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ON A HILBERT–TYPE INEQUALITY WITH THE

KERNEL INVOLVING EXTENDED HARDY OPERATOR

MINGHUI YOU ∗ AND XIA SUN

(Communicated by Y.-H. Kim)

Abstract. In this paper by defining a extended Hardy operator, a new kernel function including
both the homogeneous and the non-homogeneous cases is constructed. Dealing with these cases
in a unified way, a Hilbert-type inequality involving the newly constructed kernel is established,
and the constant factor is proved to be the best possible. The equivalent Hardy-type inequal-
ity is also considered in parallel. Furthermore, by specifying the kernel function, some special
and meaningful Hilbert-type inequalities with the constant factors related to the higher deriva-
tive of trigonometric functions and special functions are presented at the end of the paper, and
these newly obtained inequalities are proved to be the extensions of some classical Hilbert-type
inequalities.

1. Introduction

Throughout this paper, it is assumed that p and q satisfy p > 1, 1
p + 1

q = 1 except
where specifically noted.

Let f ,g � 0, f ∈ Lp(R+) , g ∈ Lq(R+) , then we have [7]:

∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy <
π

sin π
p

‖ f‖p‖g‖q, (1.1)

∫ ∞

0

∫ ∞

0

ln x
y

x− y
f (x)g(y)dxdy <

(
π

sin π
p

)2

‖ f‖p‖g‖q, (1.2)

where the constant factors π
sin π

p
and

(
π

sin π
p

)2
are the best possible.

Inequality (1.1) is called Hardy-Hilbert inequality, and (1.2) is usually named as
Hilbert-type inequality. Although more than 100 years have passed since they were
stated at the beginning of the 20th century, numerous researchers are still interested
in the refinements, extensions, and analogies of inequalities (1.1) and (1.2). Through
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continuous innovation of kernel functions and parameterization of the new kernel func-
tions, a large number of new Hilbert-type inequalities were established in the past sev-
eral decades. Considering the discrete form, half-discrete form and high-dimensional
generalizations of these inequalities, such type of inequalities have grown into a vast
inequality system.

The inequality below is a classical extension of (1.1) that was established by Yang
[19] in 1998. That is

∫ ∞

0

∫ ∞

0

f (x)g(y)
(x+ y)ρ dxdy < B

(ρ
2

,
ρ
2

)
‖ f‖2,μ‖g‖2,ν , (1.3)

where ρ > 0, μ(x) = ν(x) = x1−ρ , and

B(u,v) :=
∫ ∞

0

xu−1

(1+ x)u+vdx = B(v,u) (u,v > 0).

In 2004, Yang [20] gave another extension of (1.1) as follows:

∫ ∞

0

∫ ∞

0

f (x)g(y)
xρ + yρ dxdy <

π
ρ sin π

r

‖ f‖p,μ‖g‖q,ν , (1.4)

where ρ > 0, μ(x) = xp(1− ρ
r )−1, ν(y) = yq(1− ρ

s )−1, 1
r + 1

s = 1, and the constant factor
is the best possible.

Other extensions of inequality (1.1), as well as some discrete and half-discrete
forms, can be found in [9, 10, 11, 12, 21, 22, 23, 24, 25, 26]. Furthermore, some Hilbert-
type inequalities with newly constructed kernel functions appeared sporadically in the
past several years. For example, in 2012, Yang [27] established the following inequality
with a homogeneous kernel involving exponent function:∫ ∞

0

∫ ∞

0
e−

ax
y f (x)g(y)dxdy < a−β Γ(β )‖ f‖p,μ‖g‖q,ν , (1.5)

where a > 0, β > 0, μ(x) = xp(1−β )−1, and ν(y) = yq(1+β )−1 . In addition, in 2013,
Liu [14] established an inequality with a non-homogeneouskernel involving hyperbolic
secant function as follows:∫ ∞

0

∫ ∞

0
sech(xy) f (x)g(y)dxdy < 2c0‖ f‖2,μ‖g‖2,μ (1.6)

where μ(x) = x−3 and c0 = ∑∞
k=0

(−1)k

(2k+1)2 = 0.91596559+ , which is the Catalan con-

stant. Thereafter, Yang [28] gave a similar inequality involving hyperbolic cosecant
function:

∫ ∞

0

∫ ∞

0
csch(xδ y) f (x)g(y)dxdy <

π2

4
‖ f‖2,μ‖g‖2,ν , (1.7)

where δ ∈ {1,−1}, μ(x) = x1−4δ , and ν(x) = x−3 .
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It should be noted that, by the introduction of parameters δ , (1.7) gives a unified
treatment of Hilbert-type inequalities involving a homogeneous kernel of degree–0 and
a non-homogeneous kernel. This method of dealing with kernel functions can also be
found in [8, 16]. Furthermore, some other Hilbert-type inequalities with new kernels
can be found in [4, 9, 16, 25, 26, 24].

