
Journal of
Mathematical

Inequalities

Volume 15, Number 3 (2021), 1201–1218 doi:10.7153/jmi-2021-15-80

MAHGOUB TRANSFORM AND HYERS–ULAM STABILITY
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(Communicated by M. Krnić)

Abstract. The main aim of this paper is to investigate various types of Hyers-Ulam stability of
linear differential equations of first order with constant coefficients using the Mahgoub transform
method. We also show the Hyers-Ulam constants of these differential equations and give some
examples to better illustrate the main results.

1. Introduction

In 1940, Ulam [36] proposed a very general Hyers-Ulam stability problem: When
is the statement of the theorem still true or nearly true, despite slight variations on
the theorem’s hypotheses? In the following year, Hyers [9] came up with the first
positive answer to Ulam’s question by proving the stability of the additive functional
equation in Banach spaces. Since then, Hyers’ result has been widely generalized in
terms of the control conditions used to define the concept of an approximate solution
(see [4, 5, 30, 32, 37]).

The generalization of Ulam’s question has been relatively recently proposed by
replacing functional equations with differential equations: Let I be a subinterval of R ,
let K denote either R or C , and let n be a positive integer. The differential equation
ψ

(
f ,x,x′,x′′, . . . ,x(n)) = 0 has the Hyers-Ulam stability if there exists a constant K > 0

such that the following statement is true for any ε > 0: If an n times continuously
differentiable function z : I → K satisfies the inequality

∣∣∣ψ(
f ,z,z′,z′′, . . . ,z(n))∣∣∣ � ε

for all t ∈ I , then there exists a solution y : I → K of the differential equation that
satisfies the inequality |z(t)− y(t)|� Kε for all t ∈ I .

Obłoza seems to be the first author who has investigated the Hyers-Ulam stability
of linear differential equations (see [26, 27]). Then, in 1998, Alsina and Ger contin-
ued the study of Obłoza’s Hyers-Ulam stability of differential equations. Indeed, they
proved in [3] the following theorem.
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THEOREM 1. Let I �= /0 be an open subinterval of R . If a differentiable function
x : I → R satisfies the differential inequality ‖x′(t)− x(t)‖ � ε for any t ∈ I and for
some ε > 0 , then there exists a differentiable function y : I → R satisfying y′(t) = y(t)
and ‖x(t)− y(t)‖ � 3ε for any t ∈ I .

This result of Alsina and Ger has been generalized by Takahashi et al. They proved
in [35] that the Hyers-Ulam stability holds true for the Banach space valued differential
equation x′(t) = λx(t) . Indeed, the Hyers-Ulam stability has been proved for the first-
order linear differential equations in more general settings (see [10, 11, 12, 13, 17]).

In 2006, Jung [13] investigated the Hyers-Ulam stability of a system of first-order
linear differential equations with constant coefficients by using matrix method. Then, in
2008, Wang et al. [38] studied the Hyers-Ulam stability of linear differential equations
of first order using the integral factor method. Meanwhile, Rus [34] discussed various
types of Hyers-Ulam stability of the ordinary differential equation of the form x′(t) =
Ax(t)+ f (t,x(t)) . In 2014, Alqifiary and Jung [2] proved the generalized Hyers-Ulam
stability of linear differential equation of the form

x(n)(t)+
n−1

∑
k=0

αkx
(k)(t) = f (t)

by using the Laplace transform method, where αk are scalars and x(t) is an n times
continuously differentiable function and of the exponential order (see also [33]).

In recent years, many authors are studying the Hyers-Ulam stability of differential
equations, and a number of mathematicians are paying attention to the new results of
the Hyers-Ulam stability of differential equations (see [6, 7, 8, 15, 16, 18, 19, 20, 21,
22, 24, 28, 29]). Recently, Murali et al. [25] have investigated the Hyers-Ulam stability
of the linear differential equation using Fourier transform method (see also [23, 31]).

Based on the above results, our main goal is to more efficiently prove the Hyers-
Ulam stability of the first-order linear differential equations

x′(t)+ λx(t) = 0 (1)

and

x′(t)+ λx(t) = r(t) (2)

by using the Mahgoub integral transform method, where λ is a scalar and x(t) is a
continuously differentiable function of exponential order.

2. Preliminaries and basic definitions

In this section, we introduce some standard notations and definitions which will
be useful to prove our main results.

