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ON THE ARITHMETIC–GEOMETRIC MEAN INEQUALITY

MOHAMMAD SABABHEH, SHIGERU FURUICHI,
ZAHRA HEYDARBEYGI AND HAMID REZA MORADI

(Communicated by M. Krnić)

Abstract. In this article, we present a new treatment of the arithmetic-geometric mean inequality
and its siblings, the Heinz and the Young inequalities. New refinements via calculus computa-
tions and convex analysis are presented and a new Heinz-type inequality is presented for any
symmetric operator mean.

1. Introduction

The simple inequality

√
ab � a+b

2
, a,b > 0

is known in the literature as the arithmetic-geometricmean (AM-GM) inequality. Though
simple, this inequality has received a considerable attention due to its applications in
mathematical inequalities. A Multivariate version of the AM-GM inequality states that

n

∏
i=1

xwi
i �

n

∑
i=1

wixi; xi > 0, wi > 0,
n

∑
i=1

wi = 1. (1.1)

When n = 2, (1.1) reduces to the so called Young’s inequality, stating that

a1−tbt � (1− t)a+ tb, 0 � t � 1, a,b > 0. (1.2)

Applying Young’s inequality twice implies the celebrated Heinz inequality

√
ab � a1−tbt +atb1−t

2
� a+b

2
, (0 � t � 1) . (1.3)

A simple proof of (1.3) is obtained noting convexity of the function t �→ a1−tbt +atb1−t

and its symmetry about t = 1
2 . It is customary to use the notations

a�tb = a1−tbt , a∇t b = (1− t)a+ tb, a!tb = ((1− t)a−1 + tb−1)−1, a,b > 0, 0 � t � 1,
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to denote the geometric, arithmetic and harmonic means of the scalars a,b. When t = 1
2 ,

we usually drop it from the notation.
Heinz inequality (1.3) has received a considerable attention in the literature due to

its application in Matrix theory. We refer the reader to [4, 9, 11] for some treatments of
Heinz inequality, and their applications in Matrix theory.

In [5], a refinement of (1.2) was found in the following form

a1−tbt +min{t,1− t}
(√

a−
√

b
)2

� (1− t)a+ tb, (1.4)

while a reverse was shown in [6] as follows

a1−tbt +max{t,1− t}
(√

a−
√

b
)2

� (1− t)a+ tb. (1.5)

We refer the reader to [1, 2, 3, 7, 8] for recent references treating refinements and
reverses of (1.2).

A common disadvantage among these refinements and reverses is the fact that
when t = 1

2 , both (1.4) and (1.5) become trivial identities. Our first target in this article
is to present a non-trivial refinement and reverse of Young’s inequality, when t = 1

2 .

That is, we provide a refinement and reverse of the simple inequality 2
√

ab � a+b. A
matrix version then will be shown.

Once we show this, we move to the related Heinz inequality, where a simple ap-
plication towards the Cauchy-Schwartz inequality is give first.

When dealing with operator/matrix versions, we recall some terminologies. Let
B(H ) denote the algebra of all bounded linear operators acting on a complex Hilbert
space H , with inner product 〈·, ·〉 . An operator mean σ f in the sense of Kubo-Ando
is defined by a positive operator monotone function f on the half interval (0,∞) with
f (1) = 1 as

AσB = A
1
2 f
(
A− 1

2 BA− 1
2

)
A

1
2 ,

where A,B ∈ B(H ) are positive operators. Here, f is referred to as the representing
function of σ . We recall here that an operator A ∈ B(H ) is said to be positive when
〈Ax,x〉 > 0, for all non-zero vectors x ∈ H .

The most three common operator means are the harmonic, geometric and arith-
metic means, respectively defined for 0 � t � 1 by

A!tB = ((1− t)A−1 + tB−1)−1, A�tB = A
1
2

(
A− 1

2 BA− 1
2

)t
A

1
2 , A∇tB = (1− t)A+ tB.

When t �∈ [0,1], we still use the same notations, although they do not represents
operator means. Also, for these values of t , A!tB is not always defined.