Besides the above-mentioned inequalities of Hilbert-type, another classical in-
equality of great significance in analysis should be presented. It was stated by Hardy in
1920, and is usually expressed as follows:∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx <

(
p

p−1
‖ f‖p

)p

, (1.8)

where p > 1, and f is a non-negative function such that f ∈ Lp(R+). Just like Hilbert’s
inequality, in the past 100 years, researchers have never stopped studying Hardy’s in-
equality, and numerous results were established [1, 2, 3, 5, 13, 15, 17, 29]. As is well
known, Hilbert’s inequality (1.1) has an equivalent form which is similar to Hardy’s
inequality (1.8), that is

∫ ∞

0

(∫ ∞

0

f (x)
x+ y

dx

)p

dy <

(
π

sin π
p

‖ f‖p

)p

. (1.9)

Inequality (1.9) is the so-called Hardy-type inequality. Generally, a Hilbert-type in-
equality has an equivalent inequality of Hardy-type. Therefore, they always appear in
pairs in the literature.

It is generally known that Hardy’s inequality implies the classical Hardy operator,
which reveals the arithmetic mean of a function in integral form. It can be written as
follows:

(H f )(u) :=
1
u

∫ u

0
f (t)dt. (1.10)

For some extended forms of Hardy operator, we can refer to [1,3,6,13,15]. Inspired by
these literature, a new hardy-type operator is proposed as follows:

(Th)(u) :=
1

ψ(u)−ϕ(u)

∫ ψ(u)

ϕ(u)
h(t)dt (1.11)

where ϕ(u) and ψ(u) are two real valued functions defined on R+ , ϕ(u) �= ψ(u) for
arbitrary u ∈ R+ , h(t) is a continuous function defined on R and h(t) � 0. Setting
u = xβ1yβ2 , β1β2 �= 0 in (1.11), a new kernel function can be constructed to include
both the homogeneous and the non-homogeneous cases in a unified manner, and a new
Hilbert-type inequality can be established with a best possible constant factor. Detailed
definitions and lemmas will be presented in the next section.

2. Definitions and lemmas

DEFINITION 2.1. Let u > 0,

Γ(u) :=
∫ ∞

0
xu−1e−xdx
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is the Γ-function. Specially, we have Γ(u) = (u−1)! for u ∈ N+ .

LEMMA 2.2. Let β > 0, β1β2 �= 0. Let ϕ(u) and ψ(u) be two real valued func-
tions defined on R+ , and ϕ(u) �= ψ(u) for arbitrary u ∈ R+ . Suppose that h(t) is a
continuous function defined on R , h(t) � 0 , and (Th)(u) is defined by (1.11), such
that

C (h,ϕ ,ψ ,β ) :=
∫ ∞

0
uβ−1(Th)(u)du < ∞.

For arbitrary sufficiently small positive number ε , define the functions fε(x) and gε(x)
as follows:

fε (x) :=

{
x

p(ββ1−1)−β1ε
p , x ∈ Ω1

0 x ∈ R+ \Ω1

, gε(y) :=

{
y

q(ββ2−1)+β2ε
q , y ∈ Ω2

0, y ∈ R+ \Ω2

.

where Ω1 =
{

x : x > 0, x
β1
|β1| > 1

}
, and Ω2 =

{
y : y > 0, y

β2
|β2| < 1

}
. Then

ε
∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) fε (x)gε(y)dxdy =

1
| β1β2 |C (h,ϕ ,ψ ,β )+o(1). (2.1)

Proof. Setting xβ1yβ2 = t , we obtain

ε
∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) fε (x)gε(y)dxdy

= ε
∫

Ω2

y
q(ββ2−1)+β2ε

q

(∫
Ω1

(Th)(xβ1yβ2)x
p(ββ1−1)−β1ε

p dx

)
dy

=
ε

| β1 |
∫

Ω2

yβ2ε−1
(∫ ∞

yβ2
(Th)(t)tβ− ε

p−1dt

)
dy

=
ε

| β1 |
∫

Ω2

yβ2ε−1
(∫ ∞

1
(Th)(t)tβ− ε

p−1dt

)
dy

+
ε

| β1 |
∫

Ω2

yβ2ε−1
(∫ 1

yβ2
(Th)(t)tβ− ε

p−1dt

)
dy

=
1

| β1β2 |
∫ ∞

1
(Th)(t)tβ− ε

p−1dt +
ε

| β1 |
∫

Ω2

yβ2ε−1
(∫ 1

yβ2
(Th)(t)tβ− ε

p−1dt

)
dy.