Throughout this paper, K denotes either the real field R or the complex field C .
A function f : [0,∞)→ K is of exponential order if there exist constants A,B ∈ R such
that | f (t)| � AeBt for all t � 0. Similarly, a function g : (−∞,0]→ K is of exponential
order if there exist constants A,B ∈ R such that |g(t)| � AeBt for all t � 0.
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DEFINITION 1. ([1]) The Mahgoub integral transform of the function f : [0,∞)→
K is defined by

M { f (t)} = u
∫ ∞

0
f (s)e−usds = F(u),

where M is the Mahgoub integral transform operator.

The Mahgoub integral transform for the function f : [0,∞) → K exists if f (t) is
piecewise continuous and of exponential order. These conditions are the only sufficient
conditions for the existence of Mahgoub transform of the function f (t) .

DEFINITION 2. (Convolution of two functions) ([1]). The convolution of two
functions f (t) and g(t) is denoted by f (t)∗ g(t) and is defined by

f (t)∗ g(t) = ( f ∗ g)(t) =
∫ t

0
f (s)g(t − s)ds =

∫ t

0
f (t − s)g(s)ds.

THEOREM 2. (Convolution theorem for Mahgoub transform) ([1]) Assume that
f (t) and g(t) are given functions defined for t � 0 . If M { f (t)}= F(u) and M {g(t)}=
G(u) , then

M { f (t)∗ g(t)} =
1
u
F(u)G(u).

DEFINITION 3. (Inverse Mahgoub transform) ([1]) If M { f (t)}= F(u) , then f (t)
is called the inverse Mahgoub transform of F(u) and is denoted as f (t)= M−1{F(u)} ,
where M−1 is the inverse Mahgoub transform operator.

DEFINITION 4. ([14]) The Mittag-Leffler function of one parameter is denoted
by Eν(t) and defined as

Eν(t) =
∞

∑
k=0

tk

Γ(νk+1)
,

where t,ν ∈ C and ℜ(ν) > 0. If we put ν = 1, then the above equation becomes

E1(t) =
∞

∑
k=0

tk

Γ(k+1)
=

∞

∑
k=0

tk

k!
= et .

Now we give the definitions of Hyers-Ulam stability and Hyers-Ulam φ -stability
of the differential equations (1) and (2).

Throughout this section, we set

F :=
{

f : [0,∞) → K | f is a continuously differentiable function of exponential order
}
.
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DEFINITION 5. (i) The linear differential equation (1) is said to have the Hyers-
Ulam stability (for the class F ) when there exists a constant K > 0 such that the
following statement is true for any ε > 0: If a function x ∈ F satisfies the inequality

|x′(t)+ λx(t)|� ε (3)

for all t � 0, then there exists a solution y : [0,∞)→K of differential equation (1) such
that y ∈ F and

|x(t)− y(t)|� Kε

for all t � 0.
(ii) We say that the non-homogeneous linear differential equation (2) has the

Hyers-Ulam stability (for the class F ), if there exists a constant K > 0 such that the
following statement is true for each ε > 0: If a function x ∈ F satisfies the inequality

|x′(t)+ λx(t)− r(t)|� ε (4)

for all t � 0, then there exists a solution y : [0,∞)→K of differential equation (2) such
that y ∈ F and

|x(t)− y(t)|� Kε

for any t � 0. Then the constant K is called a Hyers-Ulam constant.

DEFINITION 6. Let φ : [0,∞) → (0,∞) be a function.
(i) We say that the homogeneous linear differential equation (1) has the Hyers-

Ulam φ -stability (for the class F ), if there exists a constant K > 0 such that the
following statement is true for every ε > 0: If a function x ∈F satisfies the inequality

|x′(t)+ λx(t)|� φ(t)ε (5)

for any t � 0, then there exists a solution y : [0,∞) → K of differential equation (1)
such that y ∈ F and

|x(t)− y(t)|� Kφ(t)ε

for any t � 0.
(ii) The differential equation (2) is said to have the Hyers-Ulam φ -stability (for

the class F ) when there exists a constant K > 0 such that the following statement is
true for all ε > 0: If a function x ∈ F satisfies the inequality

|x′(t)+ λx(t)− r(t)|� φ(t)ε (6)

for all t � 0, then there exists a solution y : [0,∞)→K of differential equation (2) such
that y ∈ F and

|x(t)− y(t)|� Kφ(t)ε

for all t � 0. For the case, we call the constant K a Hyers-Ulam φ -constant.
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Finally, we introduce the definitions of Mittag-Leffler-Hyers-Ulam stability and
Mittag-Leffler-Hyers-Ulam φ -stability of differential equations (1) and (2).

