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A NOTE ON KANTOROVICH TYPE BERNSTEIN CHLODOVSKY

OPERATORS WHICH PRESERVE EXPONENTIAL FUNCTION

ALI ARAL, DIDEM AYDIN ARI AND BAŞAR YILMAZ

(Communicated by M. Mursaleen)

Abstract. This paper is mainly focused on the integral extension of Bernstein-Chlodovsky oper-
ators which preserve exponential function. Inspire of the Bernstein-Chlodovsky operators which
preserve exponential function, we define the integral extension of these operators by using a
different technique. We give weighted approximation properties including a weighted uniform
convergence and a weighted quantitative theorem in terms of exponential weighted modulus of
continuity. Furthermore, we give the Voronovskaya type theorem.

1. Introduction

In approximation theory, studies on linear positive operators have continued to be
important for many years. The positive approximation processes discovered by Ko-
rovkin play an important role and arise in a natural way in many problems related to
many areas of mathematics like harmonic analysis, measure theory, partial differential
equations etc.

In 1932, n -th Bernstein-Chlodovsky operator was defined by Chlodovsky [1] as

Cn ( f ;x) =
n

∑
k=0

(
n
k

)(
x
bn

)k(
1− x

bn

)n−k

f

(
k
n
bn

)
(n ∈ N) . (1.1)

for x ∈ [0,bn] where bn , n ∈ N , is a strictly positive sequence increasing to +∞ , also
lim
n→∞

bn
n = 0. In this setting, f is therefore defined on the infinite interval [0,∞) such

that the series in (1.1) is convergent.
The convergency of the sequence of Bernstein-Chlodovsky operators for bounded

and continuous functions on the infinite interval can be seen in [1].
Many researchers have studied intensively Kantorovich type generalization of Szàsz,

Baskakov and Bernstein operators (see e.g. [15, 16, 17, 18, 19]). The Kantorovich ver-
sion of Bernstein operators defined by replacing the sample values f

(
k
n

)
with the mean

values of f in the interval
[

k
n , k+1

n

]
, namely

Kn( f )(x) = (n+1)
n

∑
k=0

(
n
k

)
Pn,k(x)

k+1
n+1∫
k

n+1

f (t)dt, x ∈ [0,1], n ∈ N , (1.2)
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where f : [0,1] → R is a locally integrable function (see [2]). We note that Kn re-
produce only 1.These operators allow us to switch a Lebesgue integrable function by
means of its mean values on the sets

[
k
n , k+1

n

]
. A connection between Bn and Kn oper-

ator is in the following form

Kn = D◦Bn+1 ◦ I,

where D is the differential operator where D( f ) = f ′ , f ∈ C1 [0,∞) and I is the an-

tiderivative operator I( f ;x) =
x∫

0

f (t)dt , f ∈C [0,∞) and x ∈ [0,∞) .

Recently many researchers have been studied some operators which preserve ex-
ponentials (see [8], [9], [10], [11], [12], [13], [14], ...). Aral et al. studied Bernstein
Chlodovsky type operators preserving exponential functions. They gave the rate of
convergence and quantitative results for this operator.

To have a better approximation, we define G̃μ
n operator and give some approxi-

mation results. This paper is organized as follows. In section 2, we construct the G̃μ
n

operator. In section 3, we evaluate some moments of G̃μ
n . In section 4, we give some

approximation properties of these operators in the polynomial weighted space and in
Section 5, we give a quantitative Voronovskaya- type asymptotic formula.

2. Construction of the operator

Inspire of the Bernstein-Chlodowsky operators which preserve exponential func-
tion, we define integral extension of these operators by using different technique.