(2.2)

No matter β2 > 0 or β2 < 0, it follows from Fubini’s theorem that∫
Ω2

yβ2ε−1
(∫ 1

yβ2
(Th)(t)tβ− ε

p−1dt

)
dy =

1
| β2 | ε

∫ 1

0
(Th)(t)tβ+ ε

q−1dt. (2.3)

Applying (2.3) to (2.2), we can obtain

ε
∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) fε (x)gε(y)dxdy

=
1

| β1β2 |
{∫ ∞

1
(Th)(t)tβ− ε

p−1dt +
∫ 1

0
(Th)(t)tβ+ ε

q−1dt

}
. (2.4)



ON A HILBERT-TYPE INEQUALITY 1243

Let ε → 0+ , we arrive at (2.1). Lemma 2.2 is proved. �

LEMMA 2.3. Let ρ ,β ,γ > 0 , 0 < β < γ −ρ and φ(x) = cotx . Then∫ ∞

0

tβ−1− tρ+β−1

1− tγ dt =
π
γ

{
φ
(

β π
γ

)
−φ

(
(ρ + β )π

γ

)}
. (2.5)

Proof. Write∫ ∞

0

tβ−1− tρ+β−1

1− tγ dt =
∫ 1

0

tβ−1− tρ+β−1

1− tγ dt

+
∫ ∞

1

tβ−1− tρ+β−1

1− tγ dt := I1 + I2. (2.6)

Expanding 1
1−tγ into power series and exchange the order of integral and summation,

then

I1 =
∞

∑
k=0

∫ 1

0

{
tkγ+β−1− tkγ+ρ+β−1

}
=

∞

∑
k=0

{
1

kγ + β
− 1

kγ + ρ + β

}
. (2.7)

Similarly, by using variable substitution t = 1
u , we can get

I2 =
∫ 1

0

uγ−ρ−β−1−uγ−β−1

1−uγ du =
∞

∑
k=0

{
1

kγ + γ −ρ −β
− 1

kγ + γ −β

}
. (2.8)

Applying (2.7) and (2.8) to (2.6), we can get∫ ∞

0

tβ−1− tρ+β−1

1− tγ dt

=
∞

∑
k=0

{
1

kγ + β
− 1

kγ + γ −β
+

1
kγ + γ −ρ −β

− 1
kγ + ρ + β

}
. (2.9)

�
Since φ(x) = cotx has the form of rational fraction expansion [18] as follows:

φ(x) =
1
x

+
∞

∑
k=1

{
1

x+ kπ
+

1
x− kπ

}
, (2.10)

letting x = β π
γ , and by careful computation, it follows that

∞

∑
k=0

{
1

kγ + β
− 1

kγ + γ −β

}
=

π
γ

φ
(

β π
γ

)
. (2.11)

Similarly, letting x = (ρ+β )π
γ , we have

∞

∑
k=0

{
1

kγ + ρ + β
− 1

kγ + γ −ρ −β

}
=

π
γ

φ
(

(ρ + β )π
γ

)
. (2.12)

Combining (2.9), (2.11) and (2.12), we have (2.5).
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LEMMA 2.4. Let 0 < ρ < γ, and n ∈ N . Let sinh(t) = et−e−t

2 , csch(t) = 2
et−e−t ,

and Φ(x) = tanx . Then

∫ ∞

0
t2n sinh(ρt)csch(γt)dt =

(
π
γ

)2n+1

Φ(2n)
(

ρπ
2γ

)
. (2.13)

Proof. Since 1
eγt−e−γt = ∑∞

k=0 e−(2k+1)γt , we can obtain

∫ ∞

0
t2n sinh(ρt)csch(γt)dt =

∞

∑
k=0

∫ ∞

0

{
e−(2γk+γ−ρ)tt2n− e−(2γk+γ+ρ)tt2n

}
dt. (2.14)

Setting (2γk+ γ −ρ)t = u, then

∫ ∞

0
e−(2γk+γ−ρ)t t2ndt =

(2n)!
(2γk+ γ −ρ)2n+1 . (2.15)

Similarly, we have

∫ ∞

0
e−(2γk+γ+ρ)t t2ndt =

(2n)!
(2γk+ γ + ρ)2n+1 . (2.16)

Applying (2.15) and (2.16) to (2.14), we have

∫ ∞

0
t2n sinh(ρt)csch(γt)dt =

∞

∑
k=0

{
(2n)!

(2γk+ γ −ρ)2n+1 −
(2n)!

(2γk+ γ + ρ)2n+1

}
. (2.17)

Take the 2nth derivative of (2.10), then

φ (2n)(x) = (2n)!