DEFINITION 7. Let Eν(t) be the Mittag-Leffler function.
(i) We say that the differential equation (1) has the Mittag-Leffler-Hyers-Ulam

stability (for the class F ), if there exists a constant K > 0 such that the following
statement holds true for any ε > 0: If a function x ∈ F satisfies the inequality

|x′(t)+ λx(t)|� εEν(t) (7)

for all t � 0, then there exists a solution y : [0,∞)→K of differential equation (1) such
that y ∈ F and

|x(t)− y(t)|� KεEν (t)

for any t � 0.
(ii) We say that the non-homogeneous differential equation (2) has the Mittag-

Leffler-Hyers-Ulam stability (for the class F ) when there exists a constant K > 0 such
that the following statement is true for each ε > 0: If a function x ∈ F satisfies the
inequality

|x′(t)+ λx(t)− r(t)|� εEν (t) (8)

for every t � 0, then there exists a solution y : [0,∞) → K of differential equation (2)
such that y ∈ F and

|x(t)− y(t)|� KεEν (t)

for any t � 0. We call the constant K a Mittag-Leffler-Hyers-Ulam constant.

DEFINITION 8. Let Eν (t) be the Mittag-Leffler function and let φ : [0,∞) →
(0,∞) be a function.

(i) We say that the differential equation (1) has the Mittag-Leffler-Hyers-Ulam
φ -stability (for the class F ), if there exists a constant K > 0 such that the following
statement is true for any ε > 0: If a function x ∈ F satisfies the inequality

|x′(t)+ λx(t)|� φ(t)εEν (t) (9)

for each t � 0, then there exists a solution y : [0,∞) → K of differential equation (1)
such that y ∈ F and

|x(t)− y(t)| � Kφ(t)εEν(t)

for any t � 0.
(ii) We say that the differential equation (2) has the Mittag-Leffler-Hyers-Ulam

φ -stability (for the class F ) when there exists a constant K > 0 such that the following
statement is true for any ε > 0: If a function x ∈ F satisfies the inequality

|x′(t)+ λx(t)− r(t)|� φ(t)εEν (t) (10)
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for any t � 0, then there exists a solution y : [0,∞) → K of differential equation (2)
such that y ∈ F and

|x(t)− y(t)| � Kφ(t)εEν(t)

for any t � 0. For this case, we call K a Mittag-Leffler-Hyers-Ulam φ -constant.

3. Hyers-Ulam stability of (1)

In this section, we prove several types of Hyers-Ulam stability of homogeneous
first-order linear differential equation (1) using Mahgoub transform.

It should be noted that in this and the next section we investigate various types
of Hyers-Ulam stability for the class F , where F is the class of all continuously
differentiable functions f : [0,∞) → K of exponential order. For any λ ∈ K , we use
the notation ℜ(λ ) to denote the real part of λ .

THEOREM 3. Assume that λ is a constant with ℜ(λ ) > 0 . The homogeneous
linear differential equation (1) is Hyers-Ulam stable in the class F .

Proof. Assume that x ∈ F and x(t) satisfies the inequality (3) for all t � 0. Let
us define a function p : [0,∞) → K by p(t) := x′(t)+ λx(t) for each t � 0. In view of
(3), the inequality |p(t)| � ε holds for each t � 0. Mahgoub transform of p(t) gives
the following result:

P(u) := M {p(t)} = M {x′(t)+ λx(t)}= M {x′(t)}+ λM {x(t)}
= uX(u)−ux(0)+ λX(u),

where X(u) = M {x(t)} and since M {x′(t)} = uM {x(t)}−ux(0) . Thus, we have

M {x(t)} = X(u) =
ux(0)+P(u)

λ +u
. (11)

If we put y(t) = e−λ tx(0) , then y(0) = x(0) and y ∈ F . Mahgoub transform of
y(t) gives the following result:

M {y(t)} = Y (u) =
ux(0)
λ +u

. (12)

Thus,

M {y′(t)+ λy(t)} = M {y′(t)}+ λM {y(t)}= uY (u)−uy(0)+ λY(u).

Using (12), we have M {y′(t)+ λy(t)} = 0. Since M is one-to-one operator, y′(t)+
λy(t) = 0. Hence, y(t) is a solution of the differential equation (1).

Plugging (11) into (12), we obtain

M {x(t)}−M {y(t)}= X(u)−Y(u) =
P(u)
λ +u

=
1
u
P(u) · u

λ +u

=
1
u
P(u)Q(u) = M {p(t)∗ q(t)},
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where Q(u) = u
λ+u which gives q(t) = M−1

{
u

λ+u

}
= e−λ t .

