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LIMIT BEHAVIORS FOR ANA RANDOM VARIABLES
UNDER R-h-INTEGRABILITY AND SR-h-INTEGRABILITY

LYURONG SHI* AND MINGLE GUO

(Communicated by Z. S. Szewczak)

Abstract. In this work, the L, convergence for maximum weighted sums of ANA R -/ -integrable
random variables as well as the complete moment convergence for maximum weighted sums of
ANA SR-h-integrable random variables with respect to the array {a,;} of constants are estab-
lished, which improve and generalize the results of Sung et al. [30], Wu et al. [33], and Wang et
al. [34].

1. Introduction

The independence assumption is usually assumed in plenty of statistical models,
even if it has turned out to be unrealistic. Fortunately, more and more statisticians
are inclined to use the dependence assumption. In the past decades, many dependence
structures were introduced by scholars. Among them the negative association struc-
ture received considerable attention recently on account of its extensive applications
in systems reliability and multivariate statistical analysis. Alam and Saxena [1] firstly
proposed the following concept of negatively associated (NA) random variables:

DEFINITION 1.1. Random variables {X;,1 <i < n} are called to be NA if for
each pair of subsets A and B of {1,2,---,n} satisfying ANB =0,

COV(fl(Xiai c A)af2(xla.] € B)) < 07

where f; and f> are both nondecreasing functions defined on R* and R® respectively
such that the covariance above exists. A random sequence {X,,n > 1} is called to be
NA if for each fixed n, {X;,1 <i<n} are NA.

After this dependence structure was presented, plenty of studies appeared subse-
quently. For example, Joag-Dev and Proschan [2] further studied its essential proper-
ties; Shao [3] established some moment equalities for it; Roussas [4] got the central
limit theorem in random fields; Cai and Roussas [5] investigated the convergence rate
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of asymptotic normality for a nonparametric estimator; Liang [6] studied the complete
convergence; Wu et al. [7] obtained the result on complete moment convergence, etc.

Bradley [8] introduced the following concept of p*-mixing (p -mixing, or weakly
mixing) random variables.

DEFINITION 1.2. A random sequence {X;,i > 1} is said to be p*-mixing if the
mixing coefficients

p*(t) =sup{p(U,V);U,V C N,dist(U,V) >t} — 0

as t — oo, where

[Cov(§, 1)

p(U,V) = sup{ Var(&)Var(1)

EeloXiieU)),nel(oX;,je V))} .

It is known that the moving average processes and some Markov chains with reg-
ular conditions satisfy the p*-mixing structure. Hence, there are also many researches
on the p*-mixing random sequences. For more works on p*-mixing random variables,
one can see in Utev and Peligrad [9], Wu and Jiang [10], Sung [11], Wu et al. [12], Shen
etal. [13], Wu et al. [14], Chen and Sung [15] and so on.

Zhang and Wang [16] put forwarded the concept of asymptotically negatively as-
sociated (ANA), or p~ -mixing random variables as follows.

DEFINITION 1.3. A random sequence {X,,n > 1} is said to be ANA if the mixing
coefficients

p~(t) =sup{p (U,V):U,VCN,dist(U,V) >} -0
as t — oo, where

COV[f(X,‘,i S U),g(Xj,j S V)]
\/Var[f(X;,i € U)]Var[g(X;, j € V)]

p—(S,T):ov{ :f,ge%}

where ¢ stands for the set of nondecreasing functions.

Anarray {X,;,i > 1,n> 1} is said to be rowwise ANA if forevery n > 1, {X,;,i >
1} is a sequence of ANA random variables.

It is not difficult for us to verify that ANA degenerates to NA if and only if
p~ (1) =0, and the mixing coefficients p~(s) < p*(s). Hence, p*-mixing structure
and NA structure are both special cases of ANA structure. It exemplified in Zhang
and Wang [16] that the inverse is not true. Therefore, it is of relative interest to inves-
tigate the large sample properties under ANA assumption. For more works on ANA
random variables, we refer to Zhang [17-18] for the central limit theorems, Wang and
Lu [19] for the Rosenthal-type inequalities of the maximum partial sums, Wang and
Zhang [20] for the law of the iterated logarithm, Huang et al. [21] for some results on
strong convergence, and so on.
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This work will mainly investigate the L, convergence for maximum weighted
sums of ANA residually-/-integrable (R-/-integrable) random variables and com-
plete moment convergence for maximum weighted sums of ANA strongly residually-
h-integrable (SR-h-integrable) random variables. Therefore, some relevant definitions
should be recalled in what follows.