The organization of this paper will be as follows. First, we present a new con-
vex approach that implies some AM-GM related inequalities and refinements, then we
discuss the AM-GM inequality with its operator versions, where new refinements are
shown. In the end, we discuss related Heinz and Cauchy inequalities.
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2. Main results

2.1. A new convex analysis approach

We begin our main results with a convex argument that implies certain refinements
of the Young and weighted power mean inequalities. While this paper is focused on
young and Heinz-type inequalities, the convex inequality we obtain presents a new
treatment of convex functions. We refer the reader to [10] for general treatment of
convex functions related to this approach.

THEOREM 2.1. Let f be an increasing function on [0,∞) with f (0) = 0 such
that f

(√
t
)

is convex. If r = min{t,1− t} and 0 � t � 1 , then

f ((1− t)a+ tb)

� f ((1− t)a+ tb)+ f
(√

t (1− t)|a−b|
)

+2r

(
f (a)+ f (b)

2
− f

(√
a2 +b2

2

))

� f

(√
(1− t)a2 + tb2

)
+2r

(
f (a)+ f (b)

2
− f

(√
a2 +b2

2

))

� (1− t) f (a)+ t f (b) .

Proof. Some ideas in our proof are similar to the ones used in [8, 10]. Assume
that 0 � t � 1. We have

(1− t)a2 + tb2− ((1− t)a+ tb)2 − (1− t)2(a−b)2

= (1− t)(2t−1)a2 +(1− t)(2t−1)b2−2(1− t)(2t−1)ab

= (1− t)(2t−1)
(
a2 +b2−2ab

)
= (1− t)(2t−1)(a−b)2.

That is,

(1− t)a2 + tb2− ((1− t)a+ tb)2 − (1− t)2(a−b)2 = (1− t)(2t−1)(a−b)2,

and
(1− t)a2 + tb2 = t (1− t)(a−b)2 +((1− t)a+ tb)2.

Assume that 0 � t � 1/2 . Let g(t) = f
(√

t
)
, t ∈ [0,∞) . Then g is an increasing

convex function on [0,∞) . This implies

(1− t)g
(
a2)+ tg

(
b2)−2r

(
g
(
a2
)
+g
(
b2
)

2
−g

(
a2 +b2

2

))

= (1−2t)g
(
a2)+2tg

(
a2 +b2

2

)
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� g

(
(1−2t)a2 +2t

a2 +b2

2

)
= g

(
(1− t)a2 + tb2)

= g
(
t (1− t)(a−b)2 +((1− t)a+ tb)2

)
� g

(
t (1− t)(a−b)2

)
+g
(
((1− t)a+ tb)2

)
.

Consequently,

g
(
((1− t)a+ tb)2

)

� g
(
((1− t)a+ tb)2

)
+g
(
t (1− t)(a−b)2

)
+2r

(
g
(
a2
)
+g
(
b2
)

2
−g

(
a2 +b2

2

))

� g
(
(1− t)a2 + tb2)+2r

(
g
(
a2
)
+g
(
b2
)

2
−g

(
a2 +b2

2

))

� (1− t)g
(
a2)+ tg

(
b2) ,

where r = min{t,1− t} . The above inequality is also valid for 1/2 � t � 1. Thus,

f ((1− t)a+ tb)

� f ((1− t)a+ tb)+ f
(√

t (1− t)|a−b|
)

+2r

(
f (a)+ f (b)

2
− f

(√
a2 +b2

2

))

� f

(√
(1− t)a2 + tb2

)
+2r

(
f (a)+ f (b)

2
− f

(√
a2 +b2

2

))

� (1− t) f (a)+ t f (b) ,

where r = min{t,1− t} and 0 � t � 1. This completes the proof. �

REMARK 2.1. Let the assumptions of Theorem 2.1 be valid. We observe that

0 � f

( |a−b|
2

)
+

f (a)+ f (b)
2

− f

(√
a2 +b2

2

)