Consequently, M {x(t)− y(t)} = M {p(t) ∗ q(t)} and thus x(t)− y(t) = p(t) ∗
q(t) . Taking modulus on both sides, we have

|x(t)− y(t)|= |p(t)∗ q(t)|=
∣∣∣∣
∫ t

0
p(s)q(t − s)ds

∣∣∣∣ �
∫ t

0
|p(s)||q(t − s)|ds

� ε
∫ t

0
|q(t− s)|ds = εe−ℜ(λ )t

∫ t

0
eℜ(λ )sds =

ε
ℜ(λ )

(
1− e−ℜ(λ )t

)

� Kε

for all t � 0, where we set K = 1
ℜ(λ ) , which implies that the homogeneous linear

differential equation (1) has the Hyers-Ulam stability for the class F . �

We note that if ℜ(λ ) < 0, then ε
ℜ(λ )

(
1− e−ℜ(λ )t) diverges to infinity as t grows

to infinity. Hence, in the case of ℜ(λ ) < 0, we notice that we cannot prove the Hyers-
Ulam stability by applying the Mahgoub transform method.

Similar to Theorem 3, we will prove the Hyers-Ulam φ -stability for the differen-
tial equation (1). For the sake of the completeness of this paper, the proof is introduced
here in detail.

THEOREM 4. Assume that φ : [0,∞) → (0,∞) is an increasing function and λ
is a constant with ℜ(λ ) > 0 . Then the differential equation (1) has the Hyers-Ulam
φ -stability for the class F .

Proof. Assume that x ∈ F and φ : [0,∞) → (0,∞) is an increasing function sat-
isfying the inequality (5) for all t � 0. If we define a function p : [0,∞) → K by
p(t) := x′(t)+ λx(t) for each t � 0, then we have |p(t)| � φ(t)ε for any t � 0.

As we did in the first part of the proof of Theorem 3, we can prove that y(t) =
e−λ tx(0) is a solution of the differential equation (1). Of course, y ∈ F . On the other
hand, Q(u) = u

λ+u gives q(t) = M−1
{

u
λ+u

}
= e−λ t . Moreover, it follows from (11)

and (12) that

M {x(t)}−M {y(t)}= X(u)−Y(u) =
P(u)
λ +u

=
1
u
P(u)Q(u) =

1
u
M {p(t)}M {q(t)}

= M {p(t)∗ q(t)},
which yields that M {x(t)− y(t)} = M {p(t) ∗ e−λ t} . Therefore, x(t)− y(t) = p(t) ∗
e−λ t .

Similar to the proof of Theorem 3, we can show that

|x(t)− y(t)|= ∣∣p(t)∗ e−λ t
∣∣ =

∣∣∣∣
∫ t

0
p(s)e−λ (t−s)ds

∣∣∣∣ �
∫ t

0
|p(s)|∣∣e−λ (t−s)∣∣ds

� φ(t)εe−ℜ(λ )t
∫ t

0
eℜ(λ )sds =

φ(t)ε
ℜ(λ )

(
1− e−ℜ(λ )t

)

� Kφ(t)ε
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for all t � 0, where we set K = 1
ℜ(λ ) . �

Now, we are going to establish the Mittag-Leffler-Hyers-Ulam stability of differ-
ential equation (1) using Mahgoub transform.

THEOREM 5. Let λ and ν be constants satisfying ℜ(λ ) > 0 and ν > 0 . Then
the homogeneous differential equation (1) has the Mittag-Leffler-Hyers-Ulam stability
for the class F .

Proof. Assume that x ∈ F and it satisfies the inequality (7) for any t � 0. Let
p : [0,∞) → K be a function defined by p(t) := x′(t)+ λx(t) for each t � 0. In view
of (7), we have |p(t)| � εEν(t) for all t � 0. Mahgoub transform of p(t) yields the
following result:

P(u) := M {p(t)} = M {x′(t)+ λx(t)}= uX(u)−ux(0)+ λX(u).

Thus, we get

M {x(t)} = X(u) =
ux(0)+P(u)

λ +u
. (13)

If we put y(t) = e−λ tx(0) , then y(0) = x(0) and y ∈ F . Moreover, Mahgoub
transform of y(t) yields

M {y(t)} = Y (u) =
ux(0)
λ +u

. (14)

Thus, it follows from (14) that

M {y′(t)+ λy(t)}= M {y′(t)}+ λM {y(t)}= uY (u)−uy(0)+ λY(u) = 0.

