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MAHGOUB TRANSFORM AND HYERS–ULAM STABILITY

OF FIRST–ORDER LINEAR DIFFERENTIAL EQUATIONS
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Abstract. The main aim of this paper is to investigate various types of Hyers-Ulam stability of
linear differential equations of first order with constant coefficients using the Mahgoub transform
method. We also show the Hyers-Ulam constants of these differential equations and give some
examples to better illustrate the main results.
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