The generalization of the Bernstein-Chlodovsky operators of the form in [12]

Un f (x) =
n

∑
k=0

αn,k(x) f

(
kbn

n

)
Pn,k(an(x)), x ∈ [0,bn]

where an(x) = bn
e

μx
n −1

e
μbn
n −1

and αn,k(x) = eμxe−
μk
bn . Inspire of this operator, we construct

Kantorovich type operator as similar as given in [6]. The connection of this operator
with classical Bernstein-Chlodovsky operator can be written as

Un( f ;x) = expμ(x)Cn

(
f

expμ
;an(x)

)
.

for a fixed real parameter μ > 0 and the exponential function expμ(x)= eμx . For giving
the generalization of our operator Un , we will use similar tecnique in [6] satisfies the
followings:

Dμ : C1 [0,∞) →C [0,∞) and defined by

Dμ( f ,x) = f
′
(x)− μ f (x), f

′ ∈C [0,∞) . (2.1)
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Also

Iμ : C [0,∞) →C1 [0,∞) and defined by

Iμ( f ,x) = eμx

x∫
0

e−μt f (t)dt, f ∈C [0,∞) . (2.2)

We note that (Dμ ◦ Iμ)( f ) = f , for f ∈C [0,∞) and (Iμ ◦Dμ)( f ) = f , for f ∈C1 [0,∞)
and f (0) = 0.

Now we give the Kantorovich generalization of the operator, we define G̃μ
n as

G̃μ
n = Dμ ◦Un+1 ◦ Iμ ,

where Dμ and Iμ is respectively given by (2.1) and (2.2).

DEFINITION 1. Let μ > 0. The operator G̃μ
n : C [0,bn) →C [0,∞) defined by

G̃μ
n ( f ;x) = a′n+1(x)

n+1
bn+1

eμx
n

∑
k=0

Pn,k(an+1(x))

(k+1)bn+1
n+1∫

kbn+1
n+1

e−μt f (t)dt, x ∈ [0,bn] (2.3)

where an(x) = bn
e

μx
n −1

e
μbn
n −1

. Also we consider Fμ(x) as

Fμ(x) =
x∫

0

e−μt f (t)dt, for f ∈ L1 [0,∞) . (2.4)

2.1. Auxiliary results

We first present some results which will be used in the proofs of our theorems.

THEOREM 1. Let n ∈ N and x ∈ [0,bn]. Then

G̃μ
n = Dμ ◦Un+1 ◦ Iμ .

Proof. Let x ∈ [0,bn] and f ∈C [0,∞) .

G̃μ
n = (Dμ ◦Un+1 ◦ Iμ)( f )(x)

= U ′
n+1(Iμ( f );x)− μUn+1(Iμ( f );x)

=
(
expμ(x)Cn+1

(
Fμ ;an+1(x)

))′ − μ expμ(x)Cn+1
(
Fμ ;an+1(x)

)
= expμ(x)C′

n+1(Fμ ;an+1(x))
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where Fμ is given in (2.4). Now we are starting by derivative of Cn+1 ,

C′
n+1(Fμ ;an+1(x))

=
n+1

∑
k=0

f

(
kbn+1

n+1

)(
n+1

k

)[(
an+1(x)
bn+1

)k(
1− an+1(x)

bn+1

)n+1−k
]′

=
n+1

∑
k=1

f

(
kbn+1

n+1

)(
n+1

k

)[
k

(
an+1(x)
bn+1

)k−1 a′n+1(x)
bn+1

(
1− an+1(x)

bn+1

)n+1−k
]

+
n

∑
k=0

f

(
kbn+1

n+1

)(
n+1

k

)[
(n+1− k)

(
1− an+1(x)

bn+1

)n−k a′n+1(x)
bn+1

(
an+1(x)
bn+1

)k
]

by making necessary arrangements, we have

G̃μ
n ( f )(x)

= G̃μ
n ( f ;x)

= (Dμ ◦Un+1 ◦ Iμ)( f )(x)

= (n+1)
a′n+1(x)
bn+1

eμx
n

∑
k=0

(
an+1(x)
bn+1

)k(
1− an+1(x)

bn+1

)n−k

×
[
Fμ

(
(k+1)bn+1

n+1

)
−Fμ

(
kbn+1

n+1

)]