We first recall the concept of complete convergence, which was raised by Hsu and
Robbins [22] as follows:

DEFINITION 1.4. Random sequence {X,,n > 1} is known as to converge com-
pletely to some constant c if for every € > 0,

N P(|Xy—c| > €) <eo
n=1

The statement above together with the the Borel-Cantelli lemma concludes X,, — ¢ a.s.
The earliest result concerning the complete moment convergence originates to
Chow [23] as follows:

DEFINITION 1.5. Let ¢ > 0, {a,,n > 1} and {b,,n > 1} be two sequences of
positive numbers. If for any € > 0,

ZanE{b;:l‘Xn‘ —e}] <o

n=1

then the random sequence {X,,n > 1} is said to be complete moment convergent.

The complete convergence can be easily obtained by the complete moment con-
vergence, which can also be seen in the proof of Theorem 3.3. For more details about
the two convergence properties mentioned above, we refer the reader to Liang et al.
[24], Guo and Zhu [25], Wu et al. [26], Wang et al. [27], Shen et al. [28], and so on.

As a weaker concept than uniform integrability, the Cesaro uniform integrability
was first proposed by Chandra [29] as follows: Random sequence {X,,n > 1} is called
to be Cesaro uniformly integrable if

my

lim sup— ZE\X [1(|X;| > ¢) =0,

€ > My i=

where {my} are positive integers diverging to infinity as n — oo.

Later on, many concepts on the integrability, the conditions of which are weaker
and weaker, were introduced subsequently. For example, Sung et al. [30] introduced
the concept of h-integrability, which is much weaker than the integrability above.

Let {Xpi,up < i< vyyn =1} be an array of random variables and r be some
positive number. Suppose that {hy,n > 1} is a sequence of increasing positive numbers
such that hy, — oo and {k,,n > 1} is a sequence of positive numbers such that k, — oo
as n— oo, Then {Xpi,up < i< vy,n > 1} is said to be h-integrable with exponent r if

Vn
sup— 2 E|Xpi|" < oo,

nz1fn j—y,
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and
Vn

.1
lim == 3% EXol (Xl > ) = 0.

i=uy

Cabrera and Volodin [31] put forwarded the notion of & -integrability with respect
to an array {a,;} of weights as follows.

Let {Xpi,un < i< vyyn > 1} be an array of random variables. Suppose that
{ani,un <i<vy,n > 1} is an array of real numbers. Assume that the positive sequence
{hn,n > 1} is increasing and hy, — oo as n— oo. Then {Xyj,u, <1< vy,n > 1} is said
to be h-integrable with respect to {ay;} if

Vn
Sup Y. [l E|Xui| < oo,

nzlj=y,
and )
Hm Y Jani| E| X 1(|Xni| > hn) =0.
n—oo

1=UuUyn

Sung et al. [30] obtained the resulton L, convergence for NA /-integrable random
sequence as follows.

THEOREM 1.1. Let {Xpj,up < i< vy,n > 1} be an array of NA h-integrable
random variables with exponent r satisfying 1 < r < 2. Suppose that the positive
sequence {hy,n > 1} is increasing and hy, — oo, k, — oo, and h,/ky, — 0 as n — oo.
Then —- 3" (Xui — EXyi) — 0 in L, and therefore in probability as n — oo.

1/r &~i=u
& n

Sung et al. [30] also established the following result dealing with the weighted
sums.

THEOREM 1.2. Let {Xyi,un < i< vy,n = 1} be an array of NA random variables
and {api,un <i<vy,n =1} be an array of real numbers. If
Vn Vn
sup Y |ail "E|Xuil” <o, 1im Y |ani|"E|Xuil"I(|Xpi|" > hp) =0
n>1i=u, nme i=up
for some 1 <r <2, and
lim i, sup |an| =0,
e Uy <I<vy

then Ziviun ani(Xni — EXni) — 0 in L, and therefore in probability as n — oo.

Wang and Hu [32] raised the following concept of R-h-integrability, which is
much weaker than /-integrability.