� f (a)+ f (b)
2

− f

(
a+b

2

)
. (2.1)

Inequality (2.1) says that

f

(
a+b

2

)
� f

(√
a2 +b2

2

)
− f

( |a−b|
2

)
� f (a)+ f (b)

2
.
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COROLLARY 2.1. Let a,b � 0 and 0 � t � 1 . Then, for r � 2,

a1−tbt �
(
(1− t)a

1
r + tb

1
r

)r

�
(
(1− t)a

2
r + tb

2
r

) r
2 − (t(1− t))

r
2

∣∣∣a 1
r −b

1
r

∣∣∣r
� (1− t)a+ tb.

In particular, when t = 1
2 , we obtain

√
ab �

(
a

1
r +b

1
r

2

)r

�
(

a
2
r +b

2
r

2

) r
2

−
⎛
⎝
∣∣∣a 1

r −b
1
r

∣∣∣
2

⎞
⎠

r

� a+b
2

.

Proof. Applying Theorem 2.1, we have, for 0 � t � 1

f ((1− t)a+ tb) � f

(√
(1− t)a2 + tb2

)
− f

(√
t(1− t)|a−b|

)
� (1− t) f (a)+ t f (b). (2.2)

On the other hand, when a,b > 0 and 0 � t � 1, Young’s inequality states that a1−tbt �
(1− t)a+ tb. Since f is increasing, we obtain

f
(
a1−tbt)� f ((1− t)a+ tb)

� f

(√
(1− t)a2 + tb2

)
− f

(√
t(1− t)|a−b|

)
� (1− t) f (a)+ t f (b).

When f (t) = tr,r � 2, this implies(
a1−tbt)r � ((1− t)a+ tb)r

�
(√

(1− t)a2 + tb2

)r

−
(√

t(1− t)|a−b|
)r

� (1− t)ar + tbr.

Replacing a with a1/r and b with b1/r , we obtain the desired result. �

REMARK 2.2. In this remark, we discuss the behavior of the middle term in
Corollary 2.1. Namely, we compute

lim
r→∞

{(
(1− t)a

2
r + tb

2
r

) r
2 − (t(1− t))

r
2

∣∣∣a 1
r −b

1
r

∣∣∣r} .

In fact, direct Calculus computations, with the aid of L’hopital’s rule imply

lim
r→∞

(
(1− t)a

2
r + tb

2
r

) r
2 = a1−tbt .
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On the other hand, since a
1
r −b

1
r → 0, we have

lim
r→∞

{
(t(1− t))

r
2

∣∣∣a 1
r −b

1
r

∣∣∣r}= 0, 0 � t � 1.

Consequently,

lim
r→∞

{(
(1− t)a

2
r + tb

2
r

) r
2 − (t(1− t))

r
2

∣∣∣a 1
r −b

1
r

∣∣∣r}= a1−tbt , 0 � t � 1.

Notice that Corollary 2.1 implies

a1−tbt +(t(1− t))
r
2

∣∣∣a 1
r −b

1
r

∣∣∣r �
(
(1− t)a

2
r + tb

2
r

) r
2
, 0 � t � 1, r � 2.

Convexity of the function x �→ x
r
2 , when r � 2, implies

a1−tbt +(t(1− t))
r
2

∣∣∣a 1
r −b

1
r

∣∣∣r �
(
(1− t)a

2
r + tb

2
r

) r
2 � (1− t)a+ tb. (2.3)

When r � 2, 0 < 2
r � 1. So, letting p = 2

r in (2.3) implies the following refinement of
the well known weighted power mean inequality.

COROLLARY 2.2. Let a,b > 0 , 0 � t � 1 and 0 � p � 1. Then

a1−tbt +(t(1− t))
1
p

(
a

p
2 −b

p
2

) 2
p � ((1− t)ap + tbp)

1
p � (1− t)a+ tb.

In particular, when t = 1
2 , we obtain

√
ab+

(
a

p
2 −b

p
2

2

) 2
p

�
(

ap +bp

2

) 1
p

� a+b
2

.