Since M is one-to-one operator, y′(t)+ λy(t) = 0. Hence, y(t) is a solution of the
differential equation (1).

If we set Q(u)= u
λ+u , then the equality M {q(t)}= u

λ+u implies that q(t)= e−λ t .
Plugging (13) into (14), we obtain

M {x(t)}−M {y(t)}= X(u)−Y(u) =
P(u)
λ +u

=
1
u
P(u)Q(u).

Consequently,

M {x(t)− y(t)} = M
{

p(t)∗ e−λ t
}

,

which gives x(t)− y(t) = p(t)∗ e−λ t . Taking modulus on both sides and using the fact
that |p(t)| � εEν(t) for t � 0 and since Eν(t) is increasing for t � 0, we have

|x(t)− y(t)|= ∣∣p(t)∗ e−λ t
∣∣ =

∣∣∣∣
∫ t

0
p(s)e−λ (t−s)ds

∣∣∣∣ �
∫ t

0
|p(s)|∣∣e−λ (t−s)∣∣ds

� εEν(t)e−ℜ(λ )t
∫ t

0
eℜ(λ )sds = εEν(t)

1
ℜ(λ )

(
1− e−ℜ(λ )t

)

= KεEν(t)
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for all t � 0, where we choose K = 1
ℜ(λ ) . Then, referring to Definition 7, we can

confirm that the homogeneous linear differential equation (1) has the Mittag-Leffler-
Hyers-Ulam stability for the class F . �

Similar to the case of Theorem 5, the Mittag-Leffler-Hyers-Ulam φ -stability of
the linear differential equation (1) is proved. For the sake of this paper’s completeness,
we present the whole proof.

THEOREM 6. Assume that φ : [0,∞)→ (0,∞) is an increasing function and that λ
and ν are constants which satisfy ℜ(λ ) > 0 and ν > 0 . Then the differential equation
(1) has the Mittag-Leffler-Hyers-Ulam φ -stability for the class F .

Proof. Assume that x ∈ F , φ : [0,∞) → (0,∞) is a function, and that x(t) and
φ(t) satisfy the inequality (9) for all t � 0. We will prove that there exist a positive
constant K > 0 (independent of ε ) and a solution y : [0,∞) → K of the differential
equation (1) such that y ∈ F and

|x(t)− y(t)| � Kφ(t)εEν(t)

for any t � 0.
If we define a function p : [0,∞) → K by p(t) := x′(t)+ λx(t) for each t � 0,

then we have |p(t)| � φ(t)εEν (t) for each t � 0. Then by applying the same method
as presented in the proof of Theorem 5, we can easily get

|x(t)− y(t)|= ∣∣p(t)∗ e−λ t
∣∣ =

∣∣∣∣
∫ t

0
p(s)e−λ (t−s)ds

∣∣∣∣ �
∫ t

0
|p(s)|∣∣e−λ (t−s)∣∣ds

� φ(t)εEν (t)e−ℜ(λ )t
∫ t

0
eℜ(λ )sds = φ(t)εEν (t)

1
ℜ(λ )

(
1− e−ℜ(λ )t

)

� Kφ(t)εEν (t)

for all t � 0, where we set K = 1
ℜ(λ ) . Then, referring to Definition 8, we confirm that

the homogeneous linear differential equation (1) has the Mittag-Leffler-Hyers-Ulam
φ -stability for the class F . �

4. Hyers-Ulam stability of (2)

In this section, we prove several types of Hyers-Ulam stability of homogeneous
first-order linear differential equation (2) using Mahgoub transform. We recall the fol-
lowing definition

F =
{

f : [0,∞) → K | f is a continuously differentiable function of exponential order
}
,

which was introduced in the previous section.
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THEOREM 7. Assume that r : [0,∞) → K is a continuous function of exponential
order and λ is a constant with ℜ(λ ) > 0 . The differential equation (2) has the Hyers-
Ulam stability for the class F .

Proof. Suppose that x∈F and it satisfies the inequality (4) for all t � 0. Consider
the function p : [0,∞) → K defined by

p(t) := x′(t)+ λx(t)− r(t)

for all t � 0. Then it holds that |p(t)| � ε for all t � 0.
Mahgoub transform of p(t) gives the following result:

M {p(t)} = M {x′(t)+ λx(t)− r(t)}.