Let {Xpiyuy < i< vy,n =1} be an array of random variables. Let positive se-
quence {hy,n > 1} be increasing and hy, — oo, {ky,n > 1} be another positive se-
quence satisfying k, — oo as n — oo. The array {Xpi,un <i < vy,n > 1} is called to
be R-h-integrable with exponent r > 0 if

1 &
sup — 2 E|Xpi|" < oo,

nzlfnj—y,
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and
lim Z E([Xui| — B/ Y T(|Xoi” > hy) =

n—k, i=uy
Wang and Hu [32] improved Theorem 1.1 from NA #-integrable random variables
to NOD R-h-integrable random variables; Wu et al. [33] extended Theorem 1.1 from
NA structure to END structure. Moreover, Wu et al. [33] also obtained the result on
complete convergence as follows.

THEOREM 1.3. Let 1 < r < 2. Suppose that { Xy, u, <i<vy,n> 1} isan array
of END random variables such that
Vn

sup— Y E[Xui|" <o,

n=1fn p— Un

and
b l & r r
D = > EXil "T(|Xi" > hy) <

n=1"1 j=uy,

Assume that the positive sequences {ky,n > 1} and {hy,n > 1} satisfy k, — oo, hy — oo
as n— oo and 35 (hy [ky)* /" < oo for some A > r. Then for every € >0,

ZP( >sk1/’>
ZE( —e>1<oo.

Recently, Wang et al. [34] proposed the concepts of R-h-integrability and SR-h-
integrability with respect to the array {ay;} of constants with exponent r > 0.

Z Xm EXm)

i=up

and

1
S (- EX,)

lunn

DEFINITION 1.6. Let {X,;,u, <i< v,,n > 1} be an array of random variables
and r be a positive constant. Assume that {ay;,u, < i< vy,n > 1} is an array of real
numbers, positive sequence {/,,n > 1} is increasing and h, — o as n — o. Then
{Xni,un < i< vy,n> 1} is called to be R-h-integrable with respect to the array {ay;}
of constants with exponent r if

Vn

sup Y [ani| "E|Xul|" < oo, (1.1)
nzli=y,
and
Vn
1im S [aul E (Xl — ") (Xl > hy) = 0. (1.2)

i=uy

DEFINITION 1.7. Let {Xy;,uy <i< vy,n > 1} be an array of random variables
and r be a positive constant. Assume that {ay;,u, < i< vy,n > 1} is an array of real
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numbers, positive sequence {h,,n > 1} is increasing and h, — oo as n — o. Then
{Xni,un <i<vy,n> 1} is called to be SR-h-integrable with respect to the array {ay,;}
of constants with exponent r if (1.1) holds and

Vn

33 lanil E(Xol — i) 1(Xoil" > h) < (13)

n=1i=u,

Wang et al. [34] improved Theorems 1.1 and 1.2 from NA #-integrable random
variables to m-NOD R-h-integrable random variables. In addition, Wang et al. [34]
obtained the result on strong convergence for m-NOD SR-/-integrable random vari-
ables with respect to the array {a,;} of constants.

THEOREM 1.4. Let {Xpi,up <i< vy,n =1} be an array of rowwise m-NOD SR -

h-integrable random variables with respect to {ani,uy < i < vy,n > 1} with exponent
oo 2—

1< <20 0 S0y (hsupy, iy, lanl ") 57 < ool Then 37, ani(Xui — EXoi) —

Oa.s. as n— oo,

In this work, we study the L, convergence for maximum weighted sums of ANA
R-h-integrable random variables and complete moment convergence for maximum
weighted sums of ANA SR-h-integrable random variables with respect to the array
{an;} of constants with exponent 1 < r < 2. As the best of our knowledge, there was no
result concerning the L, convergence and complete moment convergence for maximum
weighted sums under the condition of R-/-integrability. The results established in this
work improve and extend the results mentioned above. In what follows, C always
means a generic positive constant which may differ in different lines. x; = max{x,0}
and x_ = max{—x,0}. I(-) means the indicator function.

2. Some lemmas

We are now at a position to recall some essential conclusions as follows.

LEMMA 2.1. (Zhang and Wang [16]) Increasing functions defined on disjoint
subsets of a p~ -mixing field {X;,i € N} with mixing coefficients p~(s) are also p~ -
mixing with mixing coefficients not greater than p~(s).