{
1

x2n+1 +
∞

∑
k=1

(
1

(x+ kπ)2n+1 +
1

(x− kπ)2n+1

)}
. (2.18)

Letting x = γ−ρ
2γ π in (2.18), in view of φ (2n)

(
(γ−ρ)π

2γ

)
= Φ(2n)

(
ρπ
2γ

)
, we have

Φ(2n)
(

ρπ
2γ

)
=

(2n)!(2γ)2n+1

π2n+1

∞

∑
k=0

{
1

(2γk+ γ −ρ)2n+1 −
1

(2γk+ γ + ρ)2n+1

}
.

(2.19)

Combining (2.18) and (2.19), we arrive at (2.13), and the proof of Lemma 2.4 is com-
pleted. �

LEMMA 2.5. Let γ > 0, n ∈ N, and φ(x) = cotx. Then

∫ ∞

0
t2n+1 csch(γt)dt = −

(
π
2γ

)2n+2

φ (2n+1)
(π

2

)
. (2.20)
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Proof. Similar to the proof of Lemma 2.4, we can obtain

∫ ∞

0
t2n+1 csch(γt)dt =

2(2n+1)!
γ2n+2

∞

∑
k=0

1
(2k+1)2n+2 . (2.21)

Take the derivative of (2.18). Then

φ (2n+1)(x) = −(2n+1)!

{
1

x2n+2 +
∞

∑
k=1

(
1

(x+ kπ)2n+2 +
1

(x− kπ)2n+2

)}
. (2.22)

Let x = π
2 , then

φ (2n+1)
(π

2

)
=

−(2n+1)!22n+3

π2n+2

∞

∑
k=0

1
(2k+1)2n+2 . (2.23)

Combining (2.22) and (2.23), we can obtain (2.21), and Lemma 2.5 is proved. �

LEMMA 2.6. Let 0 < β < γ, n ∈ N, and φ(x) = cotx. Then

∫ ∞

0

tβ−1(ln t)2n+1

tγ −1
dt = −

(
π
γ

)2n+2

φ (2n+1)
(

β π
γ

)
. (2.24)

Proof. Expanding 1
1−tγ into power series and exchange the order of integral and

summation, then

∫ ∞

0

tβ−1(ln t)2n+1

tγ −1
dt

=
∫ 1

0

tβ−1(ln t)2n+1

tγ −1
dt +

∫ ∞

1

tβ−1(ln t)2n+1

tγ −1
dt

=
∫ 1

0

tβ−1(ln t)2n+1

tγ −1
dt +

∫ 1

0

tγ−β−1(ln t)2n+1

tγ −1
dt

=−
∞

∑
k=0

{∫ 1

0
tkγ+β−1(ln t)2n+1dt +

∫ 1

0
tkγ+γ−β−1(ln t)2n+1dt

}
. (2.25)

Setting ln t = −u
kγ+β , then

∫ 1

0
tkγ+β−1(ln t)2n+1dt =

−1

(kγ + β )2n+2

∫ ∞

0
e−uu2n+1du =

−(2n+1)!

(kγ + β )2n+2 . (2.26)

Similarly, we can obtain

∫ 1

0
tkγ+γ−β−1(ln t)2n+1dt =

−(2n+1)!

(kγ + γ −β )2n+2 . (2.27)
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Applying (2.26) and (2.27) to (2.25), we obtain

∫ ∞

0

tβ−1(ln t)2n+1

tγ −1
dt = (2n+1)!

∞

∑
k=0

{
1

(kγ + β )2n+2 +
1

(kγ + γ −β )2n+2

}
. (2.28)

Let x = β π
γ in (2.22), and apply the result to (2.28), then we can obtain (2.24). �

LEMMA 2.7. Let 0 < a < b, and 0 < β < γ. Then

∫ ∞

0
uβ−2

∫ bu

au

1
(1+ t)γ dtdu =

⎧⎪⎨
⎪⎩

lna−lnb
1−γ , β = 1,

b1−β−a1−β

1−β B(β ,γ −β ) , β �= 1.

(2.29)

Proof. If β = 1, then γ > 1. By Fubini’s theorem, we can obtain

∫ ∞

0
uβ−2

∫ bu

au

1
(1+ t)γ dtdu =

∫ ∞

0

1
(1+ t)γ

∫ t
a

t
b

1
u
dudt =

lna− lnb
1− γ

.

If β �= 1, by Fubini’s theorem, we can have

∫ ∞

0
uβ−2

∫ bu

au

1
(1+ t)γ dtdu =

∫ ∞

0

1
(1+ t)γ

∫ t
a

t
b

uβ−2dudt =
b1−β −a1−β

1−β

∫ ∞

0

tβ−1

(1+ t)γ dt

=
b1−β −a1−β

1−β
B(β ,γ −β ) .