REMARK 2.3. The weighted power mean interpolates between the weighted arith-
metic and the weighted geometric means. In fact for any a,b � 0

a1−tbt �
(
(1− t)a

1
p + tb

1
p

)p
� (1− t)a+ tb, (0 � t � 1, p � 1) . (2.4)

Thus, Corollary 2.2 provides a refinement of the first inequality in (2.4), while Corollary
2.1 improves the second inequality in (2.4).

2.2. The AM-GM inequality

In this subsection, we present new non trivial refinement and reverse of the sim-
ple inequality

√
ab � a+b

2 , or a�b � a∇b. It is worth noting that this inequality has
not been refined or reversed in the literature, although the Young inequality (1.2) has
been extensively studied. Also, we should compare the results presented in this new
subsection with the results of the previous subsection.
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THEOREM 2.2. Let a,b > 0 .

1. If 0 � p � 1
2 , then

√
ab+2

( |ap−bp|
2

) 1
p

� a+b
2

.

2. If 1
2 � p � 1, then

√
ab+2

( |ap−bp|
2

) 1
p

� a+b
2

.

The equality in (1) and (2) holds if and only if p = 1/2 or a = b.

Proof. Without loss of generality, we may assume a > b. Let

f (p) =
(

ap−bp

2

) 1
p

.

Then

log f (p) =
log(ap−bp)− log2

p
:= g(p).

Direct calculations show that g′(p) = h(p)
p2 , where

h(p) = log2+
p(ap loga−bp logb)

ap−bp − log(ap−bp).

Now

h′(p) = −apbpp(loga− logb)2

(ap−bp)2 < 0.

So, h is decreasing on (0,∞). In particular, when 0 � p � 1, we have

h(p) � h(1) =
a log2−b log2+a loga+(−a+b) log(a−b)−b logb

a−b
.

Now, fix a and define

k(b) = a log2−b log2+a loga+(−a+b) log(a−b)−b logb, b � a.

Then
k′(b) = log(a−b)− log(2b).

When b = a
3 , k′(b) = 0. Further, k′(b) > 0 when 0 < b < a

3 and k′(b) < 0 when
a
3 < b < a. Since lim

x↓0
x logx = 0, we have

k(b) � min{k(0),k(a)} = min{a log2,0} = 0, 0 < b < a.

This shows that k(b) > 0, hence

h(p) � h(1) � 0 ⇒ h′(p) < 0 ⇒ h(p) � h(1), 0 � p � 1.

That is, when 0 � p � 1,

h(p) � h(1) ⇒ h(p) � 0 ⇒ g′(p) � 0.

This shows that f is increasing on [0,1]. This leads to:
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1. When 0 � p � 1
2 , f (p) � f (1/2), which implies

√
ab+2

(
ap−bp

2

) 1
p

� a+b
2

.

2. When 1
2 � p � 1, f (p) � f (1/2), which implies

√
ab+2

(
ap−bp

2

) 1
p

� a+b
2

.

This completes the proof. �
The case p = 1/4 in Theorem 2.2 reduces to the following inequality

√
ab+

[
F1/4 (a,b)−H1/4 (a,b)

]
� a+b

2
,

where Hv (a,b) = a1−vbv+avb1−v

2 and Fv (a,b) = (1− v)
√

ab+va+b
2 are the Heinz mean

and the Heron mean, respectively.
As for the operator inequalities for Theorem 2.2, we have the following.

COROLLARY 2.3. Let A,B ∈ B(H ) be positive operators such that A > B.

(1) If 0 � p � 1
2 , then

A�B+21− 1
p A� 1

p
(A−A�pB) � A∇B.

(2) If 1
2 � p � 1 , then

A�B+21− 1
p A� 1

p
(A−A�pB) � A∇B.

Proof. For the first inequality, we have

√
t +2

(
1− t p

2

) 1
p

� 1+ t
2

, (0 < t < 1).