LEMMA 2.2. (Wang and Lu [19]) Assume that random sequence {X;,i > 1} is
ANA with EX; =0 and E|X;|P < oo for some p > 2. Then for each n > 1,

p/2

p n n
$|) <cof S (Sex) i
i=1 i=1

E | max
1<j<n

where C, -y is a positive number depending only on p and p~ ().
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LEMMA 2.3. Assume that random sequence {X;,i > 1} is ANA with EX; =0 and
E|X;|P < oo for some 1 < p <2. Then for each n>1,

ZX

p n
) <Cpp() §E|Xi|”7

E ( max
1<j<n
where C, -y is a positive number depending only on p and p~ (+).

Proof. By the same method of Chen et al. [35] for pairwise independent random
variables, we can obtain the same conclusion for ANA random variables. The details
are omitted. [

LEMMA 2.4. (Wu et al. [14]) Let ¢ > r > 0. Assume that {X,,n > 1} and
{Yy,n = 1} are two random sequences, then for any € >0 and a > 0,
q)

J

,
—ea| < (e‘f + L) a"E | max |Y
q-—r I<j<n| 5
+
r)

J

E| max |Y
I<j<n i=1

(Xi+Y) Xi

J

+C.E ( max EY,-

Isjsnizy

where C, =1 if0<r<1lorC,=2""1ifr>1.

3. Main results

We are ready to present our main results. The first one is the L, convergence and
weak law of large numbers for maximum weighted sums.

THEOREM 3.1. Suppose that {Xyi,u, <i<vy,n > 1} is an array of rowwise ANA
R-h-integrable random variables with respect to the array {ayi,u, <i <vy,n =1} of
constants with exponent 1 <r < 2. If lim, e hysup,, i<, |ani|” =0, then

max —0

<Jj<va

Z am ni — nz)

i=up

in L, and therefore in probability as n — oo.

Via choosing a,; = kﬁ for each u, <i< v, and n > 1, we can get the following

result.

COROLLARY 3.1. Asssume that {Xyi,un < i< vy,n > 1} is an array of rowwise
ANA R-h-integrable random variables with exponent 1 < r < 2. Suppose that k, — oo,
hy — oo, and hy [k, — 0 as n — oo. Then

J
72X, | 2 (X = EXui) = 0

1=UuUyn
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in L, and therefore in probability as n — oo.

REMARK 3.1. Comparing to Theorem 1.1 and Theorem 1.2, Theorem 3.1 and
Corollary 3.1 not only extend the dependence structure from NA to ANA, but also
improve the condition of i-integrability to R-h-integrability. In addition, noting that

Vn

igl;n ani(Xni - EXm \ M,,Igjai(vn _2 am ni — m)
and
Vn J
zz (Xni — EXpi)| < o 22 (Xni — EXni) |+

our results are stronger. By the way, the condition lim,,_.. A, SUp,, <i<y, |ani|” =0 in
Theorem 3.1 is weaker than lim,, e /1, 5Up,, i<, |@ni| =0 in Theorem 1.2.

The next one is the complete moment convergence for maximum weighted sums,
which is much stronger than L, convergence and complete convergence.

THEOREM 3.2. Assume that { Xy, u, <i<vy,n> 1} is an array of rowwise ANA
SR - h-integrable random variables with respect to the array {ay;,u, <i<vp,n>1} of
constants with exponent 1 <r <2. If 37| (hasup,, <ic,, \am-\’)l " < oo for some
A > 1, then for any € > 0,

J
z ani(Xni - EXm')

i E ( max
n=1 =

Up<J<Vn i

—e) < oo, 3.1)

+

REMARK 3.2. Note that if we choose a,; = k,fl/r foreach u, <i<vy,andn>1,
the conclusion (3.1) is still stronger than Theorem 1.3 since it considers the maximum
sums and the condition of strong %-integrability is weakened to SR-h-integrability. In
addition, it is deserved to mention that the proofs of Theorem 1.3 and Theorem 3.2 are
quite different. Actually, one can easily find that the proof of Theorem 3.2 is is much
simpler than that of Theorem 1.3.

