/k\ ¥
(<f2/°‘<|Ai|>x,x> (/0|7 )x,x) ) ]

k/q
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COROLLARY 2.14. Let A € B(H). Then

W) < AP+ AP - inf 90,

where

2 *|2
o(x) = <#x,x> — ((JA]Px,x) <\A*|2x,x>)l/2.

The next lemma is a result of Dragomir [9] that will be used in the proof of Theo-
rem 2.16.

LEMMA 2.15. Let x,y,e € H such that ||x|| = 1. Then
1
< 5 () + [y -

(re) e < 5

Let A,B € B(H) and let u € H be unit vector. Then for ¢ = u, x = ABu and
y=B*A*u in Lemma 2.15 we have

1
[ABuw] < 3 (| (4B )|+ 1aBul 184wl ) (22)
The next result provides a generalization for the inequality (1.6).

THEOREM 2.16. Let A;,B; € B(H) (i = 1,2,...,n) such that A;B; = B;A; and
|A2|B? = (B?)*|A?| and let f, g be nonnegative continuous functions on [0,%) sat-
isfying f(t)g(t) =t, (t > 0). Then for a > B > 1 with é—f— % =1,s>1and p>

max{1, 31,

n p2r—1 n 2p—1/s
w2 <2A,-B,-> Z |A;Bi||*” + ((maxr”(B%))
i=1

1<isn
l/s

>

i=1
e (118711 +11B71'2)
n 1 1

< > (EHAiBiH+ T 1s

i=1

X

(e + gt

1/s

).

n

2( P+ (4] >)

Proof. For any unit vector x € H we have

‘<2A,~B,~x,x> < 2 (AiBix,x)| 2p (by convexityoft21’)
i=1 i=1
* Ak P
o (s >|+\|ABx\|\|BA [
<Pty (by (2.2))

i=1
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p
(@B xx)|+ llaibax|| 1B 4717

n
2p—1
<Pty

i=1

n2p71
2

n

(ZIABI2”+

i=1

N

2p—1 n

n

2 HAiBinp-F
=1

N

2

max r’(B

<

(i

(max r”(B?))

1<i<n

n—1+1/s

)z

h)Eu

(by Lemma 2.3))

(52

(£214%)

1165
(by (1.7))

) (g2(1(42) ex)” 2)

1/s
_fﬂsa(|A?|)+ég’”ﬁ(|(Aiz)*|)> x’x>

The last inequality above is obtained by follows the same steps of Theorem 2.10. The
proof is finish by taking the supremum over all unit vectors x € H. [

The next result follows from Theorem 2.16 by letting n =1 and B = 1.

COROLLARY 2.17. Let A € B(H), and let f, g be nonnegative continuous func-
tions on [0,e0) satisfying f(t)g(t) =1, (t >0). Then for a > > 1 with L+ %3 =1

and p > max{%,l},

W) < 5 <|A|2P+ | a2+ ey

l/s)

The final result in this section is the following refinement of [[10], Theorem 3.3].

THEOREM 2.18. Let A;,B;,X; € B(H), (i=1,2,.

foreachi=1,2,...

n
wP (2 AYXB!™®
i=1

where
A = pP—a/k i ( qu/ a)qu/k)
and
@ =nb-/k i < qu/k oc)BfQ/k)
i=1
where

..,n) such that A;,B; positive

,n. Then for a € [0,1], k€N, q=k and p > 2k,

< 12\ mi
) < ((max ) min(2.1)

k/q
— inf ¢(x),
HXH=1¢( )

k/q
— inf @(x),
HXH=1¢( )

o (x) = (2ro) nl’ i <Mx7x>k—(<f\f/kx,x><3p/kx x>)k/2 |



1166 M. AL-DOLAT, A. DAGHER AND M. ALQURAN

and

where ry = min{a, 1 — o }.

Proof. Let x € H be any unit vector. Then by the Cauchy-Schwartz inequality,
Lemma 2.3, Lemma 2.1 and the inequality (1.10) we have

'<2A?Xi3i1_ax7x>
i=1

n
<3 (AT )
i=1

=n 'Y [(X:B!%x,A%) "
i=1
<nP7H Y (11Xl |7118; P ||ATx]|P)

i=1

-1 S 20, \PI2k) 2010 AP
<n? (111<1ax [1X; |1’> D <<Ai X,x) <Bl- x7x>

i=1

<nP~ 1(5221\)( bé |17> i <<Af/kx,x>a<3f/kx,x>(la)>k

p

" k/q
p p—q/k pafk o pq/k
< <lrgax [1Xi | ) n <<l§1 (aAl + (1 —o)B; )) x,x>

n

—(2rp)nP 12 <Mx7x>k ) <<A§’/kx,x> <B§7/kx’x>>k/2

The last inequality above is obtained by follows the same technique of Theorem 2.4 to-
gether with the inequalities (1.10) and (1.7). Taking the supremum over all unit vectors
x € H, we get the first bound. Finally, by using (1.9), (1.7) and the same method that
gave the first bound we get the second bound. [

COROLLARY 2.19. Let A,B,X € B(H) such that A and B are positive. Then for
€[0,1], ke N and p > 2k,

WP (ACXB'~) < [|X |7 min{A, u},
where

A= aA”+(1— )B”Il—l‘l‘rllfl¢( x)
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and
1= ||aA? + (1 - a)B"|| - Hiﬁfl“’(x)’
where
AP/k . pp/k /2
_ k _ p/k p/k
¢ (x) = (2r9) << 2 X, X <<A x7x> <B x7x>> ,
and

o(x) = rok <<Ap/kx7x>k/2 B <Bp/kx,x>k/2)2’

where ro = min{a, 1 — ot }.