Applying functional calculus with t := A− 1
2 BA− 1

2 (then A− 1
2 BA− 1

2 < I from the as-
sumption A > B) and multiplying A

1
2 from both sides, we get

A�B+21− 1
p A

1
2

(
I−
(
A− 1

2 BA− 1
2

)p) 1
p
A

1
2 � A+B

2
.

This implies the first inequality, since we have

A
1
2

(
I−
(
A− 1

2 BA− 1
2

)p) 1
p
A

1
2 = A

1
2

{
A− 1

2 (A−A�pB)A− 1
2

} 1
p
A

1
2 = A� 1

p
(A−A�pB) .

Note that the assumption A > B > 0 assures A−A�pB > 0. A Similar argument shows
the second inequality. �
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2.3. The Heinz inequality

In this subsection, we tickle the Heinz inequality and related applications. The first
application is the following refinement and reverse of the Cauchy-Schwartz inequality.

THEOREM 2.3. Let ai,bi (1 � i � n) be positive numbers.
(I) If 0 � v � 1 , then

(
n

∑
i=1

aibi

)2

� 1
4

⎡
⎣(∑n

i=1 b2
i

∑n
i=1 a2

i

) 1−2v
2 n

∑
i=1

(
a1−v

i bv
i

)2
+
(

∑n
i=1 a2

i

∑n
i=1 b2

i

) 1−2v
2 n

∑
i=1

(
av

i b
1−v
i

)2⎤⎦
2

�
(

n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)
.

(II) If v � 1 or v � 0 , then

(
n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)
� 1

4

⎡
⎣(∑n

i=1 b2
i

∑n
i=1 a2

i

) 1−2v
2 n

∑
i=1

a2(1−v)
i b2v

i +
(

∑n
i=1 a2

i

∑n
i=1 b2

i

) 1−2v
2 n

∑
i=1

a2v
i b2(1−v)

i

⎤
⎦

2

.

Proof. Assume first that ∑n
i=1 a2

i = ∑n
i=1 b2

i = 1. For v ∈ R , define the function

f (v) =
1
2

n

∑
i=1

(
a2v

i b2(1−v)
i +a2(1−v)

i b2v
i

)
.

Each summand is convex, hence f is convex. Further, f is symmetric about v = 1
2 .

This means that for 0 � v � 1, one has f
(

1
2

)
� f (v) � f (1), which implies

n

∑
i=1

aibi �
1
2

n

∑
i=1

(
a2v

i b2(1−v)
i +a2(1−v)

i b2v
i

)
� 1.

This proves the first result (I) when ∑n
i=1 a2

i = ∑n
i=1 b2

i = 1. Now for the general case,
replace ai and bi by ai

(∑n
i=1 a2

i )
1/2 and bi

(∑n
i=1 b2

i )
1/2 , respectively, to obtain the desired

inequalities.
The inequality in (II) follows from the fact that f (1) � f (v) when v � 1 or v �

0. �
For the rest of this subsection, we discuss the Heinz inequality in a more general

setting, motivated by the observation that (1.3) can be looked at as

a�b � a�t b+a�1−tb
2

� a∇b, 0 � t � 1, a,b > 0

where � and ∇ stand for the geometric and arithmetic means, respectively, defined as

a�t b = a1−tbt , a∇t b = (1− t)a+ tb.
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When t = 1
2 , it is customary to write a�b and a∇b. To introduce the new study, we

need to recall some terminologies. The operator Heinz version of (1.3) asserts that
when A,B ∈ B(H ) are positive,

A�B � (A�tB)∇(A�1−tB) � A∇B, 0 � t � 1. (2.5)

Our motivation begins with (2.5), where we look for possible natural extensions
of this inequality for other operator means. For example, one may consider the similar
inequality

A!B � (A!vB)�(B!vA) � A�B. (2.6)

The scalar case of this inequality can be shown easily as follows.