REMARK 3.3. We will show that Theorem 3.2 is stronger than Theorem 3.1. Ac-
tually, it can be verified by (3.1) that

Z am ni — nz)

-
—8) — 0asn— oo,

max
Un <J<Vn ; +
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Hence, it follows by Cr-inequality that
,
max am ni — nz)
¢ S one-en
r .
J
=FE < max a I max
{un</<vn 2 ni (X = EXoi) (un<j<vn :zu’
max a
{ <j<n Z m m nz)

-
max
i—u, <j<vn |
<ér +E{ max

Api (Xni - EXm)

)
Sttt
)

J

2 ani(Xni - EXni) >

. r
J
aX | Y ani(Xni—EXyi)| I| max
Un<Jj<vn AVAS 0 Py

J

p
< ZrlE{ M:g?évn izzun ani(Xni —EXm') — 8] (u,,rgjagvn Z am ni — nl) > 8) }
+2r718r + Sr
. r
J
=2"'E ( max | 3 ani(Xpi — EXui) | — 8) +2"7'e"+&" — 0 by letting & — 0.
Up<j<vp i= +

THEOREM 3.3. Assume that { Xy, u, <i<vy,n> 1} is an array of rowwise ANA
SR - h-integrable random variables with respect to the array {ay;,u, <i<vp,n>1} of
. oo -
constants with exponent 1 <r < 2. If Y| (hnsup,, <ic,, lani|") @=n/r - oo for some
A > 1, then for any € >0,

oo J
P i (Xni — EXi ) o 3.2
5 (o | St ) < o
and thus by the Borel-Cantelli lemma,
J
unm;a?vn Z ani(Xpi — EXpi)| — 0 a.s. as n — oo. (3.3)

REMARK 3.4. Comparing Theorem 3.3 to Theorem 1.4, we not only extend the
dependence structure from m-NOD to ANA, but also improve condition

- 2—r)/r
D (h,, sup am-|’> < oo
n=1

up <i<vp
to
- A(2=r)/r
> | sup an” <o
n=1 Up<i<vp

for some A > 1. Moreover, the weighted sums are improved to maximum weighted
sums in Theorem 3.3.
By Theorem 3.2 and Theorem 3.3, we can conclude the following corollary.
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COROLLARY 3.2. Let {Xpi,up < i< vy,n =1} be an array of rowwise ANA SR-
h-integrable random variables with respect to the array {ani,uy <i < vy,n > 1} of
constants with exponent 1 <r < 2. If hysup, i, |an|" = O(n~%) for some & >0,
then for any € > 0, (3.1), (3.2), and (3.3) hold.

4. Proofs

Proof of Theorem 3.1. Noticing that a,; = an;+ — an;— , without loss of generality,
we can assume that a,; > 0. Denote for given u,, < i< v,, n > 1 that

m - _hl/r (Xm < hl/r) +Xnil(|Xni| g rlz/r) +hrll/r (Xm > hl/r)’
Zoi = Xi = Yoi = XAl V(X < =I3") 4 (X — 1/ )X > 7).

From Lemma 2.1 one can easily check that both {ay;(Yyi — EYi),un < i< vpy,n > 1}
and {ayi(Zni — EZyi),un <1< vy,n > 1} are still ANA. In addition, by Cr-1nequa11ty
we have that

J

E( max
ungjgvn
z ani(Yni - EYni)

<2 E ( max
i=uy

Up<j<vp

J
Z ani(Xni - EXm')

i=uy

r r
) +2’1E< max )
Up<j<vp i=

J
2 Zm - EZm)
Up

=2 ES 4+ 2 ET!,

where '
J
Sn = max 2 am-(Ym- —EYm')
Un<j<Vn i=uy
and
J
Th= max | Y ani(Zu—EZy)|.
Up <j<vp

i=uy
2{=un ani(Xni - EXm')
and ET] — 0 as n — oo.

We first show ES2 — 0 as n — oo. By Lemma 2.2, |¥,;| = min{|X,;|,hy/"}, con-
dition (1.1), and lim, e 1, SUP, ;<. |ani|” = 0 we have that

To prove max,, < j<v,

—0in L", we only need to prove ES;, — 0

2
Vn
ES}% =F (u mjai&v z anz Ym _EYm) ) <C Z aZiE‘Ym'F
ns n =y, i=uy
Vn
2 _
< cpiFr sup |an*" N |ani|"E|YVuil”
U <i<vy i=uy
( /r Vn
<¢ (h sup an”) sup D, lani|"E|Xl"
1, <i<vp nzlj=y,

— 0asn— oo,
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Since 1 < r < 2, it follows by Jensen inequality that

ES" < (ES?)"? = 0asn— oo.