That is,

P(u) := M {x′(t)}+ λM {x(t)}−M {r(t)}= uX(u)−ux(0)+ λX(u)−R(u),

which implies that

M {x(t)} = X(u) =
ux(0)+P(u)+R(u)

λ +u
. (15)

If we set y(t) = e−λ tx(0)+(r(t)∗ e−λ t) , then y ∈F . Mahgoub transform of y(t)
yields the following result:

M {y(t)} = Y (u) =
ux(0)+R(u)

λ +u
. (16)

On the other hand,

M {y′(t)+ λy(t)} = uY (u)−ux(0)+ λY(u) = (λ +u)Y(u)−ux(0).

Then, by using (16), we have

M {y′(t)+ λy(t)}= R(u) = M {r(t)}

and thus, y′(t)+λy(t) = r(t) . Hence, y(t) is a solution of the differential equation (2).
In addition, by applying (15) and (16), we can obtain

M {x(t)}−M {y(t)}= X(u)−Y(u) =
P(u)
λ +u

=
1
u
P(u)Q(u) =

1
u
M {p(t)}M {q(t)},

where we set Q(u) = u
λ+u which gives q(t) = M−1

{
u

λ+u

}
= e−λ t . Therefore, we have

M {x(t)− y(t)}= M
{
p(t)∗ e−λ t},
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which yields x(t)− y(t) = p(t)∗ e−λ t . Furthermore,

|x(t)− y(t)|= ∣∣p(t)∗ e−λ t
∣∣ =

∣∣∣∣
∫ t

0
p(s)e−λ (t−s)ds

∣∣∣∣ �
∫ t

0
|p(s)|∣∣e−λ (t−s)∣∣ds

� εe−ℜ(λ )t
∫ t

0
eℜ(λ )sds � Kε

for each t � 0, where we set K = 1
ℜ(λ ) . �

For the Hyers-Ulam φ -stability of non-homogeneous linear differential equation
(2), we obtain the following theorem.

THEOREM 8. Assume that r : [0,∞) → K is a continuous function of exponential
order, φ : [0,∞) → (0,∞) is an increasing function, and that λ is a constant with
ℜ(λ ) > 0 . The differential equation (2) has the Hyers-Ulam φ -stability for the class
F .

Proof. We consider an arbitrary function x ∈ F that satisfies the inequality (6)
for all t � 0. Now we define a function p : [0,∞) → K by p(t) := x′(t)+ λx(t)− r(t)
for each t � 0. Then, |p(t)| � φ(t)ε for all t � 0. It is not difficult to check

M {x(t)} = X(u) =
ux(0)+P(u)+R(u)

λ +u
. (17)

If we set y(t) = e−λ tx(0) + (r(t) ∗ e−λ t) , then y ∈ F . Further, we apply the
Mahgoub transform on both sides to get

M {y(t)} = Y (u) =
ux(0)+R(u)

λ +u
. (18)

On the other hand,

M {y′(t)+ λy(t)}= (λ +u)Y(u)−ux(0).

The relation (18) implies that

M {y′(t)+ λy(t)}= R(u) = M {r(t)}

and thus, y′(t)+λy(t) = r(t) , that is, y(t) is a solution of the differential equation (2).
Using (17) and (18), we obtain

M {x(t)− y(t)}= X(u)−Y(u) =
P(u)
λ +u

=
1
u
M {p(t)}M {q(t)},

where Q(u)= u
λ+u which gives q(t)= e−λ t . Hence, M {x(t)−y(t)}= M {p(t)∗q(t)}

which gives x(t)− y(t) = p(t)∗ q(t) .
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Similar to the proof of Theorem 4, we have

|x(t)− y(t)|= ∣∣p(t)∗ q(t)
∣∣ =

∣∣∣∣
∫ t

0
p(s)q(t− s)ds

∣∣∣∣ �
∫ t

0
|p(s)||q(t− s)|ds

� φ(t)εe−ℜ(λ )t
∫ t

0
eℜ(λ )sds =

φ(t)ε
ℜ(λ )

(
1− e−ℜ(λ )t

)

� Kφ(t)ε

for all t � 0, where we set K = 1
ℜ(λ ) . �

We now prove the Mittag-Leffler-Hyers-Ulam stability of the non-homogeneous
linear differential equation (2) using Mahgoub transform method.

THEOREM 9. Assume that r : [0,∞) → K is a continuous function of exponential
order and that λ and ν are constants satisfying ℜ(λ ) > 0 and ν > 0 . Then the
non-homogeneous linear differential equation (2) has the Mittag-Leffler-Hyers-Ulam
stability for the class F .