PROPOSITION 2.1. Let a,b > 0 and v ∈ [0,1] . Then

a!b � (a!vb)�(b!va) � a�b. (2.7)

Proof. The inequalities (2.7) are equivalent to

2t
1+ t

�

√(
1− v+

v
t

)−1
(

1− v
t

+ v

)−1

�
√

t, (t > 0). (2.8)

The second inequality in (2.8) is equivalent to

(
1− v+

v
t

)(1− v
t

+ v

)
� 1

t
, (t > 0).

Multiplying t2 > 0 to the both sides in the above inequality, we have

{(1− v)t + v}{(1− v)+ vt}� t, (t > 0)

which is equivalent to
v(1− v)(t−1)2 � 0

by simple calculations. Thus the second inequality in (2.8) is true.
Similarly, the first inequality in (2.8) is equivalent to

(1+ t)2

4t2
�
(
(1− v)+

v
t

)(1− v
t

+ v

)
, (t > 0)

which is equivalent to
(2v−1)2(t −1)2 � 0

by simple calculations. Thus the first inequality in (2.8) is also true. �

Now we present the generalized operator version of the Heinz-type inequalities
(2.5) and (2.6).
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THEOREM 2.4. Assume that σp and τp are interpolational paths for the symmet-
ric operator means σ and τ , respectively, with σ � τ . Then

AσB � (AσpB)τ (Aσ1−pB) � AτB, (0 � p � 1) .

Proof. We have

AσB =
(
Aσ 1−t

2
B
)

σ
(
Aσ 1+t

2
B
)

�
(
Aσ 1−t

2
B
)

τ
(
Aσ 1+t

2
B
)

�
(
Aτ 1−t

2
B
)

τ
(
Aτ 1+t

2
B
)

= AτB,

where the second inequality follows from the following fact

σ � τ ⇒ σp � τp (0 � p � 1) .

Interchange (1− t)/2 and p where 0 � p � 1/2 , to get

AσB � (AσpB)τ (Aσ1−pB) � AτB

as desired, for � p � 1/2.
For 1/2 � p � 1, we replace p by 1− p , and the proof is complete. �
Related to our study, though in a different scope, we note that the Heinz inequality

is not valid if we replace the symmetric means with weighted means. In the following
observation, we present conditions on a , b , and v ensuring that this inequality remains
valid.

THEOREM 2.5. Let a,b > 0 and v∈ [0,1] . If we have the condition (i) b � a and
v ∈ [0,1/2] or (ii) b � a and v ∈ [1/2,1] , then the first inequality of (2.9) holds. If we
also have the condition (iii) b � a and v ∈ [1/2,1] or (iv) b � a and v ∈ [0,1/2] , then
the second inequality of (2.9) holds.

a1−vbv � (1− v)a1−vbv + vavb1−v � (1− v)a+ vb. (2.9)

Proof. The inequalities (2.9) are equivalent to the following inequalities

tv � (1− v)tv + vt1−v � (1− v)+ vt, (t > 0). (2.10)

Since (1−v)tv +vt1−v− tv = vtv(t1−2v−1) , we have the first inequality of (2.10) holds
when (i) t � 1 and v ∈ [0,1/2] , or (ii) 0 < t � 1 and v ∈ [1/2,1] . To prove the second
inequality in (2.10) under the condition (i) t � 1 and v ∈ [0,1/2] , or (ii) 0 < t � 1 and
v ∈ [1/2,1] , we set

fv(t) := (1− v)+ vt− (1− v)tv− vt1−v

for (iii) t � 1 and v ∈ [1/2,1] . Then we have f ′v(t) = v− v(1− v)(t−v + tv−1) and
f ′′v (t) = v(1−v)t−v−2

(
vt +(1− v)t2v

)
� 0. Thus we have f ′v(t) � f ′v(1) = v(2v−1) �

0. Thus we have fv(t) � fv(1) = 0. We set again

fv(t) := (1− v)+ vt− (1− v)tv− vt1−v

for (iv) 0 < t � 1 and v∈ [0,1/2] . By similar way, we have f ′v(t) � f ′v(1) = v(2v−1)�
0 and then fv(t) � fv(1) = 0. �
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