3. New upper bounds for 2 x 2 operator matrices
In this section we will give new upper bounds for 2 x 2 operator matrices. To do
this we need some facts about the spectral radius and the numerical radius. The first
fact gives some basic properties for the spectral radius.
LEMMA 3.1. Let A,B,C,D € B(H). The following statements hold
a. If AB=BA, then r(A+B) < r(A) +r(B) and r(AB) < r(A)r(B).
b. r(A") =r"(A) forall n € N.
AB [|A]l IBIID
c.r <r .
(lea))=-([iei i
dr 0B1)_ \/r(BC).
co
e. If A is normal, then r(A) = w(A) = ||A]].

The second fact gives a useful form for the numerical radius (see [11]).
LEMMA 3.2. Let T € B(H). Then w(T) = Iglaﬁg\|Re(ei9T)|\.

S
Also, we need the following fact see [12] and [13] respectively.

LEMMA 3.3. Let A,B,C,D € B(H). Then

() (22}
b wqg ‘g]) = Jmax B+ 0C"|.

Our first estimate can be stated as follows
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THEOREM 3.4. Let A,B,C,D € B(H). Then

o((28]) <bo o)

)+ Luo) @) i),

0B
whereE—[CO].

Proof. Let T = [é g} andlet X = ¢%A + e A% Z =D+ ¢ D" and Y =

¢®B+ e~ 9C* where 6 € R. Then

(2w(T))? = max 2Re(ef"T)H2

6eR
" 0 el2
=max |[’T +e "T*
6eR
= max || (T +¢70T%) H
PISIN

— max ||TT* + T*T + 2Re(¢0T?) H
6cR

X +ZY* 72+ Y

<an (| ]|l Z 1)

- max (r([;( ED +r<[z(;* Z])) (by Lemma 3.1(¢))

(1] oty ) s

"0 ]) (L 2 ])) o Lommas.i
iR 4 (120 + v |
- (w<A>+\/m)2+zw2<D>+zw<D> W2 (D) + 4n2(E).

6eR

[XQ—FYY* XY+YZ]H
= max

Hence



A CHAIN OF NUMERICAL RADIUS INEQUALITIES IN COMPLEX HILBERT SPACE 1169

REMARK 3.5. 1. The inequality in Theorem 3.4 is sharper than the upper bound
provided in [[14], Theorem 2.6], to see this take B = C = D = 0 which implies that
the inequality in our theorem becomes equality while in [[14], Theorem 2.6] we obtain
w(A) < [|A]].

2. In[[15], Theorem 2.2] if we choose A=D =0 and B=C =1, we obtain w2 ( {é ZB)] )

< 1.5 whereas in Theorem 3.4 we have w? ( [é g} ) <1.

3. In[[16], Theorem 2.8] take A=B=C =D =1 with t =1 to obtain w Iég] <

4*‘[ ~ 2.7, while in Theorem 3.4 we get w < [2 g}) <V24++522.06.

4. In [[8], Corollary 3.4] if we choose A =D = (2) 8 and B = C =0, we obtain

A B . A B
2 )
w ([CD}) < 16 while in Theorem 3.4 we obtain w ([CD]) < 8.

The second estimate which concerns with certain 2 x 2 operator matrix will be
given in the following theorem

THEOREM 3.6. Let X,Y € B(H) and suppose f,g are nonnegative continuous
Sunctions on [0,0) satisfying f(t)g(t) =t (t >0). Then

w([gﬂ) 5 (14 V/TXTID ) max 120X 1)+ 2207 DI 2D+ (XD

Also,
wx¥1) < 5 (1 V/AORTITD) ) maxtL2(X1) + (DI 127 1)+ 20X DI -
w(Y|X]) < %<1+ r(IXHYl)>maX{Hfz(\X\)+g2(IY*\)H,Hf2(IY\)+g2(\X*\)H}-

Proof. Let A= L(Z )(ﬂ and B= LI,| pl(q . Then it is easy to see that |A|B = B*|A]|

and so by Lemma 2.3 we have

|(ABx,x)| < r(B)[|f(|A])x]||[g(JA*|)x[| (Wherex € H® H)
(B)(72(1A]xx) (A% )2
r(B) (£ (|A]) +£°(1A%]))x,x) .

<

~

<

| —
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Thus,

= gmax {|2(X])+ (7))

= 5 max {[|2(X)+ £ (")

([ 4)

=w(AB) =sup{|(ABx,x)| :xe H® H, ||x|| =1}

le (|A]) +g>(1A*])]| r <[|§| |)§|D

_'Hfz Y])+g*(1X*) , 0 }
2 0 FA1xD+g(r*))

([HI’I |X|D
2D +g20x | r ([10]+[|2I pé'])

;maX{Hﬁ(IXI )+ DL II2AY D+ (XD}

() +([n5])) erremmsio

2D+ (XDl

x (1 n \/r(|X||Y|)> (by Lemma 3.1(d)).

Using the above inequality and Lemma 3.3(a) we get our bounds. [J

[1

—

[2

—

[3]

[4

=

[5]
[6]

[7

—

[8

—_

By Theorem 3.6 and Lemma 2.8 we get the following result.
COROLLARY 3.7. Let X € B(H). Then

w(X[X]) < 5 (L [X[ [[1X]+ X7

NI'—‘NI>—‘

< S+ IXIDAXI X312,
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