Proof. Suppose x∈F and x(t) satisfies (8) for each t � 0. Consider the function
p : [0,∞)→K defined by p(t) := x′(t)+λx(t)−r(t) for all t � 0. Then it follows from
(8) that |p(t)| � εEν (t) for all t � 0.

Mahgoub transform of p(t) yields the following result:

P(u) = M {p(t)} = M {x′(t)+ λx(t)− r(t)}= uX(u)−ux(0)+ λX(u)−R(u),

which further implies that

X(u) = M {x(t)} =
ux(0)+P(u)+R(u)

λ +u
. (19)

If we set y(t) = e−λ tx(0) + (r(t) ∗ e−λ t) , then y ∈ F . We apply the Mahgoub
transform on both sides of the last equality to get

Y (u) = M {y(t)} =
ux(0)+R(u)

λ +u
. (20)

On the other hand,

M {y′(t)+ λy(t)} = uY (u)−ux(0)+ λY(u) = (λ +u)Y(u)−ux(0).

Then, by using (20), we have

M {y′(t)+ λy(t)}= R(u) = M {r(t)}

and thus, y′(t)+ λy(t) = r(t) for all t � 0. Hence, y(t) is a solution of the differential
equation (2).
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In addition, by applying (19) and (20), we get

M {x(t)− y(t)}=
P(u)
λ +u

=
1
u
M {p(t)}M {q(t)},

where M {q(t)}= u
λ+u which gives q(t)= e−λ t . Therefore, M {x(t)−y(t)}= M {p(t)∗

q(t)} which yields x(t)− y(t) = p(t)∗ q(t) for each t � 0. Furthermore,

|x(t)− y(t)|= ∣∣p(t)∗ q(t)
∣∣ =

∣∣∣∣
∫ t

0
p(s)q(t− s)ds

∣∣∣∣ �
∫ t

0
|p(s)||q(t− s)|ds

� εEν(t)e−ℜ(λ )t
∫ t

0
eℜ(λ )sds = εEν(t)

1
ℜ(λ )

(
1− e−ℜ(λ )t

)

� KεEν(t)

for all t � 0, where we set K = 1
ℜ(λ ) . This completes the proof. �

Similar to the case of Theorem 9, the Mittag-Leffler-Hyers-Ulam φ -stability of
the linear differential equation (2) is proved. For the sake of this paper’s completeness,
we present the whole proof.

THEOREM 10. Assume that r : [0,∞)→K is a continuous function of exponential
order, φ : [0,∞) → (0,∞) is an increasing function, and that λ and ν are constants
which satisfy ℜ(λ ) > 0 and ν > 0 . Then the non-homogeneous differential equation
(2) has the Mittag-Leffler-Hyers-Ulam φ -stability for the class F .

Proof. Assume that x ∈ F and it satisfies the inequality (10) for any t � 0. It
is to be proved that there exist a constant K > 0 (independent of ε ) and a solution
y : [0,∞) → K of the differential equation (2) such that y ∈ F and

|x(t)− y(t)| � Kφ(t)εEν(t)

for all t � 0.
If we define a function p : [0,∞) → K by p(t) := x′(t) + λx(t)− r(t) for each

t � 0, then we have |p(t)| � φ(t)εEν (t) for every t � 0. By applying similar methods
as Theorem 9, we can easily prove that there exists a solution y : [0,∞) → K of (2)
satisfying y ∈ F and

|x(t)− y(t)|= ∣∣p(t)∗ e−λ t
∣∣ =

∣∣∣∣
∫ t

0
p(s)e−λ (t−s)ds

∣∣∣∣ �
∫ t

0
|p(s)|∣∣e−λ (t−s)∣∣ds

� φ(t)εEν (t)
1

ℜ(λ )

(
1− e−ℜ(λ )t

)

� Kφ(t)εEν (t)

for all t � 0, where we set K = 1
ℜ(λ ) . �
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5. Examples and remarks

In this section, we will introduce some examples to make it easier to understand
the main results of this paper.

EXAMPLE 1. We consider the following non-homogeneous linear differential equa-
tion

x′(t)+ x(t) = 2cost. (21)

We know that r(t) = 2cost is a function of exponential order and λ = 1.
If a continuously differentiable function z : [0,∞) → K of exponential order satis-

fies

|z′(t)+ z(t)−2cost| � ε

for all t � 0 and for some ε > 0, then Theorem 7 implies that there exists a solution
y : [0,∞) → K of differential equation (21) such that y(t) is of exponential order and

|z(t)− y(t)|� Kε

for all t � 0, where K = 1
ℜ(λ ) = 1. In particular, y(t) = ce−t + sin t + cost for some

constant c ∈ K .