= (n+1)
a′n+1(x)
bn+1

eμx
n

∑
k=0

(
an+1(x)
bn+1

)k(
1− an+1(x)

bn+1

)n−k
(k+1)bn+1

n+1∫
kbn+1
n+1

e−μt f (t)dt. �

LEMMA 1. The operators G̃μ
n ( f ;x) defined by (2.3) satisfy the following equali-

ties for μ > 0 , n ∈ N and x ∈ [0 ,bn]:

G̃μ
n (e0;x) =

e
μx

n+1 eμx

eμbn+1

(
eμ bn+1

n+1 − e
μx

n+1 +1

)n

, (2.5)

G̃μ
n (expμ ;x) = μ

bn+1

n+1
e

μx
n+1

eμ bn+1
n+1 −1

eμx, (2.6)

G̃μ
n (exp2

μ ;x) = e2μx. (2.7)

G̃μ
n (exp3

μ ;x) =
1
2
eμxe

μx
n+1

(
eμ bn+1

n+1 +1

)(
e

μx
n+1 + e

μx
n+1 eμ bn+1

n+1 − eμ bn+1
n+1

)n

(2.8)

and

G̃μ
n (exp4

μ ;x) =
1
3
eμxe

μx
n+1

(
e2μ bn+1

n+1 + eμ bn+1
n+1 +1

)
(2.9)

×
(

e
μx

n+1 e2μ bn+1
n+1 − e

μx
n+1 eμ bn+1

n+1 + e
μx

n+1 − e2μ bn+1
n+1 − eμ bn+1

n+1

)n

.
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LEMMA 2. Let expμ,x(t) = eμt − eμx . For the operator G̃μ
n given by (2.3), we

have the following limits with mathematical software:

lim
n→∞

n
bn

(G̃μ
n (e0;x)−1) = μ(μx−1),

lim
n→∞

n
bn

(G̃μ
n (expμ ;x)− eμx) = −1

2
μeμx.

Using the above limits, we obtain

lim
n→∞

n
bn

(G̃μ
n (expμ,x;x)

= lim
n→∞

n
bn

(G̃μ
n (expμ ;x)− eμxG̃μ

n (e0;x))

= lim
n→∞

n
bn

(G̃μ
n (expμ ;x)− eμx)− lim

n→∞

n
bn

eμx(G̃μ
n (e0;x)−1)

= eμxμ
(1

2
− μ

)
and

lim
n→∞

n
bn

(G̃μ
n (exp4

μ,x;x) =
1
24

e4μx(84−120μx−12μ3x+72μ4x2 − μ2(7+24x2)).

LEMMA 3. Let γn,μ = G̃μ
n (exp2

μ,x;x) and αn = G̃μ
n (e0;x)−1. Then γn,μ → 0 .

Proof. If we take the derivative of G̃μ
n (e0)(x),we have(

G̃μ
n e0
)′ (x)

=
e

μx
n+1 eμx

eμbn+1

μ
n+1

(
eμ bn+1

n+1 − e
μx

n+1 +1

)n−1[
(n+2)

(
eμ bn+1

n+1 − e
μx

n+1 +1

)
−ne

μx
n+1

]
.

If
(
G̃μ

n e0
)′ (x) = 0, then we have xo = n+1

μ ln

[
n+2

2(n+1)

(
eμ bn+1

n+1 +1

)]
. Writing the crit-

ical point in the G̃μ
n (e0;x),we obtain

G̃μ
n (e0;x0) =

[
n+2
2n+2

(
eμ bn+1

n+1 +1

)]n+2 1
2n

(
eμ bn+1

n+1 +1

)n( n
n+1

)n

e−μbn+1

and

G̃μ
n (e0;x0)−1 =

[
n+2
2n+2

(
eμ bn+1

n+1 +1

)]n+2 1
2n

(
eμ bn+1

n+1 +1

)n( n
n+1

)n

e−μbn+1−1

=

⎛
⎝eμ bn+1

n+1 +1
2

⎞
⎠

2n+2(
n+2
n+1

)n+2( n
n+1

)n

e−μbn+1 −1.
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G̃μ
n (exp2

μ,x;x) = 2eμx(eμx − G̃μ
n (expμ ;x))+ e2μx(G̃μ

n (e0;x)−1)

= 2e2μx

(
1− μ

bn+1

n+1
e

μx
n+1

eμ bn+1
n+1 −1

)
+ e2μx(G̃μ

n (e0;x)−1).