Next, we will show ET — 0 as n — eo. Noting that |Z,;| = (|Xpi| — 1/r) I(|1Xni| >

1/ ) by condition (1.2) and Lemma 2.3 we have that as n — oo,

2 anz ni — nz)

ET' = max
n
Up<j<vp ;

r
Vn
) <C Z |ani‘rE|Zni‘r

i=uy

2 r 1/r\r 1/r
= C Y Nl E (Xt = "V 1(| Xt > /") — 0.

i=uy

Hence, Theorem 3.1 has been proved. [

Proof of Theorem 3.2. Without loss of generality, we also assume here that a,; >
0. Decompose X;,; — EX,; by

Xni - EXm - Yni - EYni +Zm - EZnia

where Y,; and Z,; are defined in the proof of Theorem 3.1. It can be obtained by
Lemma?2.4 thatforall A > 1,
. 8)
+

21
r)

2 am ni — m)

i E ( max
n=1 =

Up<Jj<vn |5

oo

<CY E| max

Zam ni EYm)
n=1 Up<j<vn i=uy

J
2 ani(Zni - EZm')

+CiE< max

n=1 Up<Jj<vn i=u
=C 2 ESH* +C 2 ET]
n=1 n=1
where
Sy = max Z ani(Yoi — EYi)
Sisn |2 un
and
= max am ni — m) .
un\/<Vn 2

We first show Y, | ET,l <oo. We have by Lemma 2.3, Z,; = (|Xpi| — 1/r) I(|X,i| >
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1/ and condition (1.3) that

Up<j<vp

iETn’ = iE( max
n=1 n=1

J
2 ani(Zni - EZm')
=uy

i

oo Vn
<CY, Y lawlE|Zul"

n=1i=uy,

> Vp
=C Y Y lanl EXul ="V 1(1Xui] > /") < o0,

n=1i=uy,

)X(Z—r)/r<

Now we turn to prove | ES?* < oo Noting from ¥°°_, (hnsup,, <icy, |anil”
oo that

hy sup |an|" — 0asn — oo,
up<i<vp

and (24 —r)/r=A(2—r)/r for A > 1, we have that

QA—=r)/r A(2=r)/r
(hn sup am-’> < (hn sup am-’>
Uy <i<vp Uy <i<vp

for all n large enough, which together with Lemma 2.2 and condition (1.1) obtains that

j 24

2 ani(Yni - EYni)

i=uy

i‘{ESﬁ’1 = iE max
n=1 n=1

Up<j<vp

A
N Vn Vi
<CY QY lanEX P+ | Y aEY]
n=1 | i=u, i=uy
had Vn
2A— _
<cy {h,& I sup fa* " sup Y am-’EYm-|’}
n=1 Up <i<vp n=1i=y,
A
S 27")/" 2—r & r r
+:Ccy h sup |anil* " sup Y, |ani|"E |Vl
n=1 U <i<vy n=1j=y,
o (2A=r)/r rQ2—r)/r
<Cy, (hn sup am'|r> + (h,, sup |am-|r>
n=1 Up SISV Uy <i<vy

- AQ2—r)/r
< CZ (h,, sup |am-|’> < oo,

up<i<vp

Thus, according to the statements above, the proof of the theorem is complete. [
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Proof of Theorem 3.3. Actually, it is not difficult to verify by Theorem 3.2 that

J
P\ | 2 oo = )| > ¢

M s

n= =t
< (f)ri/(i)’p max i ani(Xi — EXoi) _E o\ w
2 n—=170 un<Jsvn | =0 2
S (;)71211/0&[, ug}’?‘gn izzju,nani(xni_EXni) —% >V ar
e\ j N
- (5) ZIIE el i;mlani(Xni—EXm-) -3 ) < oo,

The proof is thus finished. [J

Proof of Corollary 3.2. Choosing A > max{1, m}, we can easily check that

') AQ2—r)/r -
Z h(n) sup |au|" <C z o he=nd/r o
n=1

n=1 up<i<vp

Then the conclusions (3.1), (3.2), and (3.3) follow by Theorems 3.2 and 3.3 immedi-
ately. O
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