Lemma 2.7 is proved. �

3. Main results

THEOREM 3.1. Let β > 0, β1β2 �= 0. Let ϕ(u) and ψ(u) be two real valued
functions defined on R+ , and ϕ(u) �= ψ(u) for arbitrary u ∈ R+ . Suppose that h(t) is
a continuous function defined on R , h(t) � 0 , and (Th)(u) is defined by (1.11), such
that

C (h,ϕ ,ψ ,β ) :=
∫ ∞

0
uβ−1(Th)(u)du < ∞.

Let μ(x) = xp(1−β β1)−1, ν(y) = yq(1−β β2)−1 and f (x), g(x) � 0 with f (x) ∈ Lp
μ(R+),

and g(x) ∈ Lq
ν(R+). Then

∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) f (x)g(y)dxdy <| β1 |−

1
q | β2 |−

1
p C (h,ϕ ,ψ ,β )‖ f‖p,μ‖g‖q,ν ,

(3.1)

where the constant factor | β1 |−
1
q | β2 |−

1
p C (h,ϕ ,ψ ,β ) is the best possible.
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Proof. By Hölder’s inequality, we have

∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) f (x)g(y)dxdy

=
∫ ∞

0

∫ ∞

0

((
(Th)(xβ1yβ2)

) 1
p
x

1−ββ1
q y

ββ2−1
p f (x)

)

×
((

Th)(xβ1yβ2)
) 1

q
y

1−ββ2
p x

ββ1−1
q g(y)

)
dxdy

�
(∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2)yβ β2−1x

p(1−ββ1)
q f p(x)dxdy

) 1
p

×
(∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2)xβ β1−1y

q(1−ββ2)
p gq(y)dxdy

) 1
q

=
(∫ ∞

0
ω(x)x

p(1−ββ1)
q f p(x)dx

) 1
p
(∫ ∞

0
ϖ(y)y

q(1−ββ2)
p gq(y)dy

) 1
q

, (3.2)

where ω(x) =
∫ ∞
0 (Th)(xβ1yβ2)yβ β2−1dy, and ϖ(y) =

∫ ∞
0 (Th)(xβ1yβ2)xβ β1−1dx.

Setting xβ1yβ2 = u, we have

ω(x) =
x−β β1

| β2 |
∫ ∞

0
uβ−1(Th)(u)du =

1
| β2 |C (h,ϕ ,ψ ,β )x−β β1 . (3.3)

Similarly, we obtain

ϖ(y) =
y−β β2

| β1 |
∫ ∞

0
uβ−1(Th)(u)du =

1
| β1 |C (h,ϕ ,ψ ,β )y−β β2. (3.4)

Applying (3.3) and (3.4) to (3.2), then

∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) f (x)g(y)dxdy �| β1 |−

1
q | β2 |−

1
p C (h,ϕ ,ψ ,β )‖ f‖p,μ‖g‖q,ν .

(3.5)
If (3.5) takes the form of equality, then there must exist two constants A1 and A2 that
are not both equal to zero, such that

A1(Th)(xβ1yβ2)yβ β2−1x
p(1−ββ1)

q f p(x) = A2(Th)(xβ1yβ2)xβ β1−1y
q(1−ββ2)

p gq(y),

a. e. in R
2
+. That is

A1x
p(1−β β1) f p(x) = A2y

q(1−β β2)gq(y), a. e. in R
2
+.

Therefore, there exists a constant A such that

A1x
p(1−β β1) f p(x) = A, a. e. in R+;
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and

A2y
q(1−β β2)gq(y) = A, a. e. in R+.

Without loss of generality, assuming A1 �= 0, it follows that xp(1−β β1)−1 f p(x) = A
A1x

a.e. in R+, and this contradicts the fact f (x) ∈ Lp
μ(R+) . Thus, (3.5) takes the form of

strict inequality, and (3.1) is obtained.
It remains to show that the constant factor in (3.1) is the best possible. Assume

that there is a positive constant C < | β1 |−
1
q | β2 |−

1
p C (h,ϕ ,ψ ,β ), such that (3.1) still

holds for | β1 |−
1
q | β2 |−

1
p C (h,ϕ ,ψ ,β ) being replaced by C . That is

∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) f (x)g(y)dxdy < C‖ f‖p,μ‖g‖q,ν . (3.6)

Replacing f and g in (3.6) by fε and gε defined in Lemma 2.2 respectively, and by
virtue of (2.1), it follows that

1
| β1β2 |C (h,ϕ ,ψ ,β )+o(1)

= ε
∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) fε (x)gε(y)dxdy

< εC
(∫

Ω1

x−β1ε−1dx

) 1
p
(∫

Ω2

xβ2ε−1dx

) 1
q

= C | β1 |−
1
p | β2 |−

1
q .