Using mathematical software, we have lim
n→∞

γn,μ = 0. �

3. Approximation in a weighted space

We know that if we take a function on [0,∞) , then the uniform norm is not valid
to evaluate the rate of convergence for unbounded functions. We can not find a rate
of convergence in terms of usual modulus of continuity ω( f ; δ ) of a function f .
Because on the infinite interval, the modulus of continuity ω( f ; δ ) does not tend to
zero as δ tends to zero. For this reason, we use a weighted modulus of continuity
for unbounded functions. In [3] and [4], weighted Korovkin type theorems have been
proved by Gadjiev et al.

We give approximation properties of the operators Ln of the weighted spaces of
continuous functions with exponential growth on R

+ = [0,∞) with the help of the
weighted Korovkin type theorem proved by Gadjiev in [3,4]. Therefore we consider
the following weighted spaces of functions which are defined on the R

+.
Let ρ(x) = 1+ e2μx weight function and Mf be a positive constant depending of

f , we define
Bρ
(
R

+)=
{

f : R
+ → R : | f (x)| � Mf ρ(x)

}
and

Cρ
(
R

+)= C
(
R

+)∩Bρ
(
R

+) .
We also consider the space of functions

Ck
ρ
(
R

+)=
{

f ∈Cρ
(
R

+) : lim
x→∞

f (x)
ρ(x)

= Kf < ∞
}

.

It is obvious that Ck
ρ (R+)⊂Cρ (R+)⊂ Bρ (R+) . These spaces are normed spaces with

the norm

‖ f‖ρ = sup
x∈R+

| f (x)|
ρ(x)

.

If f ∈Ck
ρ (R+) , then ‖Ln( f )‖ρ � ‖ f‖ρ .The following results on the sequence of pos-

itive linear operators in these spaces and Korovkin type theorems are given in [3,4].
By using the above expressions, we can give the following theorem.

THEOREM 2. If f ∈Ck
ρ (R+) , then lim

n→∞

∥∥G̃μ
n ( f )− f

∥∥
ρ = 0.

Proof. By using the well known result in [9], we have

lim
n→∞

∥∥∥G̃μ
n (expμ)− etμ

∥∥∥
ρ

= 0, t = 0,1,2. (3.1)
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Now we consider (2.5).

∥∥G̃μ
n (e0)−1

∥∥
ρ = sup

x∈R+

∣∣∣∣ e μx
n+1 eμx

eμbn+1

(
eμ bn+1

n+1 − e
μx

n+1 +1

)n

−1

∣∣∣∣
1+ e2μx = 0.

Now we are passing to limit condition,we have lim
n→∞

∥∥G̃μ
n (e0)−1

∥∥
ρ = 0 from

lemma 3. Similarly by (2.6), we get

∥∥∥G̃μ
n (expμ ,x)− eμx

∥∥∥
ρ

= sup
x∈R+

∣∣∣∣∣μ bn+1
n+1

e
μx

n+1

e
μ

bn+1
n+1 −1

eμx − eμx

∣∣∣∣∣
1+ e2μx

� eμx

1+ e2μx

[
e

μx
n+1 μ bn+1

n+1

eμ bn+1
n+1 −1

−1

]

�
[

e
μx

n+1 μ bn+1
n+1

eμ bn+1
n+1 −1

−1

]

which leads to
lim
n→∞

∥∥∥G̃μ
n (expμ ,x)− eμx

∥∥∥
ρ

= 0

and from (2.7), we have

lim
n→∞

∥∥∥G̃μ
n (exp2

μ ;x)− e2μx
∥∥∥

ρ
= 0. �

4. Rate of convergence

In this part, we give the rate of convergence of the G̃μ
n to the identity operator by

using weighted modulus of continuity.
Now we consider exponential weighted space Cμ (R+)with a fixed μ > 0, which

is the set of all real valued functions continuous on R
+ satisfying | f (x)| � Meμx where

M is a positive constant. Cμ (R+) is a normed space with the norm ‖ f‖μ = sup
x∈R+

| f (x)|
eμx .