EXAMPLE 2. We consider the following non-homogeneous linear differential equa-
tion

x′(t)+3x(t) = t, (22)

where r(t) = t is a function of exponential order and λ = 3.
If a continuously differentiable function z : [0,∞) → K of exponential order satis-

fies

|z′(t)+3z(t)− t|� ε

for all t � 0 and for some ε > 0, then Theorem 7 implies that there exists a solution
y : [0,∞) → K of differential equation (22) such that y(t) is of exponential order and

|z(t)− y(t)|� Kε

for all t � 0, where we set K = 1
ℜ(λ ) = 1

3 . In particular, y(t) = ce−3t + 1
3 t− 1

9 for some
constant c ∈ K .

REMARK 1. The above examples are also true when we replace ε and Kε with
φ(t)ε and Kφ(t)ε , respectively, where φ(t) is an increasing function. In this case, we
see that the corresponding differential equations have the Hyers-Ulam φ -stability for
the class F .
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REMARK 2. The differential equations (21) and (22) have the Mittag-Leffler-Hyers-
Ulam stability for the class F if ν > 0. In particular, they also have the Mittag-Leffler-
Hyers-Ulam φ -stability for the class F when φ(t) is an increasing function and ν > 0.

6. Discussion

What results can be expected for the Hyers-Ulam stability of the differential equa-
tion (2) when the relevant domain is the set of all non-positive real numbers?

For any given constant ε > 0, we consider the following inequality
∣∣x′(t)+ λx(t)− r(t)

∣∣ � ε (for t � 0), (23)

where x : (−∞,0] → K is a continuously differentiable function of exponential order
and r : (−∞,0] → K is a continuous function of exponential order.

If we set x1(t) = x(−t) and r1(t) = r(−t) for all t � 0, then it follows from (23)
that

∣∣x′1(t)−λx1(t)+ r1(t)
∣∣ � ε (for t � 0). (24)

Since x1(t) is a continuously differentiable function of exponential order and r1(t) is a
continuous function of exponential order, if we additionally assume that ℜ(λ )< 0, then
Theorem 7 and its proof imply that there exists a continuously differentiable function
y : [0,∞) → K of exponential order which satisfies

y′(t)−λy(t)+ r1(t) = 0 (25)

and

|x1(t)− y(t)|� 1
|ℜ(λ )|ε (26)

for all t � 0.
If we define a function z : (−∞,0] → K by z(t) = y(−t) for each t � 0, then

z′(t) = −y′(−t) and so, by (25), we see that z′(t)+ λ z(t) = −y′(−t)+ λy(−t) = r(t)
for any t � 0, i.e., z(t) satisfies the differential equation (2) for all t � 0. Moreover, it
follows from (26) that

|x(t)− z(t)| � 1
|ℜ(λ )|ε

for all t � 0.
Putting all of the above facts together, we get the following theorem.

THEOREM 11. Assume that r : (−∞,0] → K is a continuous function of expo-
nential order and λ is a constant with ℜ(λ ) < 0 . The differential equation (2) has
the Hyers-Ulam stability for the class of all continuously differentiable functions x :
(−∞,0] → K of exponential order.
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Assuming r(t) ≡ 0 in Theorem 11, we obtain the Hyers-Ulam stability of the
differential equation (1) when the relevant domain is the set of all non-positive real
numbers. Other types of Hyers-Ulam stability of the differential equation (2) can be
similarly established when the relevant domain is the set of all non-positive real num-
bers.

7. Conclusions

In this paper, we proved the Hyers-Ulam stability, Hyers-Ulam φ -stability, Mittag-
Leffler-Hyers-Ulam stability, and Mittag-Leffler-Hyers-Ulam φ -stability of the linear
differential equations of first order with constant coefficients using Mahgoub transform
method. In other words, we established sufficient criteria for the Hyers-Ulam stability
of first-order linear differential equations with constant coefficients using the Mahgoub
transform method.

Moreover, this paper provides a new method to investigate the Hyers-Ulam stabil-
ity of differential equations. This is the first attempt to use the Mahgoub transformation
to prove the Hyers-Ulam stability for linear differential equations of the first order.
Furthermore, this paper shows that the Mahgoub transform method is more convenient
for investigating the stability problems for linear differential equations with constant
coefficients.
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