Let ε → 0, then we can obtain | β1 |−
1
q | β2 |−

1
p C (h,ϕ ,ψ ,β ) � C, and this contradicts

the assumption. Thus, the constant factor in (3.1) is the best possible. Theorem 3.1 is
proved. �

THEOREM 3.2. Let β > 0, β1β2 �= 0. Let ϕ(u) and ψ(u) be two real valued
functions defined on R+ , and ϕ(u) �= ψ(u) for arbitrary u ∈ R+ . Suppose that h(t) is
a continuous function defined on R , h(t) � 0 , and (Th)(u) is defined by (1.11), such
that

C (h,ϕ ,ψ ,β ) :=
∫ ∞

0
uβ−1(Th)(u)du < ∞.

Let μ(x) = xp(1−β β1)−1, ν(y) = yq(1−β β2)−1 and f (x) � 0 with f (x) ∈ Lp
μ(R+) . Then

∫ ∞

0
ypβ β2−1

(∫ ∞

0
(Th)(xβ1yβ2) f (x)dx

)p

dy <
(
| β1 |−

1
q | β2 |−

1
p C (h,ϕ ,ψ ,β )‖ f‖p,μ

)p
,

(3.7)

where the constant factor
(
| β1 |−

1
q | β2 |−

1
p C (h,ϕ ,ψ ,β )

)p
is the best possible, and

(3.7) is equivalent to (3.1) .
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Proof. Setting g(y) := ypβ β2−1
(∫ ∞

0 (Th)(xβ1yβ2) f (x)dx
)p−1

, by Theorem 3.1, we
can obtain

0 < (‖g‖q,ν)pq =
(∫ ∞

0
yq(1−β β2)−1gq(y)dy

)p

=
(∫ ∞

0
ypβ β2−1

(∫ ∞

0
(Th)(xβ1yβ2) f (x)dx

)p

dy

)p

=
(∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) f (x)g(y)dxdy

)p

�
(
| β1 |−

1
q | β2 |−

1
p C (h,ϕ ,ψ ,β )‖ f‖p,μ‖g‖q,ν

)p
. (3.8)

Thus

0 <

∫ ∞

0
ypβ β1−1

(∫ ∞

0
(Th)(xβ1yβ2) f (x)dx

)p

dy

= (‖g‖q,ν)q �
(
| β1 |−

1
q | β2 |−

1
p C (h,ϕ ,ψ ,β )‖ f‖p,μ

)p
. (3.9)

Since f (x) ∈ Lp
μ(R+), it follows from (3.9) that g(x)∈ Lq

ν(R+). By using Theorem 3.1
once more, both (3.8) and (3.9) take the form of strict inequalities, and therefore (3.7)
is proved.

On the other hand, if (3.7) is valid, by Hölder’s inequality, we obtain

∫ ∞

0

∫ ∞

0
(Th)(xβ1yβ2) f (x)g(y)dxdy

=
∫ ∞

0

(
y−(1−β β2− 1

q )
∫ ∞

0
(Th)(xβ1yβ2) f (x)dx

)(
y1−β β2− 1

q g(y)
)

dy

�
(∫ ∞

0
ypβ β2−1

(∫ ∞

0
(Th)(xβ1yβ2) f (x)dx

)p

dy

) 1
p

‖g‖q,ν . (3.10)

Applying (3.7) to (3.10), we can get (3.1). Therefore, (3.1) is equivalent to (3.7). From

the equivalence of (3.1) and (3.7), the constant factor
(
| β1 |−

1
q | β2 |−

1
p C (h,ϕ ,ψ ,β )

)p

in (3.7) is the best possible obviously, and therefore the proof of Theorem 3.2 is com-
pleted. �

4. Applications

In Theorem 3.1, let h(t) = t
ρ
γ −1, ψ(x) = tγ , γ > ρ > 0, and ϕ(x) = 1. By using

Lemma 2.3, we obtain the following corollary.