Let Ck
μ (R+) be the subspace of all the functions f ∈Cμ (R+) such that lim

x→∞
| f (x)|
eμx =

k , where k is a positive constant. We are using a weighted modulus of continuity for
f ∈Ck

μ (R+) ,

w̃( f ;δ ) = sup
|t−x|�δ ,x∈R+

| f (t)− f (x)|
eμt + eμx .

This function has the following properties (see in [8]):
i. For f ∈Ck

μ (R+) ,
lim
δ→0

w̃( f ;δ ) = 0.
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ii. For f ∈Ck
μ (R+) and for any integer λ , we have

w̃( f ;λ δ ) � 2λ w̃( f ;δ ).

THEOREM 3. Let f ∈Ck
μ (R+) . We have

∥∥G̃μ
n ( f )− f

∥∥ 3μ
2

� ‖ f‖αn +Mw̃( f ;un) ,
where M is a constant.

Proof. From property (ii), we can write w̃( f ;λ δ ) � 2(1+ λ )w̃( f ;δ ) for positive
λ . By the definition of w̃( f ;δ ) for f ∈ Ck

μ (R+) and x , t ∈ R
+ and δ > 0, we have

the following inequality:

| f (t)− f (x)| � (eμt + eμx) w̃( f ; |t− x|)

� 2
(
eμt + eμx)(1+

|t− x|
δ

)
w̃( f ;δ ).

If we apply the Mean Value Theorem to the function eμt on [x,t] , then we have
μ |t− x| � |eμt − eμx| . Now we edit the above inequality by

| f (t)− f (x)| � 2
(
eμt + eμx)(1+

∣∣eμt − eμx
∣∣) w̃( f ;δ ). (4.1)

and by using Lemma 1 and the following inequality, we have∣∣G̃μ
n ( f ;x)− f (x)

∣∣� f (x)
∣∣1− G̃μ

n (1;x)
∣∣+ G̃μ

n (| f (t)− f (x)| ;x).
Now applying (4.1) to G̃μ

n ;

G̃μ
n (| f (t)− f (x)| ;x)

� 2G̃μ
n

((
eμt + eμx)(1+

|t− x|
δ

)
w̃( f ;δ );x

)

� 2w̃( f ;δ )[G̃μ
n (expμ ;x)+ eμxG̃μ

n (1;x)+
1
δ

G̃μ
n

((
eμt + eμx) |t − x| ;x) ,

by using Hölder’s inequality, we have

G̃μ
n (| f (t)− f (x)| ;x)

� 2w̃( f ;δ )[G̃μ
n (expμ ;x)+ eμxG̃μ

n (1;x)+
(
G̃μ

n ((t− x)2;x)
) 1

2
(
eμx + eμx(G̃μ

n (1;x))
1
2

)
� 2w̃( f ;δ )[G̃μ

n (expμ ;x)+ eμxG̃μ
n (1;x)

+
1
δ

1
μ

(
G̃μ

n (
(
eμt − eμx)2 ;x)

) 1
2
(
eμx + eμx(G̃μ

n (1;x)
1
2

)
,

it follows that∣∣G̃μ
n ( f ;x)− f (x)

∣∣
� f (x)

∣∣1− G̃μ
n (1;x)

∣∣+ w̃( f ;δ )[G̃μ
n (expμ ;x)+ eμxG̃μ

n (1;x)

+
1
δ

1
μ

(
G̃μ

n (
(
eμt − eμx)2 ;x)

) 1
2
(
eμx + eμx(G̃μ

n (1;x)
1
2

)
.
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We denote that ξn := sup
x∈R+

∣∣1− G̃μ
n (1;x)

∣∣ and βn := μ bn+1
n+1

e
μbn+1
n+1

e
μ

bn+1
n+1 −1

(from lemma 3,we

get x = bn+1 ) and passing to norm we obtain

∥∥G̃μ
n ( f ;x)− f (x)

∥∥
3
2 μ

� ‖ f‖μ ξn + w̃( f ;δ )

⎡
⎣μ

bn+1

n+1
e

μbn+1
n+1

eμ bn+1
n+1 −1

+
1
δ

(ξn +1)(2+ ξn)

⎤
⎦ ,

since sup

(
G̃μ

n (exp2
μ ,t ;x)

e2μx

)
< ∞, choosing δ := u2

n = 2(1−βn)+ξn, then we have desired

result. �

5. Voronovskaya type theorem

In this part, we give the quantitative version of Voronovskaya type theorem to
show the rate of pointwise convergence for the operator G̃μ

n given by (2.3).

THEOREM 4. Let f ∈Ck
ρ (R+) . Then we have

lim
n→∞

n
bn

2μ
(
G̃μ

n f (x)− f (x)
)

= (μx−1)
(
2μ2 f (x)+ f ′(x)+ f ′′(x)

)
.

Proof. We consider the Taylor formula for f ∈Ck
ρ (R+) ,

f (t) = ( f ◦ logμ)(eμx)+ ( f ◦ logμ)′(eμx)expμ,x(t)

+
1
2
( f ◦ logμ)′′(eμx)exp2

μ,x(t)+hx(t)exp2
μ,x(x), (5.1)

where logμ is the inverse function of eμ and hx(t) is the remainder term such that

hx(t) =
f (t)−( f◦logμ )(eμx)− f◦logμ )′(eμx)expμ ,x(x)

exp2
μ ,x(x)

− ( f◦logμ )′′(eμξx )
2! . Also we have the follow-

ing derivatives

( f ◦ logμ)′(eμx) =
f

′
(x)

μeμx

and

( f ◦ logμ)′′(eμx) =
f

′′
(x)

μ2e2μx −
f

′
(x)μ2eμx

μ3e3μx = e−2μx(μ2 f
′′
(x)− μ−1 f

′
(x)).
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Then we apply the Taylor expansion to the operator, we can write

G̃μ
n ( f ;x)

= f (x) G̃μ
n (e0;x)+ ( f ◦ logμ)′(eμx)G̃μ

n (expμ,x;x)

+
1
2
( f ◦ logμ)′′(eμx)G̃μ

n (exp2
μ,x;x)+ G̃μ

n (hx exp2
μ,x;x)

= f (x) G̃μ
n (e0;x)+ e−μxμ−1 f ′(x)eμx[1− G̃μ

n (e0;x)]

+
e−2μx

(
μ−2 f

′′
(x)− μ−1 f ′(x)

)
2

e2μx[G̃μ
n (e0;x)−1]+ G̃μ

n (exp2
μ,x hx;x).

G̃μ
n ( f ;x)− f (x) =

(
G̃μ

n (e0;x)−1
)(

f (x)+
f ′(x)
2μ

+
f

′′
(x)

2μ2

)
+ G̃μ

n (exp2
μ,x hx;x)

We can write with Cauchy-Schwarz inequality

n
bn

∣∣∣G̃μ
n

(
exp2

μ,x hx;x
)∣∣∣� (G̃μ

n (h2
x ;x)

) 1
2

(
n2

b2
n
G̃μ

n (exp4
μ,x;x)

) 1
2

.

In this way, we take a limit when n tends to infinity,

lim
n→∞

G̃μ
n (h2

x ;x) = 0

and with mathematical software, we have

lim
n→∞

n2

b2
n
G̃μ

n (exp4
μ,x;x) =

1
24

e4μx(84−120μx−12μ3x+72μ4x2 − μ2(7+24x2)).

So we arrive at the following limit,

lim
n→∞

n
bn

2μ
(
G̃μ

n f (x)− f (x)
)

= (μx−1)
(
2μ2 f (x)+ f ′(x)+ f ′′(x)

)
,

we have the desired result. �
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III 6 (55) (2), 27–32 (2013).
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