COROLLARY 4.1. Let ρ ,β ,γ > 0 , 0 < β < γ −ρ , and β1β2 �= 0. φ(x) = cotx,
μ(x) = xp(1−β β1)−1, and ν(y) = yq(1−β β2)−1 . Suppose that f (x), g(x) � 0 , such that
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f (x) ∈ Lp
μ(R+), and g(x) ∈ Lq

ν(R+) . Then

∫ ∞

0

∫ ∞

0

(xβ1yβ2)ρ −1

(xβ1yβ2)γ −1
f (x)g(y)dxdy

<| β1 |−
1
q | β2 |−

1
p

π
γ

{
φ
(

β π
γ

)
−φ

(
(ρ + β )π

γ

)}
‖ f‖p,μ‖g‖q,ν . (4.1)

In corollary 4.1, let γ = 2ρ , β1 = β2 = 1, then 0 < β < ρ , and (4.1) reduces to

∫ ∞

0

∫ ∞

0

f (x)g(y)
1+(xy)ρ dxdy <

π

ρ sin
(

β π
ρ

)‖ f‖p,μ‖g‖q,ν , (4.2)

where μ(x) = xp(1−β )−1, ν(y) = yq(1−β )−1 .
In corollary 4.1, Let γ = 2ρ , β1 = 1, β2 = −1, then 0 < β < ρ . By replacing

g(y)yρ with g(y) , (4.1) reduces to

∫ ∞

0

∫ ∞

0

f (x)g(y)
xρ + yρ dxdy <

π

ρ sin
(

β π
ρ

)‖ f‖p,μ‖g‖q,ν , (4.3)

where μ(x) = xp(1−β )−1, ν(y) = yq(1+β−ρ)−1 . Let β = ρ
r , 1

r + 1
s = 1 in (4.3), we can

obtain (1.4).
In corollary 4.1, let γ = 3ρ , β1 = 1, β2 = −1, then 0 < β < 2ρ , and

∫ ∞

0

∫ ∞

0

f (x)g(y)
x2ρ +(xy)ρ + y2ρ dxdy <

π
3ρ

{
φ
(

β π
3ρ

)
−φ

(
(ρ + β )π

3ρ

)}
‖ f‖p,μ‖g‖q,ν ,

(4.4)

where μ(x) = xp(1−β )−1, ν(y) = yq(1+β−2ρ)−1 . Let β = ρ in (4.4), then

∫ ∞

0

∫ ∞

0

f (x)g(y)
x2ρ +(xy)ρ + y2ρ dxdy <

2
√

3π
9ρ

‖ f‖p,μ‖g‖q,ν . (4.5)

In Theorem 3.1, let h(t) = t
ρ
γ −1

, ψ(t) = eγt , ϕ(t) = e−γt , 0 < ρ < γ, and β =
2n+1. By using Lemma 2.4, we obtain corollary 4.2.

COROLLARY 4.2. Let 0 < ρ < γ , n ∈ N, sinh(t) = et−e−t

2 , csch(t) = 2
et−e−t ,

Φ(x) = tanx, μ(x) = xp(1−(2n+1)β1)−1, and ν(y) = yq(1−(2n+1)β2)−1 . Suppose that
f (x), g(x) � 0 , such that f (x) ∈ Lp

μ(R+), and g(x) ∈ Lq
ν(R+) . Then

∫ ∞

0

∫ ∞

0
sinh

(
ρxβ1yβ2

)
csch

(
γxβ1yβ2

)
f (x)g(y)dxdy

<| β1 |−
1
q | β2 |−

1
p

(
π
2γ

)2n+1

Φ(2n)
(

ρπ
2γ

)
‖ f‖p,μ‖g‖q,ν . (4.6)
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Let γ = 2ρ , β1 = β2 = 1 in (4.6), then

∫ ∞

0

∫ ∞

0
sech(ρxy) f (x)g(y)dxdy <

1
24n+1

(
π
ρ

)2n+1

φ (2n)
(π

4

)
‖ f‖p,μ‖g‖q,ν , (4.7)

where μ(x) = x−(2pn+1), ν(y) = y−(2qn+1) . Let ρ = 1, n = 0 in (4.7), we can get a
Hilbert-type inequality similar to (1.6) with the best constant factor π

2 .
In Theorem 3.1, let h(t) = 1

t , ψ(t) = eγt , ϕ(t) = e−γt , γ > 0, and β = 2n+1. By
using Lemma 2.5, and replacing f (x)xβ1 with f (x) , g(y)yβ2 with g(y) , we can obtain
the following corollary.

COROLLARY 4.3. Let γ > 0, β1β2 �= 0, and n∈N . Let μ(x) = xp(1−(2n+2)β1)−1,
and ν(y) = yq(1−(2n+2)β2)−1 . Suppose that f (x), g(x) � 0 , such that f (x) ∈ Lp

μ(R+),
and g(x) ∈ Lq

ν(R+) . Then
∫ ∞

0

∫ ∞

0
csch

(
γxβ1yβ2

)
f (x)g(y)dxdy

< − | β1 |−
1
q | β2 |−

1
p

(
π
2γ

)2n+2

φ (2n+1)
(π

2

)
‖ f‖p,μ‖g‖q,ν . (4.8)

Let β1 = δ , δ ∈ {1,−1}, β2 = 1, γ = 1, n = 0, and p = q = 2, then we can
obtain (1.7).

In Theorem 3.1, let h(t) = (lnt)2n

t , n ∈ N, ψ(t) = tγ , and ϕ(t) = 1. By using
Lemma 2.6, we obtain corollary 4.4.

COROLLARY 4.4. Let 0 < β < γ, β1β2 �= 0, n ∈ N, μ(x) = xp(1−β β1)−1, and
ν(y) = yq(1−β β2)−1 . Suppose that f (x), g(x) � 0 , such that f (x) ∈ Lp

μ(R+), and
g(x) ∈ Lq

ν(R+) . Then

∫ ∞

0

∫ ∞

0

(
ln
(
xβ1yβ2

))2n+1(
xβ1yβ2

)γ −1
f (x)g(y)dxdy

< − | β1 |−
1
q | β2 |−

1
p

(
π
γ

)2n+2

φ (2n+1)
(

β π
γ

)
‖ f‖p,μ‖g‖q,ν . (4.9)

Let β1 = 1, β2 = −1 in (4.9), and replace g(y)yγ with g(y) , then

∫ ∞

0

∫ ∞

0

(
ln x

y

)2n+1

xγ − yγ f (x)g(y)dxdy < −
(

π
γ

)2n+2

φ (2n+1)
(

β π
γ

)
‖ f‖p,μ‖g‖q,ν .

(4.10)
where μ(x) = xp(1−β )−1, ν(y) = yq(1+β−γ)−1 . Obviously, (4.10) is an extension of
(1.2). In fact, setting n = 0, γ = 1, and β = 1

q in (4.10), we can obtain (1.2).

In Theorem 3.1, let h(t) = 1√
1+t

, ψ(t) = bt, ϕ(t) = at, and b > a > 0. By using
Lemma 2.7, then we can get the following corollary.
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COROLLARY 4.5. Let 0 < a < b, 0 < β < 1
2 , and β1β2 �= 0. Let μ(x)= xp(1−β β1)−1,

and ν(y) = yq(1−β β2)−1 . Suppose that f (x), g(x) � 0 , such that f (x) ∈ Lp
μ(R+), and

g(x) ∈ Lq
ν(R+) . Then

∫ ∞

0

∫ ∞

0

f (x)g(y)dxdy√
1+axβ1yβ2 +

√
1+bxβ1yβ2

<| β1 |−
1
q | β2 |−

1
p C(a,b,β )‖ f‖p,μ‖g‖q,ν ,

(4.11)

where C(a,b,β ) := a1−β−b1−β

2(a−b)(1−β )B
(
β , 1

2 −β
)
.

Let β1 = 1, β2 = −1 in (4.11), and replace
√

yg(y) by g(y) , then

∫ ∞

0

∫ ∞

0

f (x)g(y)√
ax+ y+

√
bx+ y

dxdy < C (a,b,β )‖ f‖p,μ‖g‖q,ν , (4.12)

where μ(x) = xp(1−β )−1, μ(y) = yq( 1
2 +β )−1.

In Theorem 3.1, let h(t) = 1
(1+t)2 , ψ(t) = bt, ϕ(t) = at, and b > a > 0. Then we

can also get the corollary as follows.

COROLLARY 4.6. Let 0 < a < b, 0 < β < 2, and β1β2 �= 0. Let μ(x)= xp(1−β β1)−1,
and ν(y) = yq(1−β β2)−1 . Suppose that f (x), g(x) � 0 , such that f (x) ∈ Lp

μ(R+), and
g(x) ∈ Lq

ν(R+) . Then

∫ ∞

0

∫ ∞

0

f (x)g(y)dxdy(
1+axβ1yβ2

)(
1+bxβ1yβ2

) <| β1 |−
1
q | β2 |−

1
p C∗(a,b,β )‖ f‖p,μ‖g‖q,ν ,

(4.13)

where C∗(a,b,β ) = a1−β−b1−β

(a−b)(1−β )B(β ,2−β ) for β �= 1; C∗(a,b,β ) = lna−lnb
a−b for β = 1.

Let β1 = 1, β2 =−1 in (4.13), and replace
√

yg(y) with g(y) , then we can obtain

∫ ∞

0

∫ ∞

0

f (x)g(y)
(ax+ y)(bx+ y)

dxdy < C∗ (a,b,β )‖ f‖p,μ‖g‖q,ν , (4.14)

where μ(x) = xp(1−β )−1, μ(y) = yq( 1
2 +β )−1.
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